Linear.cpp 19.5 KB
Newer Older
Zhekai Zhang's avatar
Zhekai Zhang committed
1
#include "Linear.h"
muyangli's avatar
muyangli committed
2
#include "kernels/zgemm/zgemm.h"
Zhekai Zhang's avatar
Zhekai Zhang committed
3
4
5
#include "kernels/gemm_f16.h"
#include "kernels/misc_kernels.h"
#include "kernels/awq/gemv_awq.h"
muyangli's avatar
muyangli committed
6
7
8
9
10
11
#include "kernels/dwconv.h"

#include <nvtx3/nvToolsExt.h>

using namespace nunchaku;

Muyang Li's avatar
Muyang Li committed
12
13
GEMM_F16::GEMM_F16(int in_features, int out_features, bool use_bias, Tensor::ScalarType dtype, Device device)
    : in_features(in_features), out_features(out_features) {
muyangli's avatar
muyangli committed
14
    this->weight = Tensor::allocate({out_features, in_features}, dtype, device);
Muyang Li's avatar
Muyang Li committed
15
    this->bias   = use_bias ? Tensor::allocate({out_features}, dtype, device) : Tensor{};
muyangli's avatar
muyangli committed
16

Muyang Li's avatar
Muyang Li committed
17
    registerParams(weight, "weight", ParamFlags::LazyLoad)(bias, "bias");
muyangli's avatar
muyangli committed
18
19
20
21
22
23
}

Tensor GEMM_F16::forward(Tensor x) {
    Tensor out = gemm_f16(x, this->weight, {}, this->bias, 1.0f);
    return out;
}
Zhekai Zhang's avatar
Zhekai Zhang committed
24

Muyang Li's avatar
Muyang Li committed
25
26
27
GEMV_AWQ::GEMV_AWQ(int in_features, int out_features, bool use_bias, Tensor::ScalarType dtype, Device device)
    : in_features(in_features), out_features(out_features), group_size(64), lora_rank(0), lora_scale(1.0f),
      device(device) {
Zhekai Zhang's avatar
Zhekai Zhang committed
28
29
30
    this->qweight = Tensor::allocate({out_features / 4, ceilDiv(in_features, 8) * 4}, Tensor::INT32, device);
    this->wscales = Tensor::allocate({ceilDiv(in_features, group_size), out_features}, dtype, device);
    this->wzeros  = Tensor::allocate({ceilDiv(in_features, group_size), out_features}, dtype, device);
Muyang Li's avatar
Muyang Li committed
31
    this->bias    = use_bias ? Tensor::allocate({out_features}, dtype, device) : Tensor{};
Zhekai Zhang's avatar
Zhekai Zhang committed
32
33
34

    // !!! lora layout is different from w4a4 !!!
    this->lora_down = Tensor::allocate({lora_rank, in_features}, dtype, device, true);
Muyang Li's avatar
Muyang Li committed
35
36
37
38
    this->lora_up   = Tensor::allocate({out_features, lora_rank}, dtype, device, true);

    registerParams(qweight, "qweight", ParamFlags::LazyLoad)(wscales, "wscales")(wzeros, "wzeros")(bias, "bias")(
        lora_down, "lora_down", ParamFlags::Optional)(lora_up, "lora_up", ParamFlags::Optional);
Zhekai Zhang's avatar
Zhekai Zhang committed
39
40
41
42
43
44
}

void GEMV_AWQ::loadParam(std::string key, Tensor &dst, Tensor src) {
    if (key == "lora_down" || key == "lora_up") {
        assert(src.ndims() == 2);
        if (dst.shape.dataExtent != src.shape.dataExtent) {
45
46
            dst = Tensor::allocate(src.shape.dataExtent, dst.scalar_type(), this->device);
            Module::loadParam(key, dst, src);
Zhekai Zhang's avatar
Zhekai Zhang committed
47
48
            if (key == "lora_down") {
                const int new_rank = dst.shape[0];
Muyang Li's avatar
Muyang Li committed
49
                this->lora_rank    = new_rank;
Zhekai Zhang's avatar
Zhekai Zhang committed
50
51
            }
        } else {
52
            Module::loadParam(key, dst, src);
Zhekai Zhang's avatar
Zhekai Zhang committed
53
54
55
56
57
58
59
60
61
62
        }
    } else {
        Module::loadParam(key, dst, src);
    }
}

