Tensor.h 17.9 KB
Newer Older
Zhekai Zhang's avatar
Zhekai Zhang committed
1
2
3
4
5
#pragma once

#include "common.h"

struct Device {
Muyang Li's avatar
Muyang Li committed
6
    enum Type { INVALID_DEVICE_TYPE = 0, CPU, CUDA };
Zhekai Zhang's avatar
Zhekai Zhang committed
7
8

    Type type = INVALID_DEVICE_TYPE;
Muyang Li's avatar
Muyang Li committed
9
    int idx   = 0;
Zhekai Zhang's avatar
Zhekai Zhang committed
10
11
12
13
14
15
16
17
18
19
20
21
22

    static constexpr Device cpu(int idx = 0) {
        return Device{CPU, idx};
    }
    static constexpr Device cuda(int idx = 0) {
        return Device{CUDA, idx};
    }
};

// template<bool readonly>
class Buffer : public std::enable_shared_from_this<Buffer> {
public:
    virtual ~Buffer() {}
Muyang Li's avatar
Muyang Li committed
23
24
25
26

    void *getPtr() {
        return ptr;
    }
Zhekai Zhang's avatar
Zhekai Zhang committed
27
28

    template<typename T>
Muyang Li's avatar
Muyang Li committed
29
30
31
    T *getPtr() {
        return reinterpret_cast<T *>(ptr);
    }
Zhekai Zhang's avatar
Zhekai Zhang committed
32

Muyang Li's avatar
Muyang Li committed
33
34
35
36
37
38
    size_t getSize() {
        return size;
    }
    Device getDevice() {
        return device;
    }
Zhekai Zhang's avatar
Zhekai Zhang committed
39

Muyang Li's avatar
Muyang Li committed
40
    virtual bool isAsyncBuffer() {
muyangli's avatar
muyangli committed
41
42
43
        return false;
    }

Zhekai Zhang's avatar
Zhekai Zhang committed
44
protected:
Muyang Li's avatar
Muyang Li committed
45
    template<typename Derived>
Zhekai Zhang's avatar
Zhekai Zhang committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
    std::shared_ptr<Derived> shared_from_base() {
        return std::static_pointer_cast<Derived>(shared_from_this());
    }

protected:
    // std::conditional_t<readonly, const void *, void *> ptr;
    void *ptr;
    size_t size;
    Device device;
};

// using Buffer = BufferTemplate<false>;
// using BufferReadonly = BufferTemplate<true>;

class BufferMalloc : public Buffer {
public:
    BufferMalloc(size_t size) {
Muyang Li's avatar
Muyang Li committed
63
        this->size        = size;
Zhekai Zhang's avatar
Zhekai Zhang committed
64
        this->device.type = Device::CPU;
Muyang Li's avatar
Muyang Li committed
65
        this->ptr         = malloc(size);
Zhekai Zhang's avatar
Zhekai Zhang committed
66
67
68
69
70
71
72
73
74
    }
    virtual ~BufferMalloc() {
        free(this->ptr);
    }
};

class BufferHost : public Buffer {
public:
    BufferHost(size_t size) {
Muyang Li's avatar
Muyang Li committed
75
        this->size        = size;
Zhekai Zhang's avatar
Zhekai Zhang committed
76
77
78
79
80
81
82
83
84
85
86
        this->device.type = Device::CPU;
        checkCUDA(cudaHostAlloc(&this->ptr, size, cudaHostAllocPortable));
    }
    virtual ~BufferHost() {
        checkCUDA(cudaFreeHost(this->ptr));
    }
};

