misc_kernels.cu 12.1 KB
Newer Older
Zhekai Zhang's avatar
Zhekai Zhang committed
1
2
3
4
#include "misc_kernels_impl.cuh"
#include "misc_kernels.h"
#include "dispatch_utils.h"

muyangli's avatar
muyangli committed
5
6
namespace nunchaku::kernels {

Zhekai Zhang's avatar
Zhekai Zhang committed
7
8
9
10
11
12
13
Tensor add(Tensor a, Tensor b) {
    assert(a.shape.dataExtent == b.shape.dataExtent);
    assert(a.dtype() == b.dtype());
    assert(a.is_contiguous());
    assert(b.is_contiguous());

    int threadsPerBlock = 1024;
Muyang Li's avatar
Muyang Li committed
14
    int blocksPerGrid   = (a.numel() + threadsPerBlock - 1) / threadsPerBlock;
Zhekai Zhang's avatar
Zhekai Zhang committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

    auto stream = getCurrentCUDAStream();

    Tensor out = Tensor::empty_like(a);

    dispatch(out.scalar_type(), [&]<typename scalar_t>() {
        add_kernel<<<blocksPerGrid, threadsPerBlock, 0, stream>>>(
            a.data_ptr<scalar_t>(), b.data_ptr<scalar_t>(), out.data_ptr<scalar_t>(), out.numel());
    });

    return out;
}

void mul_add(Tensor x, Tensor scale, Tensor bias) {
    // assert(scale.shape.data == bias.shape.data);
    // FIXME FIXME
    assert(x.numel() % scale.numel() == 0);
    assert(x.numel() % bias.numel() == 0);
    assert(x.dtype() == scale.dtype());
    assert(x.dtype() == bias.dtype());

    constexpr int unroll = 8;

    assert((uintptr_t)x.data_ptr() % (x.scalar_size() * unroll) == 0);
muyangli's avatar
muyangli committed
39
    assert(!scale.valid() || (uintptr_t)scale.data_ptr() % (x.scalar_size() * unroll) == 0);
Zhekai Zhang's avatar
Zhekai Zhang committed
40
41
42
    assert((uintptr_t)bias.data_ptr() % (x.scalar_size() * unroll) == 0);

    assert(x.numel() % unroll == 0);
muyangli's avatar
muyangli committed
43
    assert(!scale.valid() || scale.numel() % unroll == 0);
Zhekai Zhang's avatar
Zhekai Zhang committed
44
45
46
    assert(bias.numel() % unroll == 0);

    int threadsPerBlock = 1024;
Muyang Li's avatar
Muyang Li committed
47
    int blocksPerGrid   = (x.numel() + threadsPerBlock * unroll - 1) / (threadsPerBlock * unroll);
Zhekai Zhang's avatar
Zhekai Zhang committed
48
49
50
51

    auto stream = getCurrentCUDAStream();

    dispatch(x.scalar_type(), [&]<typename scalar_t>() {
muyangli's avatar
muyangli committed
52
        if (scale.valid()) {
Muyang Li's avatar
Muyang Li committed
53
54
55
56
57
58
59
60
61
62
63
            mul_add_kernel<scalar_t, unroll, false>
                <<<blocksPerGrid, threadsPerBlock, 0, stream>>>(x.data_ptr<scalar_t>(),
                                                                scale.data_ptr<scalar_t>(),
                                                                bias.data_ptr<scalar_t>(),
                                                                0,
                                                                x.numel(),
                                                                scale.numel(),
                                                                bias.numel(),
                                                                0,
                                                                0,
                                                                0);
muyangli's avatar
muyangli committed
64
65
66
67
68
69
70
71
72
73
74
75
76
        } else {
            mul_add_kernel<scalar_t, unroll, true><<<blocksPerGrid, threadsPerBlock, 0, stream>>>(
                x.data_ptr<scalar_t>(), nullptr, bias.data_ptr<scalar_t>(), 0, x.numel(), 1, bias.numel(), 0, 0, 0);
        }
    });
}

void mul_add_batch(Tensor x, Tensor scale, bool batch_scale, double scale_shift, Tensor bias, bool batch_bias) {

    const int batch_size = x.shape[0];
    assert(!batch_scale || scale.shape[0] == batch_size);
    assert(!batch_bias || bias.shape[0] == batch_size);