Tensor GEMV_AWQ::forward(Tensor x) {
    debug("x", x);

    const int M = (int)x.numel() / x.shape[-1];
Muyang Li's avatar
Muyang Li committed
63
    Tensor out  = gemv_awq(x, this->qweight, this->wscales, this->wzeros, M, out_features, in_features, group_size);
Zhekai Zhang's avatar
Zhekai Zhang committed
64
65
    if (bias.valid()) {
        // TODO: batch
66
67
68
        // assert(out.numel() == bias.numel());
        // out = kernels::add(out, bias.view(out.shape.dataExtent));
        kernels::mul_add_batch(out, {}, false, 0.0, bias, false);
Zhekai Zhang's avatar
Zhekai Zhang committed
69
70
71
72
73
    }

    debug("out_before_lora", out);

    if (this->lora_rank > 0) {
muyangli's avatar
muyangli committed
74
        Tensor lora_act = gemm_f16(x, this->lora_down, {}, {}, 1.0f);
Zhekai Zhang's avatar
Zhekai Zhang committed
75
76
        debug("lora_act", lora_act);

muyangli's avatar
muyangli committed
77
        Tensor lora_out = gemm_f16(lora_act, this->lora_up, {}, {}, this->lora_scale);
Zhekai Zhang's avatar
Zhekai Zhang committed
78
79
        debug("lora_out", lora_out);

muyangli's avatar
muyangli committed
80
        out = kernels::add(out, lora_out);
Zhekai Zhang's avatar
Zhekai Zhang committed
81
82
83
    }

    debug("out", out);
Muyang Li's avatar
Muyang Li committed
84

Zhekai Zhang's avatar
Zhekai Zhang committed
85
86
87
88
89
    return out;
}

#define NO_LORA_FUSION 0

Muyang Li's avatar
Muyang Li committed
90
91
92
93
GEMM_W4A4::GEMM_W4A4(
    int in_features, int out_features, bool bias, bool use_fp4, Tensor::ScalarType dtype, Device device)
    : in_features(in_features), out_features(out_features), in_features_pad(ceilDiv(in_features, 128) * 128),
      out_features_pad(ceilDiv(out_features, 128) * 128), use_fp4(use_fp4), lora_rank(0), dtype(dtype), device(device) {
muyangli's avatar
muyangli committed
94
    this->qweight = Tensor::allocate({out_features_pad, in_features_pad / 2}, Tensor::INT8, device, true);
95
96
97
98
99
    if (use_fp4) {
        this->wscales = Tensor::allocate({in_features_pad / 16, out_features_pad}, Tensor::FP8_E4M3, device, true);
    } else {
        this->wscales = Tensor::allocate({in_features_pad / 64, out_features_pad}, dtype, device, true);
    }
Zhekai Zhang's avatar
Zhekai Zhang committed
100

muyangli's avatar
muyangli committed
101
    this->bias = bias ? Tensor::allocate({out_features_pad}, dtype, device, true) : Tensor{};
Zhekai Zhang's avatar
Zhekai Zhang committed
102

muyangli's avatar
muyangli committed
103
    this->lora_down = Tensor::allocate({in_features_pad, lora_rank}, dtype, device, true);
Muyang Li's avatar
Muyang Li committed
104
    this->lora_up   = Tensor::allocate({out_features_pad, lora_rank}, dtype, device, true);
Zhekai Zhang's avatar
Zhekai Zhang committed
105
106

    // TODO: smooth factor in non-Lora fusion
muyangli's avatar
muyangli committed
107
    this->smooth = Tensor::allocate({in_features_pad}, dtype, device, true);
Zhekai Zhang's avatar
Zhekai Zhang committed
108

109
    // FIXME: reset wtscale and wcscales to default values when reloading the weights
Muyang Li's avatar
Muyang Li committed
110
    this->wtscale                    = Tensor::allocate({1}, Tensor::FP32, Device::cpu(), true);
111
112
113
114
    *this->wtscale.data_ptr<float>() = 1.0f;

    this->wcscales = Tensor::allocate({0}, dtype, device, true);