class BufferCUDA : public Buffer {
public:
    BufferCUDA(size_t size) {
Muyang Li's avatar
Muyang Li committed
87
        this->size        = size;
Zhekai Zhang's avatar
Zhekai Zhang committed
88
        this->device.type = Device::CUDA;
89
90
        // checkCUDA(cudaGetDevice(&this->device.idx));
        this->device.idx = CUDADeviceContext::getDevice();
Zhekai Zhang's avatar
Zhekai Zhang committed
91
92
93
        if (size == 0) {
            this->ptr = nullptr;
        }
muyangli's avatar
muyangli committed
94
95
        // TODO: buffer used in multiple streams?
        checkCUDA(cudaMallocAsync(&this->ptr, size, getCurrentCUDAStream()));
Zhekai Zhang's avatar
Zhekai Zhang committed
96
97
98
99
100
101
    }
    virtual ~BufferCUDA() {
        if (this->size == 0) {
            assert(!this->ptr);
            return;
        }
muyangli's avatar
muyangli committed
102
        checkCUDA(cudaFreeAsync(this->ptr, getCurrentCUDAStream()));
Zhekai Zhang's avatar
Zhekai Zhang committed
103
    }
Muyang Li's avatar
Muyang Li committed
104
    virtual bool isAsyncBuffer() override {
muyangli's avatar
muyangli committed
105
106
        return true;
    }
Zhekai Zhang's avatar
Zhekai Zhang committed
107
108
109
110
111
};

class BufferCUDASync : public Buffer {
public:
    BufferCUDASync(size_t size) {
Muyang Li's avatar
Muyang Li committed
112
        this->size        = size;
Zhekai Zhang's avatar
Zhekai Zhang committed
113
114
115
116
117
118
119
120
121
122
123
124
125
        this->device.type = Device::CUDA;
        checkCUDA(cudaGetDevice(&this->device.idx));
        checkCUDA(cudaMalloc(&this->ptr, size));
    }
    virtual ~BufferCUDASync() {
        checkCUDA(cudaFree(this->ptr));
    }
};

class BufferView : public Buffer {
public:
    BufferView(std::shared_ptr<Buffer> reference, size_t offset, size_t size) : reference(reference) {
        assert(offset + size <= reference->getSize());
Muyang Li's avatar
Muyang Li committed
126
127
        this->ptr    = (void *)((std::uint8_t *)reference->getPtr() + offset);
        this->size   = size;
Zhekai Zhang's avatar
Zhekai Zhang committed
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
        this->device = reference->getDevice();
    }

private:
    std::shared_ptr<Buffer> reference;
};

struct TensorShape {
    std::vector<int> dataExtent;
    std::vector<int> dataStride;
    int64_t offset = 0;

    TensorShape() {}
    TensorShape(std::vector<int> shape) : dataExtent(std::move(shape)) {}
    TensorShape(std::initializer_list<int> dims) : dataExtent(dims) {}

    bool is_contiguous() const {
        if (dataStride.empty()) {
            return true;
        }
        if (size() == 0) {
            return true;
        }
        int64_t prod = 1;
        for (int i = dataExtent.size() - 1; i >= 0; i--) {
            if (dataExtent[i] > 1 && dataStride[i] != prod) {
                return false;
            }
            prod *= dataExtent[i];
        }
        return true;
    }
    int ndims() const {
        return dataExtent.size();
    }
    const int &operator[](int idx) const {
        if (idx < 0) {
            return dataExtent.at(dataExtent.size() + idx);
        } else {
            return dataExtent.at(idx);
        }
    }
    int &operator[](int idx) {
        return const_cast<int &>(const_cast<const TensorShape *>(this)->operator[](idx));
    }

    size_t stride(int idx) const {
        if (!dataStride.empty()) {
            if (idx < 0) {
                return dataStride.at(dataStride.size() + idx);
            } else {
                return dataStride.at(idx);
            }
        }

        if (idx < 0) {
            idx = dataExtent.size() + idx;
        }
        assert(idx >= 0 && (size_t)idx < dataExtent.size());
        size_t result = 1;
        for (size_t i = idx + 1; i < dataExtent.size(); i++) {
            assert(dataExtent[i] >= 0);
            result *= dataExtent[i];
        }
        return result;
    }