Muyang Li's avatar
Muyang Li committed
77
    const int numel       = x.numel() / batch_size;
muyangli's avatar
muyangli committed
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
    const int numel_scale = scale.valid() ? (scale.numel() / (batch_scale ? batch_size : 1)) : 1;
    const int numel_bias  = bias.numel() / (batch_bias ? batch_size : 1);

    assert(numel % numel_scale == 0);
    assert(numel % numel_bias == 0);
    assert(!scale.valid() || x.dtype() == scale.dtype());
    assert(x.dtype() == bias.dtype());

    constexpr int unroll = 8;

    assert((uintptr_t)x.data_ptr() % (x.scalar_size() * unroll) == 0);
    assert(!scale.valid() || (uintptr_t)scale.data_ptr() % (x.scalar_size() * unroll) == 0);
    assert((uintptr_t)bias.data_ptr() % (x.scalar_size() * unroll) == 0);

    assert(numel % unroll == 0);
    assert(!scale.valid() || numel_scale % unroll == 0);
    assert(numel_bias % unroll == 0);

    int threadsPerBlock = 1024;
    dim3 grid(ceilDiv(numel, threadsPerBlock * unroll), batch_size);

    auto stream = getCurrentCUDAStream();

    dispatch(x.scalar_type(), [&]<typename scalar_t>() {
        if (scale.valid()) {
Muyang Li's avatar
Muyang Li committed
103
104
105
106
107
108
109
110
111
112
113
            mul_add_kernel<scalar_t, unroll, false>
                <<<grid, threadsPerBlock, 0, stream>>>(x.data_ptr<scalar_t>(),
                                                       scale.data_ptr<scalar_t>(),
                                                       bias.data_ptr<scalar_t>(),
                                                       (scalar_t)scale_shift,
                                                       numel,
                                                       numel_scale,
                                                       numel_bias,
                                                       x.stride(0),
                                                       batch_scale ? scale.stride(0) : 0,
                                                       batch_bias ? bias.stride(0) : 0);
muyangli's avatar
muyangli committed
114
        } else {
Muyang Li's avatar
Muyang Li committed
115
116
117
118
119
120
121
122
123
124
125
            mul_add_kernel<scalar_t, unroll, true>
                <<<grid, threadsPerBlock, 0, stream>>>(x.data_ptr<scalar_t>(),
                                                       nullptr,
                                                       bias.data_ptr<scalar_t>(),
                                                       (scalar_t)scale_shift,
                                                       numel,
                                                       1,
                                                       numel_bias,
                                                       x.stride(0),
                                                       0,
                                                       batch_bias ? bias.stride(0) : 0);
muyangli's avatar
muyangli committed
126
        }
Zhekai Zhang's avatar
Zhekai Zhang committed
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
    });
}

Tensor embedding(Tensor input_id, Tensor lookup) {
    assert(input_id.dtype() == Tensor::INT32);
    assert(lookup.ndims() == 2);

    auto shapeOut = input_id.shape;
    shapeOut.dataExtent.push_back(lookup.shape[-1]);

    auto stream = getCurrentCUDAStream();

    Tensor out = Tensor::empty(shapeOut, lookup.scalar_type(), input_id.device());

    dispatch(out.scalar_type(), [&]<typename scalar_t>() {
        EmbeddingKernel<<<input_id.numel(), std::min(lookup.shape[-1], 1024), 0, stream>>>(
            input_id.data_ptr<int32_t>(), out.data_ptr<scalar_t>(), lookup.data_ptr<scalar_t>(), lookup.shape[-1]);
    });

    return out;
}

Tensor argmax_sample(Tensor logits) {
    assert(logits.ndims() == 2);

    auto stream = getCurrentCUDAStream();