Muyang Li's avatar
Muyang Li committed
115
116
117
    registerParams(qweight, "qweight", ParamFlags::LazyLoad)(wscales, "wscales")(this->bias, "bias")(
        lora_down, "lora_down", ParamFlags::Optional)(lora_up, "lora_up", ParamFlags::Optional)(smooth, "smooth")(
        wtscale, "wtscale", ParamFlags::Optional)(wcscales, "wcscales", ParamFlags::Optional);
Zhekai Zhang's avatar
Zhekai Zhang committed
118
119
120
121
122
123
124
125
126
127

#if NO_LORA_FUSION
    checkCUBLAS(cublasCreate(&handle));
#endif
}

void GEMM_W4A4::loadParam(std::string key, Tensor &dst, Tensor src) {
    if (key == "lora_down" || key == "lora_up") {
        assert(src.ndims() == 2);
        if (dst.shape.dataExtent != src.shape.dataExtent) {
128
129
            dst = Tensor::allocate(src.shape.dataExtent, dst.scalar_type(), this->device);
            Module::loadParam(key, dst, src);
Zhekai Zhang's avatar
Zhekai Zhang committed
130
131
132
            this->lora_rank = dst.shape[1];
            this->lora_scales.resize(ceilDiv(this->lora_rank, 16), 1.0f);
        } else {
133
            Module::loadParam(key, dst, src);
Zhekai Zhang's avatar
Zhekai Zhang committed
134
        }
135
136
137
    } else if (key == "wcscales") {
        assert(src.ndims() == 1);
        assert(src.shape[0] == out_features_pad);
138
139
        dst = Tensor::allocate(src.shape.dataExtent, dst.scalar_type(), this->device);
        Module::loadParam(key, dst, src);
140
141
142
143
144
145
146
    } else if (key == "wtscale") {
        assert(src.numel() == 1);
        if (src.dtype() == Tensor::BF16) {
            *dst.data_ptr<float>() = float(*src.data_ptr<__nv_bfloat16>());
        } else if (src.dtype() == Tensor::FP16) {
            *dst.data_ptr<float>() = float(*src.data_ptr<half>());
        } else if (src.dtype() == Tensor::FP32) {
147
            Module::loadParam(key, dst, src);
148
149
150
        } else {
            assert(false);
        }
Zhekai Zhang's avatar
Zhekai Zhang committed
151
152
153
154
155
    } else {
        Module::loadParam(key, dst, src);
    }
}

muyangli's avatar
muyangli committed
156
157
158
159
160
161
162
163
Tensor GEMM_W4A4::forward(Tensor x) {
    return std::get<Tensor>(this->forward(x, FuseOptions::EMPTY, nullptr));
}

Tensor GEMM_W4A4::forward_silu(Tensor x) {
    return std::get<Tensor>(this->forward(x, FuseOptions::SILU, nullptr));
}

Muyang Li's avatar
Muyang Li committed
164
165
std::variant<Tensor, GEMM_W4A4::QuantizedActivation>
GEMM_W4A4::forward(Tensor x, FuseOptions fuse, GEMM_W4A4 *nextGEMM) {
muyangli's avatar
muyangli committed
166
    return forward_quant(quantize(x, false), fuse, nextGEMM);
Zhekai Zhang's avatar
Zhekai Zhang committed
167
168
}

Muyang Li's avatar
Muyang Li committed
169
170
171
172
173
174
175
176
177
178
void GEMM_W4A4::forward(Tensor x,
                        Tensor out,
                        Tensor pool,
                        Tensor norm_q,
                        Tensor norm_k,
                        Tensor rotary_emb,
                        Tensor out_q,
                        Tensor out_k,
                        Tensor out_v,
                        int numTokens) {
muyangli's avatar
muyangli committed
179
    QuantizedActivation qact = quantize(x, false);
Zhekai Zhang's avatar
Zhekai Zhang committed
180
181
182
183
184
185
186
187
188
189
190

#if !NO_LORA_FUSION

#if 0
    Tensor dummy = Tensor::empty_like(qact.lora_act);
    dummy.zero_();

    gemm_w4a4(qact.act, qweight, out, {}, qact.ascales, wscales, {}, pool, dummy, this->lora_up, {}, {}, norm_q, norm_k, rotary_emb, this->bias, {}, qact.is_unsigned);
    debug("gemm.nolora.out", out);
#endif