    size_t size() const {
        if (dataExtent.empty()) {
            return 0;
        }
        size_t result = 1;
        for (int dim : dataExtent) {
            assert(dim >= 0);
            result *= dim;
        }
        return result;
    }

    std::string str() const {
        if (dataExtent.empty()) {
            return "[]";
        }
        std::stringstream ss;
        ss << "[" << dataExtent[0];
        for (size_t i = 1; i < dataExtent.size(); i++) {
            ss << ", " << dataExtent[i];
        }
        ss << "]";
        return ss.str();
    }
};

class Tensor {
public:
    enum ScalarType {
        INVALID_SCALAR_TYPE,
Muyang Li's avatar
Muyang Li committed
225
226
227
228
229
230
231
232
233
        INT8,
        INT16,
        INT32,
        INT64,
        FP16,
        FP32,
        BF16,
        FP8_E4M3,
        FP8_E5M2,
Zhekai Zhang's avatar
Zhekai Zhang committed
234
235
236
237
238
239
    };

    struct TensorOptions {
        Device device_;
        ScalarType dtype_;

Muyang Li's avatar
Muyang Li committed
240
241
242
243
244
245
        Device device() const {
            return device_;
        }
        ScalarType dtype() const {
            return dtype_;
        }
Zhekai Zhang's avatar
Zhekai Zhang committed
246
247
248
249
250
251
252
253
254
255
256
257
258
259

        TensorOptions device(Device dev) const {
            TensorOptions result(*this);
            result.device_ = dev;
            return result;
        }
        TensorOptions dtype(ScalarType type) const {
            TensorOptions result(*this);
            result.dtype_ = type;
            return result;
        }
    };

    static const std::map<ScalarType, size_t> scalarSize;
Muyang Li's avatar
Muyang Li committed
260

Zhekai Zhang's avatar
Zhekai Zhang committed
261
262
263
264
265
266
public:
    TensorShape shape;
    ScalarType scalarType;
    std::shared_ptr<Buffer> buffer;

public:
Muyang Li's avatar
Muyang Li committed
267
268
269
270
271
272
273
274
275
276
277
278
    bool valid() const {
        return shape.dataExtent.size() > 0;
    }
    int size(int dim) const {
        return shape[dim];
    }
    bool is_contiguous() const {
        return shape.is_contiguous();
    }
    std::vector<int> sizes() const {
        return shape.dataExtent;
    }
Zhekai Zhang's avatar
Zhekai Zhang committed
279

Muyang Li's avatar
Muyang Li committed
280
281
282
    bool is_cuda() const {
        return device().type == Device::CUDA;
    }
Zhekai Zhang's avatar
Zhekai Zhang committed
283

Muyang Li's avatar
Muyang Li committed
284
285
286
287
288
289
    TensorOptions options() const {
        return TensorOptions{device(), dtype()};
    }
    int get_device() const {
        return device().idx;
    }
Zhekai Zhang's avatar
Zhekai Zhang committed
290
291

    template<typename T>
Muyang Li's avatar
Muyang Li committed
292
293
294
    T *data_ptr() {
        return reinterpret_cast<T *>(data_ptr());
    }
Zhekai Zhang's avatar
Zhekai Zhang committed
295
    template<typename T>
Muyang Li's avatar
Muyang Li committed
296
297
298
    const T *data_ptr() const {
        return reinterpret_cast<const T *>(data_ptr());
    }
Zhekai Zhang's avatar
Zhekai Zhang committed
299

Muyang Li's avatar
Muyang Li committed
300
301
302
303
304
305
    const void *data_ptr() const {
        return buffer->getPtr<char>() + shape.offset * scalar_size();
    }
    void *data_ptr() {
        return buffer->getPtr<char>() + shape.offset * scalar_size();
    }
Zhekai Zhang's avatar
Zhekai Zhang committed
306