    Tensor out = Tensor::empty({logits.shape[0]}, Tensor::INT32, logits.device());

    dispatch(logits.scalar_type(), [&]<typename scalar_t>() {
        argmax_sample_kernel<<<logits.shape[0], std::min(logits.shape[1], 1024), 0, stream>>>(
Muyang Li's avatar
Muyang Li committed
158
            logits.data_ptr<scalar_t>(), out.data_ptr<int32_t>(), logits.shape[1]);
Zhekai Zhang's avatar
Zhekai Zhang committed
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
    });

    return out;
}

void splitqkv(Tensor qkv, Tensor q, Tensor k, Tensor v) {
    // FIXME FIXME
    // assert(qkv.shape[0] == q.shape[0]);
    // assert(qkv.shape[0] == k.shape[0]);
    // assert(qkv.shape[0] == v.shape[0]);

    auto stream = getCurrentCUDAStream();

    int dim_q = q.shape[-1] * q.shape[-2];
    int dim_k = k.shape[-1] * k.shape[-2];
    int dim_v = v.shape[-1] * v.shape[-2];

    assert(dim_k == dim_v);
    assert(dim_q + dim_k + dim_v == qkv.shape[-1]);
Muyang Li's avatar
Muyang Li committed
178

Zhekai Zhang's avatar
Zhekai Zhang committed
179
180
181
    int num_tokens = qkv.numel() / qkv.shape[-1];

    dispatch(qkv.scalar_type(), [&]<typename scalar_t>() {
Muyang Li's avatar
Muyang Li committed
182
183
184
185
186
187
        splitqkv_kernel<<<num_tokens, std::min(qkv.shape[-1], 1024), 0, stream>>>(qkv.data_ptr<scalar_t>(),
                                                                                  q.data_ptr<scalar_t>(),
                                                                                  k.data_ptr<scalar_t>(),
                                                                                  v.data_ptr<scalar_t>(),
                                                                                  dim_q,
                                                                                  dim_k);
Zhekai Zhang's avatar
Zhekai Zhang committed
188
189
190
191
192
193
194
195
    });
}

template<size_t N>
std::array<Tensor, N> split_mod(Tensor input) {
    assert(input.shape[-1] % N == 0);

    int threadsPerBlock = 1024;
Muyang Li's avatar
Muyang Li committed
196
    int blocksPerGrid   = (input.numel() + threadsPerBlock - 1) / threadsPerBlock;
Zhekai Zhang's avatar
Zhekai Zhang committed
197
198
199

    auto stream = getCurrentCUDAStream();

200
    auto shapeOut = TensorShape(input.shape.dataExtent);
Zhekai Zhang's avatar
Zhekai Zhang committed
201
202
203
204
205
206
207
208
209
210
211
212
213
    shapeOut[-1] /= N;

    std::array<Tensor, N> out;
    for (int k = 0; k < N; k++) {
        out[k] = Tensor::empty(shapeOut, input.scalar_type(), input.device());
    }

    dispatch(input.scalar_type(), [&]<typename scalar_t>() {
        std::array<scalar_t *, N> outPtr;
        for (int k = 0; k < N; k++) {
            outPtr[k] = out[k].template data_ptr<scalar_t>();
        }
        split_mod_kernel<<<blocksPerGrid, threadsPerBlock, 0, stream>>>(
Muyang Li's avatar
Muyang Li committed
214
            input.data_ptr<scalar_t>(), outPtr, input.numel());
Zhekai Zhang's avatar
Zhekai Zhang committed
215
216
217
218
219
220
221
222
223
224
225
226
227
    });

    return out;
}

Tensor quant_static(Tensor x, float scale) {
    Tensor out = Tensor::empty(x.shape, Tensor::INT8, x.device());

    constexpr int unroll = 8;

    assert((uintptr_t)x.data_ptr() % (x.scalar_size() * unroll) == 0);

    int threadsPerBlock = 1024;
Muyang Li's avatar
Muyang Li committed
228
    int blocksPerGrid   = (x.numel() + threadsPerBlock * unroll - 1) / (threadsPerBlock * unroll);
Zhekai Zhang's avatar
Zhekai Zhang committed
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247

    auto stream = getCurrentCUDAStream();

    dispatch(x.scalar_type(), [&]<typename scalar_t>() {
        quant_kernel_static<scalar_t, unroll><<<blocksPerGrid, threadsPerBlock, 0, stream>>>(
            x.data_ptr<scalar_t>(), out.data_ptr<int8_t>(), (scalar_t)scale, x.numel());
    });

    return out;
}

Tensor quant_static_fuse_gelu(Tensor x, float scale) {
    Tensor out = Tensor::empty(x.shape, Tensor::INT8, x.device());

    constexpr int unroll = 8;