Muyang Li's avatar
Muyang Li committed
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
    kernels::gemm_w4a4(qact.act,
                       qweight,
                       out,
                       {},
                       qact.ascales,
                       wscales,
                       {},
                       pool,
                       qact.lora_act,
                       this->lora_up,
                       {},
                       {},
                       norm_q,
                       norm_k,
                       rotary_emb,
                       this->bias,
                       {},
                       {},
                       {},
                       qact.is_unsigned,
                       this->lora_scales,
                       false,
                       use_fp4,
                       *this->wtscale.data_ptr<float>(),
                       wcscales.numel() > 0 ? wcscales : Tensor{},
                       out_q,
                       out_k,
                       out_v,
                       numTokens);
Zhekai Zhang's avatar
Zhekai Zhang committed
220
221
222
223
224

    debug("gemm.out", out);
#else
    const int M = (int)qact.act.numel() / qact.act.shape[-1];

Muyang Li's avatar
Muyang Li committed
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
    kernels::gemm_w4a4(qact.act,
                       qweight,
                       out,
                       {},
                       qact.ascales,
                       wscales,
                       {},
                       pool,
                       {},
                       {},
                       {},
                       {},
                       norm_q,
                       norm_k,
                       rotary_emb,
                       this->bias,
                       {},
                       qact.is_unsigned,
                       this->lora_scales);
Zhekai Zhang's avatar
Zhekai Zhang committed
244
245
246

    nvtxRangePushA("LoraUp");

Muyang Li's avatar
Muyang Li committed
247
    static const half one  = 1.0;
Zhekai Zhang's avatar
Zhekai Zhang committed
248
249
250
    static const half zero = 0.0;
    // lora_up: [M, R] * [OC, R] => [M, OC]
    // cublas view: [OC, R] * [M, R]^T
Muyang Li's avatar
Muyang Li committed
251
252
253
254
255
256
257
258
259
260
261
262
263
264
    checkCUBLAS(cublasHgemm(handle,
                            CUBLAS_OP_T,
                            CUBLAS_OP_N,
                            this->out_features,
                            M,
                            this->lora_rank,
                            &one,
                            this->lora_up.data_ptr<half>(),
                            this->lora_rank,
                            qact.lora_act.data_ptr<half>(),
                            this->lora_rank,
                            &one,
                            out.data_ptr<half>(),
                            this->out_features));
Zhekai Zhang's avatar
Zhekai Zhang committed
265
266
267
268
269

    nvtxRangePop();
#endif
}

Muyang Li's avatar
Muyang Li committed
270
271
std::variant<Tensor, GEMM_W4A4::QuantizedActivation>
GEMM_W4A4::forward_quant(QuantizedActivation qact, FuseOptions fuse, GEMM_W4A4 *nextGEMM) {
Zhekai Zhang's avatar
Zhekai Zhang committed
272
273
274
275
276
277
278
279
    Tensor out;
    QuantizedActivation qout;

    Tensor next_lora;
    Tensor next_smooth;

    const int M = (int)qact.act.numel() / qact.act.shape[-1];

muyangli's avatar
muyangli committed
280
281
282
283
    if (fuse == FuseOptions::EMPTY || fuse == FuseOptions::SILU) {
        // auto shape = TensorShape(qact.act.shape.dataExtent);
        // shape[-1] = out_features;
        auto shape = TensorShape(qact.actShape.dataExtent);
Muyang Li's avatar
Muyang Li committed
284
285
        shape[-1]  = out_features;
        out        = Tensor::allocate(shape, dtype, device);
Zhekai Zhang's avatar
Zhekai Zhang committed
286
    } else {
muyangli's avatar
muyangli committed
287
        qout.act = Tensor::allocate({M, out_features_pad / 2}, Tensor::INT8, device);
288
        if (use_fp4) {
muyangli's avatar
muyangli committed
289
            qout.ascales = Tensor::allocate({out_features_pad / 16, M}, Tensor::FP8_E4M3, device);
290
        } else {
muyangli's avatar
muyangli committed
291
            qout.ascales = Tensor::allocate({out_features_pad / 64, M}, dtype, device);
292
        }
Muyang Li's avatar
Muyang Li committed
293
        qout.lora_act    = Tensor::allocate({M, lora_rank}, Tensor::FP32, device);
294
        qout.is_unsigned = !use_fp4;
Muyang Li's avatar
Muyang Li committed
295
        qout.actShape    = qact.actShape;
Zhekai Zhang's avatar
Zhekai Zhang committed
296