Muyang Li's avatar
Muyang Li committed
307
308
309
310
311
312
313
314
315
316
    Device device() const {
        return buffer->getDevice();
    }

    ScalarType scalar_type() const {
        return scalarType;
    }
    ScalarType dtype() const {
        return scalar_type();
    }
Zhekai Zhang's avatar
Zhekai Zhang committed
317

Muyang Li's avatar
Muyang Li committed
318
319
320
    size_t stride(int dim) const {
        return shape.stride(dim);
    }
Zhekai Zhang's avatar
Zhekai Zhang committed
321

Muyang Li's avatar
Muyang Li committed
322
323
324
325
326
327
    size_t numel() const {
        return shape.size();
    }
    size_t ndims() const {
        return shape.ndims();
    }
Zhekai Zhang's avatar
Zhekai Zhang committed
328

Muyang Li's avatar
Muyang Li committed
329
330
331
    size_t dim() const {
        return ndims();
    }
Zhekai Zhang's avatar
Zhekai Zhang committed
332

Muyang Li's avatar
Muyang Li committed
333
334
335
    size_t scalar_size() const {
        return scalarSize.at(scalarType);
    }
Zhekai Zhang's avatar
Zhekai Zhang committed
336
337
338
339

    Tensor operator[](int idx) const {
        assert(ndims() > 1);
        Tensor result;
Muyang Li's avatar
Muyang Li committed
340
341
342
        result.shape      = std::vector<int>(this->shape.dataExtent.begin() + 1, this->shape.dataExtent.end());
        size_t size       = stride(0) * scalar_size();
        result.buffer     = std::make_shared<BufferView>(this->buffer, idx * size, size);
Zhekai Zhang's avatar
Zhekai Zhang committed
343
344
345
346
347
        result.scalarType = this->scalarType;
        return result;
    }

    template<typename T>
Muyang Li's avatar
Muyang Li committed
348
    const T &at(const std::vector<int> &idx) const {
Zhekai Zhang's avatar
Zhekai Zhang committed
349
350
351
352
353
354
355
356
357
358
        assert(ndims() == idx.size());
        int64_t offset = 0;
        for (size_t i = 0; i < ndims(); i++) {
            offset += idx.at(i) * stride(i);
        }
        assert(offset >= 0 && offset < numel());
        return this->data_ptr<T>()[offset];
    }

    template<typename T>
Muyang Li's avatar
Muyang Li committed
359
    T &at(const std::vector<int> &idx) {
Zhekai Zhang's avatar
Zhekai Zhang committed
360
361
362
363
364
365
        return const_cast<T &>(const_cast<const Tensor *>(this)->at<T>(idx));
    }

    Tensor slice(int dim, int from, int to) const {
        assert(from <= to);
        Tensor result;
Muyang Li's avatar
Muyang Li committed
366
        result.buffer     = this->buffer;
Zhekai Zhang's avatar
Zhekai Zhang committed
367
368
        result.scalarType = this->scalarType;

Muyang Li's avatar
Muyang Li committed
369
        result.shape      = TensorShape(this->shape.dataExtent);
Zhekai Zhang's avatar
Zhekai Zhang committed
370
371
372
373
374
375
376
377
378
379
380
        result.shape[dim] = to - from;
        result.shape.dataStride.resize(result.shape.ndims());
        for (int i = 0; i < result.shape.ndims(); i++) {
            result.shape.dataStride[i] = this->shape.stride(i);
        }
        result.shape.offset = this->shape.offset + this->shape.stride(dim) * from;

        return result;
    }
    Tensor transpose(int dim1, int dim2) const {
        Tensor result;
Muyang Li's avatar
Muyang Li committed
381
        result.buffer     = this->buffer;
Zhekai Zhang's avatar
Zhekai Zhang committed
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
        result.scalarType = this->scalarType;