    assert((uintptr_t)x.data_ptr() % (x.scalar_size() * unroll) == 0);

    int threadsPerBlock = 1024;
Muyang Li's avatar
Muyang Li committed
248
    int blocksPerGrid   = (x.numel() + threadsPerBlock * unroll - 1) / (threadsPerBlock * unroll);
Zhekai Zhang's avatar
Zhekai Zhang committed
249
250
251
252
253
254
255
256
257
258
259

    auto stream = getCurrentCUDAStream();

    dispatch(x.scalar_type(), [&]<typename scalar_t>() {
        quant_kernel_static_fuse_gelu<scalar_t, unroll><<<blocksPerGrid, threadsPerBlock, 0, stream>>>(
            x.data_ptr<scalar_t>(), out.data_ptr<int8_t>(), (scalar_t)scale, x.numel());
    });

    return out;
}

260
261
262
263
264
void cast(Tensor input, Tensor output) {
    assert(input.is_contiguous());
    assert(output.is_contiguous());
    assert(input.shape.dataExtent == output.shape.dataExtent);

265
266
267
268
    if (input.data_ptr() == output.data_ptr()) {
        assert(input.scalar_size() == output.scalar_size());
    }

269
270
271
272
273
274
275
    auto stream = getCurrentCUDAStream();

    dispatch(input.scalar_type(), [&]<typename input_t>() {
        dispatch(output.scalar_type(), [&]<typename output_t>() {
            constexpr int unroll = 16 / std::max(sizeof(input_t), sizeof(output_t));

            int threadsPerBlock = 1024;
Muyang Li's avatar
Muyang Li committed
276
            int blocksPerGrid   = (int)ceilDiv<int64_t>(input.numel(), threadsPerBlock * unroll);
277
278
279
280
281
282
283
284
285

            cast_kernel<input_t, output_t, unroll><<<blocksPerGrid, threadsPerBlock, 0, stream>>>(
                input.data_ptr<input_t>(), output.data_ptr<output_t>(), input.numel());

            checkCUDA(cudaGetLastError());
        });
    });
}

Zhekai Zhang's avatar
Zhekai Zhang committed
286
287
288
Tensor topk(Tensor x, int k) {
    constexpr int MAXK = 64 + 4;

Muyang Li's avatar
Muyang Li committed
289
    const int N     = x.shape[-1];
Zhekai Zhang's avatar
Zhekai Zhang committed
290
291
292
293
294
    const int batch = x.numel() / N;

    assert(k <= N);
    assert(k <= MAXK);

muyangli's avatar
muyangli committed
295
    auto outShape = TensorShape(x.shape.dataExtent);
Muyang Li's avatar
Muyang Li committed
296
    outShape[-1]  = k;
Zhekai Zhang's avatar
Zhekai Zhang committed
297
298
299
300
301
302
303
304
305
306
307
308
309
310
    outShape.dataStride.clear();

    Tensor out = Tensor::empty(outShape, Tensor::INT32, x.device());

    auto stream = getCurrentCUDAStream();

    dispatchVal(k, std::make_integer_sequence<int, MAXK + 1>(), [&]<int K>() {
        if constexpr (K == 0) {
            assert(false);
            return;
        }
        if constexpr (K > 0) {
            dispatch(x.scalar_type(), [&]<typename scalar_t>() {
                topk_kernel<scalar_t, K><<<ceilDiv(batch, 32), 32, 0, stream>>>(
Muyang Li's avatar
Muyang Li committed
311
                    x.data_ptr<scalar_t>(), out.data_ptr<int>(), N, x.stride(-2), batch);
Zhekai Zhang's avatar
Zhekai Zhang committed
312
313
314
315
316
317
318
319
320
321
322
323
                checkCUDA(cudaGetLastError());
            });
        }
    });

    return out;
}

template std::array<Tensor, 2> split_mod<2>(Tensor input);
template std::array<Tensor, 3> split_mod<3>(Tensor input);
template std::array<Tensor, 4> split_mod<4>(Tensor input);
template std::array<Tensor, 5> split_mod<5>(Tensor input);
muyangli's avatar
muyangli committed
324
325
template std::array<Tensor, 6> split_mod<6>(Tensor input);

Muyang Li's avatar
Muyang Li committed
326
}; // namespace nunchaku::kernels