Muyang Li's avatar
Muyang Li committed
297
        next_lora   = nextGEMM->lora_down;
Zhekai Zhang's avatar
Zhekai Zhang committed
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
        next_smooth = nextGEMM->smooth;
    }

#if !NO_LORA_FUSION

#if 0
    Tensor dummy = Tensor::empty_like(qact.lora_act);
    dummy.zero_();

    gemm_w4a4(qact.act, qweight, out, qout.act, qact.ascales, wscales, qout.ascales, {}, dummy, this->lora_up, next_lora, qout.lora_act, {}, {}, {}, this->bias, next_smooth, qact.is_unsigned);

    if (fuse == FuseOptions::EMPTY) {
        debug("gemm.nolora.out", out);
    } else {
        debug("gemm.nolora.qout", qout.act);
        debug("gemm.nolora.oscales", qout.ascales);
        debug("gemm.nolora.lora_act_out", qout.lora_act);
    }
#endif

Muyang Li's avatar
Muyang Li committed
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
    kernels::gemm_w4a4(qact.act,
                       qweight,
                       out,
                       qout.act,
                       qact.ascales,
                       wscales,
                       qout.ascales,
                       {},
                       qact.lora_act,
                       this->lora_up,
                       next_lora,
                       qout.lora_act,
                       {},
                       {},
                       {},
                       this->bias,
                       next_smooth,
                       {},
                       {},
                       qact.is_unsigned,
                       this->lora_scales,
                       fuse == FuseOptions::SILU,
                       use_fp4,
                       *this->wtscale.data_ptr<float>(),
                       wcscales.numel() > 0 ? wcscales : Tensor{},
                       {},
                       {},
                       {},
                       0);
Zhekai Zhang's avatar
Zhekai Zhang committed
347

muyangli's avatar
muyangli committed
348
    if (fuse == FuseOptions::EMPTY || fuse == FuseOptions::SILU) {
Zhekai Zhang's avatar
Zhekai Zhang committed
349
350
351
352
353
354
355
356
357
358
        debug("gemm.out", out);
    } else {
        debug("gemm.qout", qout.act);
        debug("gemm.oscales", qout.ascales);
        debug("gemm.lora_act_out", qout.lora_act);
    }

#else
    if (!out.valid()) {
        auto shape = TensorShape(qact.act.shape.dataExtent);
Muyang Li's avatar
Muyang Li committed
359
360
        shape[-1]  = out_features;
        out        = Tensor::allocate(shape, Tensor::FP16, qweight.device());
Zhekai Zhang's avatar
Zhekai Zhang committed
361
362
    }

Muyang Li's avatar
Muyang Li committed
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
    kernels::gemm_w4a4(qact.act,
                       qweight,
                       out,
                       qout.act,
                       qact.ascales,
                       wscales,
                       qout.ascales,
                       {},
                       {},
                       {},
                       {},
                       {},
                       {},
                       {},
                       {},
                       this->bias,
                       next_smooth,
                       qact.is_unsigned,
                       this->lora_scales);
Zhekai Zhang's avatar
Zhekai Zhang committed
382
383
384

    nvtxRangePushA("LoraUp");

Muyang Li's avatar
Muyang Li committed
385
    static const half one  = 1.0;
Zhekai Zhang's avatar
Zhekai Zhang committed
386
387
388
389
390
    static const half zero = 0.0;

    // lora_up: [M, R] * [OC, R]^T => [M, OC]
    // cublas view: [R, OC]^T * [R, M] => [OC, M]
    // lora_up layout wrong?
Muyang Li's avatar
Muyang Li committed
391
392
393
394
395
396
397
398
399
400
401
402
403
404
    checkCUBLAS(cublasHgemm(handle,
                            CUBLAS_OP_T,
                            CUBLAS_OP_N,
                            this->out_features,
                            M,
                            this->lora_rank,
                            &one,
                            this->lora_up.data_ptr<half>(),
                            this->lora_rank,
                            qact.lora_act.data_ptr<half>(),
                            this->lora_rank,
                            &one,
                            out.data_ptr<half>(),
                            this->out_features));
Zhekai Zhang's avatar
Zhekai Zhang committed
405
406
407
408
409
410
411
412