        result.shape = TensorShape(this->shape.dataExtent);
        result.shape.dataStride.resize(result.shape.ndims());
        for (int i = 0; i < result.shape.ndims(); i++) {
            result.shape.dataStride[i] = this->shape.stride(i);
        }
        result.shape.offset = this->shape.offset;

        std::swap(result.shape.dataExtent[dim1], result.shape.dataExtent[dim2]);
        std::swap(result.shape.dataStride[dim1], result.shape.dataStride[dim2]);

        return result;
    }

    Tensor view(TensorShape shape) const {
        assert(shape.size() == this->shape.size());
        assert(this->is_contiguous());
        Tensor result;
Muyang Li's avatar
Muyang Li committed
401
402
403
        result.buffer       = this->buffer;
        result.scalarType   = this->scalarType;
        result.shape        = shape;
Zhekai Zhang's avatar
Zhekai Zhang committed
404
405
406
407
408
409
410
411
412
413
414
415
416
417
        result.shape.offset = this->shape.offset;
        return result;
    }
    Tensor reshape(TensorShape shape) const {
        return view(shape);
    }

    // // NOT IMPLEMENTED!!! DONT USE
    // Tensor transpose(int a, int b) const {
    //     throw std::runtime_error("Not implemented");
    // }

    Tensor &zero_() {
        assert(this->is_contiguous());
Muyang Li's avatar
Muyang Li committed
418
419
        checkCUDA(cudaMemsetAsync(
            data_ptr<char>() + shape.offset * scalar_size(), 0, shape.size() * scalar_size(), getCurrentCUDAStream()));
Zhekai Zhang's avatar
Zhekai Zhang committed
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
        return *this;
    }
    Tensor &copy_(Tensor other) {
        assert(this->is_contiguous());
        assert(other.is_contiguous());
        assert(this->shape.dataExtent == other.shape.dataExtent);
        assert(this->dtype() == other.dtype());

        assert((shape.offset + shape.size()) * scalar_size() <= buffer->getSize());
        assert((other.shape.offset + shape.size()) * scalar_size() <= other.buffer->getSize());

        if (shape.size() == 0) {
            return *this;
        }

        if (this->device().type == Device::CPU && other.device().type == Device::CPU) {
Muyang Li's avatar
Muyang Li committed
436
            memcpy(data_ptr<char>(), other.data_ptr<char>(), shape.size() * scalar_size());
Zhekai Zhang's avatar
Zhekai Zhang committed
437
438
439
440
441
            return *this;
        }

        lockBuffer(this->buffer, getCurrentCUDAStream());
        lockBuffer(other.buffer, getCurrentCUDAStream());
Muyang Li's avatar
Muyang Li committed
442
443
444
445
446
        checkCUDA(cudaMemcpyAsync(data_ptr<char>(),
                                  other.data_ptr<char>(),
                                  shape.size() * scalar_size(),
                                  getCopyKind(this->device(), other.device()),
                                  getCurrentCUDAStream()));
Zhekai Zhang's avatar
Zhekai Zhang committed
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
        return *this;
    }

    // NOT IMPLEMENTED!!! DONT USE
    template<typename T>
    Tensor &fill_(T val) {
        throw std::runtime_error("Not implemented");
        return *this;
    }
    // NOT IMPLEMENTED!!! DONT USE
    Tensor index(std::vector<std::any> whatever) {
        throw std::runtime_error("Not implemented");
    }

public:
    static Tensor allocate(TensorShape shape, ScalarType scalarType, Device device, bool fill = false) {
        Tensor result;
        assert(shape.is_contiguous());
        if (device.type == Device::CPU) {
            result.buffer = std::make_shared<BufferMalloc>(shape.size() * scalarSize.at(scalarType));
        } else if (device.type == Device::CUDA) {
            // TODO: cross device allocate
469
            CUDADeviceContext ctx(device.idx);
Zhekai Zhang's avatar
Zhekai Zhang committed
470
471
472
473
474
            result.buffer = std::make_shared<BufferCUDA>(shape.size() * scalarSize.at(scalarType));
        } else {
            assert(false);
        }
        result.scalarType = scalarType;
Muyang Li's avatar
Muyang Li committed
475
        result.shape      = shape;
Zhekai Zhang's avatar
Zhekai Zhang committed
476
477
478
479
480

