nodes.py 10.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import os
import types

import comfy.model_base
import comfy.model_patcher
import comfy.sd
import folder_paths
import GPUtil
import torch
from comfy.ldm.common_dit import pad_to_patch_size
from comfy.supported_models import Flux, FluxSchnell
from diffusers import FluxTransformer2DModel
from einops import rearrange, repeat
from torch import nn
from transformers import T5EncoderModel

from nunchaku.models.transformer_flux import NunchakuFluxTransformer2dModel


class ComfyUIFluxForwardWrapper(nn.Module):
    def __init__(self, model: NunchakuFluxTransformer2dModel, config):
        super(ComfyUIFluxForwardWrapper, self).__init__()
        self.model = model
        self.dtype = next(model.parameters()).dtype
        self.config = config

    def forward(self, x, timestep, context, y, guidance, control=None, transformer_options={}, **kwargs):
        assert control is None  # for now
        bs, c, h, w = x.shape
        patch_size = self.config["patch_size"]
        x = pad_to_patch_size(x, (patch_size, patch_size))

        img = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=patch_size, pw=patch_size)

        h_len = (h + (patch_size // 2)) // patch_size
        w_len = (w + (patch_size // 2)) // patch_size
        img_ids = torch.zeros((h_len, w_len, 3), device=x.device, dtype=x.dtype)
        img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(
            0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype
        ).unsqueeze(1)
        img_ids[:, :, 2] = img_ids[:, :, 2] + torch.linspace(
            0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype
        ).unsqueeze(0)
        img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)

        txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
        out = self.model(
            hidden_states=img,
            encoder_hidden_states=context,
            pooled_projections=y,
            timestep=timestep,
            img_ids=img_ids,
            txt_ids=txt_ids,
            guidance=guidance if self.config["guidance_embed"] else None,
        ).sample

        out = rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=2, pw=2)[:, :, :h, :w]
        return out


class SVDQuantFluxDiTLoader:
    @classmethod
    def INPUT_TYPES(s):
        model_paths = ["mit-han-lab/svdq-int4-flux.1-schnell", "mit-han-lab/svdq-int4-flux.1-dev"]
65
66
67
68
69
70
71
72
73
74
        prefix = "models/diffusion_models"
        local_folders = os.listdir(prefix)
        local_folders = sorted(
            [
                folder
                for folder in local_folders
                if not folder.startswith(".") and os.path.isdir(os.path.join(prefix, folder))
            ]
        )
        model_paths.extend(local_folders)
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
        ngpus = len(GPUtil.getGPUs())
        return {
            "required": {
                "model_path": (model_paths,),
                "device_id": (
                    "INT",
                    {"default": 0, "min": 0, "max": ngpus, "step": 1, "display": "number", "lazy": True},
                ),
            }
        }

    RETURN_TYPES = ("MODEL",)
    FUNCTION = "load_model"
    CATEGORY = "SVDQuant"
    TITLE = "SVDQuant Flux DiT Loader"

    def load_model(self, model_path: str, device_id: int, **kwargs) -> tuple[FluxTransformer2DModel]:
        device = f"cuda:{device_id}"
93
94
95
96
97
        prefix = "models/diffusion_models"
        if os.path.exists(os.path.join(prefix, model_path)):
            model_path = os.path.join(prefix, model_path)
        else:
            model_path = model_path
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
        transformer = NunchakuFluxTransformer2dModel.from_pretrained(model_path).to(device)
        dit_config = {
            "image_model": "flux",
            "in_channels": 16,
            "patch_size": 2,
            "out_channels": 16,
            "vec_in_dim": 768,
            "context_in_dim": 4096,
            "hidden_size": 3072,
            "mlp_ratio": 4.0,
            "num_heads": 24,
            "depth": 19,
            "depth_single_blocks": 38,
            "axes_dim": [16, 56, 56],
            "theta": 10000,
            "qkv_bias": True,
            "disable_unet_model_creation": True,
        }
        if "schnell" in model_path:
            dit_config["guidance_embed"] = False
            model_config = FluxSchnell(dit_config)
        else:
            assert "dev" in model_path
            dit_config["guidance_embed"] = True
            model_config = Flux(dit_config)

        model_config.set_inference_dtype(torch.bfloat16, None)
        model_config.custom_operations = None

        model = model_config.get_model({})
        model.diffusion_model = ComfyUIFluxForwardWrapper(transformer, config=dit_config)
        model = comfy.model_patcher.ModelPatcher(model, device, device_id)
        return (model,)


def svdquant_t5_forward(
    self: T5EncoderModel,
    input_ids: torch.LongTensor,
    attention_mask,
    intermediate_output=None,
    final_layer_norm_intermediate=True,
    dtype: str | torch.dtype = torch.bfloat16,
):
    assert attention_mask is None
    assert intermediate_output is None
    assert final_layer_norm_intermediate
    outputs = self.encoder(input_ids, attention_mask=attention_mask)
    hidden_states = outputs["last_hidden_state"]
    hidden_states = hidden_states.to(dtype=dtype)
    return hidden_states, None