    nvtxRangePop();

    if (fuse == FuseOptions::GELU_QUANT) {
        nvtxRangePushA("LoraDown");
        // IC is for next lora (OC of this layer)
        // lora_down: [M, IC] * [IC, R] => [M, R]
        // cublas view: [R, IC] * [IC, M] => [R, M]
Muyang Li's avatar
Muyang Li committed
413
414
415
416
417
418
419
420
421
422
423
424
425
426
        checkCUBLAS(cublasHgemm(handle,
                                CUBLAS_OP_N,
                                CUBLAS_OP_N,
                                this->lora_rank,
                                M,
                                this->out_features,
                                &one,
                                next_lora.data_ptr<half>(),
                                this->lora_rank,
                                out.data_ptr<half>(),
                                this->out_features,
                                &zero,
                                qout.lora_act.data_ptr<half>(),
                                this->lora_rank));
Zhekai Zhang's avatar
Zhekai Zhang committed
427
428
429
430
431
432
433
434
435
436
437
438
439

        out = {};

        nvtxRangePop();
    }

#endif
    if (out.valid()) {
        return out;
    }
    return qout;
}

muyangli's avatar
muyangli committed
440
441
442
443
444
445
Tensor GEMM_W4A4::forward_quant(QuantizedActivation qact) {
    return std::get<Tensor>(this->forward_quant(qact, FuseOptions::EMPTY, nullptr));
}

GEMM_W4A4::QuantizedActivation GEMM_W4A4::quantize(Tensor x, bool fuse_glu) {
    const int actualM = x.numel() / x.shape[-1];
Muyang Li's avatar
Muyang Li committed
446
    const int M       = ceilDiv(actualM, 256) * 256;
Zhekai Zhang's avatar
Zhekai Zhang committed
447

muyangli's avatar
muyangli committed
448
449
    // auto shape = TensorShape(x.shape.dataExtent);
    // shape[-1] = in_features / 2;
Zhekai Zhang's avatar
Zhekai Zhang committed
450
451

    QuantizedActivation qact;
muyangli's avatar
muyangli committed
452
    qact.act = Tensor::allocate({M, in_features_pad / 2}, Tensor::INT8, device);
453
    if (use_fp4) {
muyangli's avatar
muyangli committed
454
        qact.ascales = Tensor::allocate({in_features_pad / 16, M}, Tensor::FP8_E4M3, device);
455
    } else {
muyangli's avatar
muyangli committed
456
        qact.ascales = Tensor::allocate({in_features_pad / 64, M}, dtype, device);
457
    }
Muyang Li's avatar
Muyang Li committed
458
    qact.lora_act    = Tensor::allocate({M, lora_rank}, Tensor::FP32, device);
Zhekai Zhang's avatar
Zhekai Zhang committed
459
    qact.is_unsigned = false;
Muyang Li's avatar
Muyang Li committed
460
    qact.actShape    = x.shape.dataExtent;
Zhekai Zhang's avatar
Zhekai Zhang committed
461
462
463
464
465

#if !NO_LORA_FUSION
    debug("quantize.x", x);
    debug("quantize.smooth", this->smooth);

Muyang Li's avatar
Muyang Li committed
466
467
    kernels::quantize_w4a4_act_fuse_lora(
        x, qact.act, qact.ascales, this->lora_down, qact.lora_act, this->smooth, fuse_glu, use_fp4);
Zhekai Zhang's avatar
Zhekai Zhang committed
468
469
470
471

    debug("quantize.qact", qact.act);
    debug("quantize.ascales", qact.ascales);
    debug("quantize.lora_act", qact.lora_act);
Muyang Li's avatar
Muyang Li committed
472
473
#else
    static const half one  = 1.0;
Zhekai Zhang's avatar
Zhekai Zhang committed
474
475
476
477
478
479
    static const half zero = 0.0;

    nvtxRangePushA("LoraDown");