        if (fill) {
            if (device.type == Device::CPU) {
                memset(result.buffer->getPtr(), 0xCC, result.buffer->getSize());
            } else if (device.type == Device::CUDA) {
481
                CUDADeviceContext ctx(device.idx);
Muyang Li's avatar
Muyang Li committed
482
483
                checkCUDA(
                    cudaMemsetAsync(result.buffer->getPtr(), 0xCC, result.buffer->getSize(), getCurrentCUDAStream()));
Zhekai Zhang's avatar
Zhekai Zhang committed
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
            }
        }

        return result;
    }
    static Tensor empty(TensorShape shape, ScalarType scalarType, Device device) {
        return allocate(shape, scalarType, device);
    }
    static Tensor empty_like(const Tensor &tensor) {
        return empty(TensorShape(tensor.shape.dataExtent), tensor.scalarType, tensor.device());
    }
    static Tensor ones(TensorShape shape, ScalarType scalarType, Device device) {
        Tensor result = allocate(shape, scalarType, device);
        // FIXME FIXME FIXME
        checkCUDA(cudaMemsetAsync(result.buffer->getPtr(), 1, result.buffer->getSize(), getCurrentCUDAStream()));
        return result;
    }
Muyang Li's avatar
Muyang Li committed
501
502
    static Tensor
    allocate_view(TensorShape shape, ScalarType scalarType, std::shared_ptr<Buffer> buffer, size_t offset = 0) {
Zhekai Zhang's avatar
Zhekai Zhang committed
503
        Tensor result;
Muyang Li's avatar
Muyang Li committed
504
        result.buffer     = std::make_shared<BufferView>(buffer, offset, shape.size() * scalarSize.at(scalarType));
Zhekai Zhang's avatar
Zhekai Zhang committed
505
        result.scalarType = scalarType;
Muyang Li's avatar
Muyang Li committed
506
        result.shape      = shape;
Zhekai Zhang's avatar
Zhekai Zhang committed
507
508
509
510
511
512
513
514
515
516
517
518
519
        return result;
    }

public:
    Tensor copy(Device device) const {
        if (!buffer) {
            return *this;
        }
        Tensor result = allocate(this->shape.dataExtent, this->scalarType, device);
        result.copy_(*this);

        // lockBuffer(this->buffer, getCurrentCUDAStream());
        // lockBuffer(result.buffer, getCurrentCUDAStream());
Muyang Li's avatar
Muyang Li committed
520
521
522
523
        // checkCUDA(cudaMemcpyAsync(result.data_ptr(), this->data_ptr(), result.buffer->getSize(), cudaMemcpyDefault,
        // getCurrentCUDAStream())); if (this->device().type == Device::CPU && device.type == Device::CUDA) {
        //     checkCUDA(cudaMemcpyAsync(result.data_ptr(), this->data_ptr(), result.buffer->getSize(),
        //     cudaMemcpyHostToDevice, getCurrentCUDAStream()));
Zhekai Zhang's avatar
Zhekai Zhang committed
524
        // } else if (this->device().type == Device::CUDA && device.type == Device::CPU) {
Muyang Li's avatar
Muyang Li committed
525
526
        //     checkCUDA(cudaMemcpyAsync(result.data_ptr(), this->data_ptr(), result.buffer->getSize(),
        //     cudaMemcpyDeviceToHost, getCurrentCUDAStream()));
Zhekai Zhang's avatar
Zhekai Zhang committed
527
        // } else {
Muyang Li's avatar
Muyang Li committed
528
529
        //     checkCUDA(cudaMemcpyAsync(result.data_ptr(), this->data_ptr(), result.buffer->getSize(),
        //     cudaMemcpyDefault, getCurrentCUDAStream()));
Zhekai Zhang's avatar
Zhekai Zhang committed
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
        // }
        return result;
    }

