gemm_f16.cu 6.04 KB
Newer Older
Zhekai Zhang's avatar
Zhekai Zhang committed
1
2
#include "gemm_f16.h"

muyangli's avatar
muyangli committed
3
4
#include "dispatch_cutlass.h"

Zhekai Zhang's avatar
Zhekai Zhang committed
5
6
7
8
9
10
11
12
13
14
15
16
#include <cutlass/core_io.h>
#include <cutlass/cutlass.h>
#include <cutlass/half.h>
#include <cutlass/bfloat16.h>

#include <cutlass/gemm/device/gemm.h>
#include <cutlass/numeric_types.h>

using spdlog::fmt_lib::format;

Tensor gemm_f16(Tensor input,  // FP16
                Tensor weight, // FP16
Muyang Li's avatar
Muyang Li committed
17
                Tensor out,    // FP16
muyangli's avatar
muyangli committed
18
                Tensor bias,
Muyang Li's avatar
Muyang Li committed
19
                float alpha) {
Zhekai Zhang's avatar
Zhekai Zhang committed
20
21
22
23
24
25
26
    auto N = weight.size(0);
    auto K = input.size(-1);
    auto M = input.numel() / K;
    assert(weight.size(1) == K);

    spdlog::debug("gemm_f16: M={} K={} N={}", M, K, N);

muyangli's avatar
muyangli committed
27
    dispatchF16(weight.dtype(), [&]<typename half_t>() {
Muyang Li's avatar
Muyang Li committed
28
29
        using ElementOutput          = half_t;
        using ElementAccumulator     = float;
muyangli's avatar
muyangli committed
30
        using ElementComputeEpilogue = half_t;
Muyang Li's avatar
Muyang Li committed
31
32
        using ElementInputA          = half_t; // <- data type of elements in input matrix A
        using ElementInputB          = half_t; // <- data type of elements in input matrix B
muyangli's avatar
muyangli committed
33
34
35
36
37

        using LayoutInputA = cutlass::layout::RowMajor;
        using LayoutInputB = cutlass::layout::ColumnMajor;
        using LayoutOutput = cutlass::layout::RowMajor;

Muyang Li's avatar
Muyang Li committed
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
        // #if CUDA_ARCH >= 800
        using Gemm = cutlass::gemm::device::Gemm<ElementInputA,
                                                 cutlass::layout::RowMajor,
                                                 ElementInputB,
                                                 cutlass::layout::ColumnMajor,
                                                 ElementOutput,
                                                 cutlass::layout::RowMajor,
                                                 ElementAccumulator,
                                                 cutlass::arch::OpClassTensorOp,
                                                 cutlass::arch::Sm75>;
        // cutlass::gemm::GemmShape<128, 128, 64>,
        // cutlass::gemm::GemmShape<32, 64, 64>, cutlass::gemm::GemmShape<16, 8, 16>,
        // cutlass::epilogue::thread::LinearCombination<
        //     ElementOutput, 128 / cutlass::sizeof_bits<ElementOutput>::value,
        //     ElementAccumulator, ElementComputeEpilogue>,
        // cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>, 3>;

        auto input_size  = cutlass::MatrixCoord(M, K);
muyangli's avatar
muyangli committed
56
57
58
59
60
61
62
63
64
        auto weight_size = cutlass::MatrixCoord(K, N);
        auto output_size = cutlass::MatrixCoord(M, N);

        auto device = input.device();
        // use the broadcasted bias as the output
        // auto out = bias.to(device).view({1, -1}).repeat({M, 1});

        if (!out.valid()) {
            auto out_shape = TensorShape(input.shape.dataExtent);
Muyang Li's avatar
Muyang Li committed
65
66
            out_shape[-1]  = N;
            out            = Tensor::empty(out_shape, input.scalar_type(), input.device());
muyangli's avatar
muyangli committed
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
        }

        // FIXME: check contiguous of input if dims >= 3
        assert(input.stride(-1) == 1);
        // assert(input.is_contiguous());
        assert(weight.is_contiguous());

        assert(out.dtype() == input.scalar_type());
        assert(out.shape[-1] == N);
        assert(out.numel() / out.shape[-1] == M);
        assert(out.stride(-1) == 1);
        // FIXME: check contiguous of output if dims >= 3

        assert(!bias.valid() || (bias.ndims() == 1 && bias.shape[0] == N));

        // constexpr int kSparse = Gemm::kSparse;
        // How many elements of A are covered per ElementE
        // constexpr int kElementsPerElementE = Gemm::kElementsPerElementE;
        // The size of individual meta data
        // constexpr int kMetaSizeInBits = Gemm::kMetaSizeInBits;
        cutlass::gemm::GemmCoord problem_size(M, N, K);

Muyang Li's avatar
Muyang Li committed
89
90
91
92
        cutlass::TensorRef<ElementInputA, LayoutInputA> input_ref(input.data_ptr<ElementInputA>(),
                                                                  LayoutInputA(input.stride(-2)));
        cutlass::TensorRef<ElementInputB, LayoutInputB> weight_ref(weight.data_ptr<ElementInputB>(),
                                                                   LayoutInputB::packed(weight_size));
muyangli's avatar
muyangli committed
93
94
        cutlass::TensorRef<ElementOutput, LayoutOutput> bias_ref(
            bias.valid() ? bias.data_ptr<ElementOutput>() : out.data_ptr<ElementOutput>(), LayoutOutput(0));
Muyang Li's avatar
Muyang Li committed
95
96
97
98
99
100
101
102
103
104
        cutlass::TensorRef<ElementOutput, LayoutOutput> out_ref(out.data_ptr<ElementOutput>(),
                                                                LayoutOutput(out.stride(-2)));

        typename Gemm::Arguments arguments{problem_size, // <- problem size of matrix multiplication
                                           input_ref,    // <- reference to matrix A on device
                                           weight_ref,   // <- reference to matrix B on device
                                           bias_ref,     // <- reference to matrix C on device
                                           out_ref,      // <- reference to matrix D on device
                                           {ElementOutput(alpha), ElementOutput(bias.valid() ? 1.0f : 0.0f)},
                                           1};
muyangli's avatar
muyangli committed
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
        Gemm gemm_op;

        // Using the arguments, query for extra workspace required for matrix
        // multiplication computation
        size_t workspace_size = Gemm::get_workspace_size(arguments);

        // Allocate workspace memory
        // cutlass::device_memory::allocation<uint8_t> workspace(workspace_size);

        BufferCUDA workspace(workspace_size);

        // Check the problem size is supported or not
        cutlass::Status status = gemm_op.can_implement(arguments);
        if (status != cutlass::Status::kSuccess) {
            throw std::runtime_error(format("cutlass cannot implement M={} N={} K={}", M, N, K));
        }

        // Initialize CUTLASS kernel with arguments and workspace pointer
        status = gemm_op.initialize(arguments, workspace.getPtr());
        if (status != cutlass::Status::kSuccess) {
            throw std::runtime_error("cutlass cannot initialize");
        }

        status = gemm_op();
        if (status != cutlass::Status::kSuccess) {
            throw std::runtime_error("cutlass cannot run");
        }
    });

Zhekai Zhang's avatar
Zhekai Zhang committed
134
135
    return out;
}