class SVDQuantTextEncoderLoader:
    @classmethod
    def INPUT_TYPES(s):
153
154
155
156
157
158
159
160
161
162
163
        model_paths = ["mit-han-lab/svdq-flux.1-t5"]
        prefix = "models/text_encoders"
        local_folders = os.listdir(prefix)
        local_folders = sorted(
            [
                folder
                for folder in local_folders
                if not folder.startswith(".") and os.path.isdir(os.path.join(prefix, folder))
            ]
        )
        model_paths.extend(local_folders)
164
165
166
167
168
169
170
171
172
173
        return {
            "required": {
                "model_type": (["flux"],),
                "text_encoder1": (folder_paths.get_filename_list("text_encoders"),),
                "text_encoder2": (folder_paths.get_filename_list("text_encoders"),),
                "t5_min_length": (
                    "INT",
                    {"default": 512, "min": 256, "max": 1024, "step": 128, "display": "number", "lazy": True},
                ),
                "t5_precision": (["BF16", "INT4"],),
174
                "int4_model": (model_paths, {"tooltip": "The name of the INT4 model."}),
175
176
177
178
179
180
181
182
183
184
185
            }
        }

    RETURN_TYPES = ("CLIP",)
    FUNCTION = "load_text_encoder"

    CATEGORY = "SVDQuant"

    TITLE = "SVDQuant Text Encoder Loader"

    def load_text_encoder(
186
187
188
189
190
191
192
        self,
        model_type: str,
        text_encoder1: str,
        text_encoder2: str,
        t5_min_length: int,
        t5_precision: str,
        int4_model: str,
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
    ):
        text_encoder_path1 = folder_paths.get_full_path_or_raise("text_encoders", text_encoder1)
        text_encoder_path2 = folder_paths.get_full_path_or_raise("text_encoders", text_encoder2)
        if model_type == "flux":
            clip_type = comfy.sd.CLIPType.FLUX
        else:
            raise ValueError(f"Unknown type {model_type}")

        clip = comfy.sd.load_clip(
            ckpt_paths=[text_encoder_path1, text_encoder_path2],
            embedding_directory=folder_paths.get_folder_paths("embeddings"),
            clip_type=clip_type,
        )

        if model_type == "flux":
            clip.tokenizer.t5xxl.min_length = t5_min_length

        if t5_precision == "INT4":
            from nunchaku.models.text_encoder import NunchakuT5EncoderModel

            transformer = clip.cond_stage_model.t5xxl.transformer
            param = next(transformer.parameters())
            dtype = param.dtype
            device = param.device
217
218
219
220
221
222
223

            prefix = "models/text_encoders"
            if os.path.exists(os.path.join(prefix, int4_model)):
                model_path = os.path.join(prefix, int4_model)
            else:
                model_path = int4_model
            transformer = NunchakuT5EncoderModel.from_pretrained(model_path)
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
            transformer.forward = types.MethodType(svdquant_t5_forward, transformer)
            clip.cond_stage_model.t5xxl.transformer = (
                transformer.to(device=device, dtype=dtype) if device.type == "cuda" else transformer
            )

        return (clip,)


class SVDQuantLoraLoader:
    def __init__(self):
        self.cur_lora_name = "None"

    @classmethod
    def INPUT_TYPES(s):
        hf_lora_names = ["anime", "ghibsky", "realism", "yarn", "sketch"]
        lora_name_list = [
            "None",
            *folder_paths.get_filename_list("loras"),
            *[f"mit-han-lab/svdquant-models/svdq-flux.1-dev-lora-{n}.safetensors" for n in hf_lora_names],
        ]
        return {
            "required": {
                "model": ("MODEL", {"tooltip": "The diffusion model the LoRA will be applied to."}),
                "lora_name": (lora_name_list, {"tooltip": "The name of the LoRA."}),
                "lora_strength": (
                    "FLOAT",
                    {
                        "default": 1.0,
                        "min": -100.0,
                        "max": 100.0,
                        "step": 0.01,
                        "tooltip": "How strongly to modify the diffusion model. This value can be negative.",
                    },
                ),
            }
        }

    RETURN_TYPES = ("MODEL",)
    OUTPUT_TOOLTIPS = ("The modified diffusion model.",)
    FUNCTION = "load_lora"
    TITLE = "SVDQuant LoRA Loader"

    CATEGORY = "SVDQuant"
    DESCRIPTION = (
        "LoRAs are used to modify the diffusion model, "
        "altering the way in which latents are denoised such as applying styles. "
        "Currently, only one LoRA nodes can be applied."
    )

    def load_lora(self, model, lora_name: str, lora_strength: float):
        if self.cur_lora_name == lora_name:
            if self.cur_lora_name == "None":
                pass  # Do nothing since the lora is None
            else:
                model.model.diffusion_model.model.set_lora_strength(lora_strength)
        else:
            if lora_name == "None":
                model.model.diffusion_model.model.set_lora_strength(0)
            else:
                try:
                    lora_path = folder_paths.get_full_path_or_raise("loras", lora_name)
                except FileNotFoundError:
                    lora_path = lora_name

                model.model.diffusion_model.model.update_lora_params(lora_path)
                model.model.diffusion_model.model.set_lora_strength(lora_strength)
            self.cur_lora_name = lora_name

        return (model,)


NODE_CLASS_MAPPINGS = {
    "SVDQuantFluxDiTLoader": SVDQuantFluxDiTLoader,
    "SVDQuantTextEncoderLoader": SVDQuantTextEncoderLoader,
    "SVDQuantLoRALoader": SVDQuantLoraLoader,
}