    // void copy_range(Tensor &dst, int dim, int lower_bound, int upper_bound) {
    //     if (upper_bound > shape[dim]) {
    //         upper_bound = shape[dim];
    //     }
    //     if (lower_bound >= upper_bound) {
    //         return;
    //     }
    //     auto shapeOut = this->shape;
    //     shapeOut[dim] = upper_bound - lower_bound;
    //     assert(dst.shape.data == shapeOut.data);
    //     checkCUDA(cudaMemcpy2DAsync(
    //         dst.
    //     ));
    // }

private:
    static cudaMemcpyKind getCopyKind(Device dst, Device src) {
        if (src.type == Device::CPU && dst.type == Device::CUDA) {
            return cudaMemcpyHostToDevice;
        }
        if (src.type == Device::CUDA && dst.type == Device::CPU) {
            return cudaMemcpyDeviceToHost;
        }
        if (src.type == Device::CUDA && dst.type == Device::CUDA) {
            return cudaMemcpyDeviceToDevice;
        }
        if (src.type == Device::CPU && dst.type == Device::CPU) {
            return cudaMemcpyHostToHost;
        }
        return cudaMemcpyDefault;
    }

muyangli's avatar
muyangli committed
566
567
568
    // static bool isAsyncBuffer(Buffer *buffer) {
    //     return dynamic_cast<BufferCUDA *>(buffer);
    // }
Zhekai Zhang's avatar
Zhekai Zhang committed
569
570

    static inline std::map<cudaStream_t, std::set<std::shared_ptr<Buffer>>> lockedBuffers;
Muyang Li's avatar
Muyang Li committed
571

Zhekai Zhang's avatar
Zhekai Zhang committed
572
public:
Muyang Li's avatar
Muyang Li committed
573
574
    // before launching an async operation, make sure to lock the buffer in case the buffer is freed before GPU
    // completes
Zhekai Zhang's avatar
Zhekai Zhang committed
575
    static void lockBuffer(std::shared_ptr<Buffer> buffer, cudaStream_t stream) {
muyangli's avatar
muyangli committed
576
        if (!buffer->isAsyncBuffer()) {
Zhekai Zhang's avatar
Zhekai Zhang committed
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
            lockedBuffers[stream].insert(buffer);
        }
    }

    // we could unlock buffers after sync with GPU
    static void unlockBuffers() {
        lockedBuffers.clear();
    }
    static void unlockBuffers(cudaStream_t stream) {
        lockedBuffers[stream].clear();
    }

    static void synchronizeDevice() {
        checkCUDA(cudaDeviceSynchronize());
        unlockBuffers();
    }
    static void synchronizeStream(cudaStream_t stream) {
        checkCUDA(cudaStreamSynchronize(stream));
        unlockBuffers(stream);
    }
};

inline const std::map<Tensor::ScalarType, size_t> Tensor::scalarSize = {
    {INT8, 1},
601
    {INT16, 2},
Zhekai Zhang's avatar
Zhekai Zhang committed
602
603
604
605
606
    {INT32, 4},
    {INT64, 8},
    {FP16, 2},
    {FP32, 4},
    {BF16, 2},
607
608
    {FP8_E4M3, 1},
    {FP8_E5M2, 1},
Zhekai Zhang's avatar
Zhekai Zhang committed
609
610
611
612
613
};

struct TensorsProvider {
    virtual ~TensorsProvider() {}
    virtual bool contains(const std::string &key) const = 0;
Muyang Li's avatar
Muyang Li committed
614
615
    virtual Tensor getTensor(const std::string &key)    = 0;
};