    // lora_down: [M, IC] * [IC, R] => [M, R]
    // cublas view: [R, IC] * [IC, M]
Muyang Li's avatar
Muyang Li committed
480
481
482
483
484
485
486
487
488
489
490
491
492
493
    checkCUBLAS(cublasHgemm(handle,
                            CUBLAS_OP_N,
                            CUBLAS_OP_N,
                            this->lora_rank,
                            M,
                            this->in_features,
                            &one,
                            lora_down.data_ptr<half>(),
                            this->lora_rank,
                            x.data_ptr<half>(),
                            this->in_features,
                            &zero,
                            qact.lora_act.data_ptr<half>(),
                            this->lora_rank));
Zhekai Zhang's avatar
Zhekai Zhang committed
494
495
496

    nvtxRangePop();

muyangli's avatar
muyangli committed
497
    kernels::quantize_w4a4_act(x, qact.act, qact.ascales);
Zhekai Zhang's avatar
Zhekai Zhang committed
498
499
500
501
502

#endif

    return qact;
}
muyangli's avatar
muyangli committed
503

Muyang Li's avatar
Muyang Li committed
504
505
GEMM_W8A8::GEMM_W8A8(int in_features, int out_features, bool bias, Tensor::ScalarType dtype, Device device)
    : in_features(in_features), out_features(out_features), dtype(dtype) {
muyangli's avatar
muyangli committed
506
507
    this->qweight = Tensor::allocate({out_features, in_features}, Tensor::INT8, device);
    this->wscales = Tensor::allocate({out_features}, dtype, device);
Muyang Li's avatar
Muyang Li committed
508
    this->bias    = bias ? Tensor::allocate({out_features}, dtype, device, true) : Tensor{};
muyangli's avatar
muyangli committed
509

Muyang Li's avatar
Muyang Li committed
510
    registerParams(qweight, "qweight", ParamFlags::LazyLoad)(wscales, "wscales")(this->bias, "bias");
muyangli's avatar
muyangli committed
511
512
513
514
515
516
517
518
}

GEMM_W8A8::QuantizedActivation GEMM_W8A8::quantize(Tensor x, bool fuse_glu) {
    QuantizedActivation qact;
    auto qshape = x.shape;
    if (fuse_glu) {
        qshape[-1] /= 2;
    }
Muyang Li's avatar
Muyang Li committed
519
    qact.act     = Tensor::allocate(qshape, Tensor::INT8, x.device());
muyangli's avatar
muyangli committed
520
521
522
523
524
525
526
527
528
529
530
531
532
    qact.ascales = Tensor::allocate({(int)x.numel() / x.shape[-1]}, this->dtype, x.device());

    debug("quantize.x", x);

    kernels::quantize_w8a8_act(x, qact.act, qact.ascales, fuse_glu);

    debug("quantize.qact", qact.act);
    debug("quantize.ascales", qact.ascales);

    return qact;
}

Tensor GEMM_W8A8::forward_quant(QuantizedActivation qact) {
LeeDongYeun's avatar
LeeDongYeun committed
533
    auto shape = TensorShape(qact.act.shape.dataExtent);
Muyang Li's avatar
Muyang Li committed
534
    shape[-1]  = out_features;
LeeDongYeun's avatar
LeeDongYeun committed
535
    Tensor out = Tensor::allocate(shape, this->dtype, qact.act.device());
muyangli's avatar
muyangli committed
536
537
538
539
540
541
    kernels::gemm_w8a8(qact.act, this->qweight, out, qact.ascales, this->wscales, this->bias);

    debug("gemm.out", out);
    return out;
}

Muyang Li's avatar
Muyang Li committed
542
DWCONV::DWCONV(int in_features, bool use_bias, Tensor::ScalarType dtype, Device device) : in_features(in_features) {
muyangli's avatar
muyangli committed
543
    this->weight = Tensor::allocate({in_features, 3, 3, 1}, dtype, device);
Muyang Li's avatar
Muyang Li committed
544
    this->bias   = use_bias ? Tensor::allocate({in_features}, dtype, device) : Tensor{};
muyangli's avatar
muyangli committed
545

Muyang Li's avatar
Muyang Li committed
546
    registerParams(this->weight, "weight")(this->bias, "bias");
muyangli's avatar
muyangli committed
547
548
549
550
}

Tensor DWCONV::forward(Tensor x) {
    return dwconv_f16(x, this->weight, {}, this->bias);
Muyang Li's avatar
Muyang Li committed
551
}