"pretrain_realm.py" did not exist on "66719e973b09edad26f3320180374ce2b4ec9bb3"
run_gradio.py 9.51 KB
Newer Older
Zhekai Zhang's avatar
Zhekai Zhang committed
1
2
# Changed from https://huggingface.co/spaces/playgroundai/playground-v2.5/blob/main/app.py
import argparse
Muyang Li's avatar
Muyang Li committed
3
import os
Zhekai Zhang's avatar
Zhekai Zhang committed
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import random
import time

import GPUtil
import gradio as gr
import spaces
import torch
from peft.tuners import lora

from nunchaku.models.safety_checker import SafetyChecker
from utils import get_pipeline
from vars import DEFAULT_HEIGHT, DEFAULT_WIDTH, EXAMPLES, MAX_SEED, PROMPT_TEMPLATES, SVDQ_LORA_PATHS


def get_args() -> argparse.Namespace:
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "-m", "--model", type=str, default="schnell", choices=["schnell", "dev"], help="Which FLUX.1 model to use"
    )
    parser.add_argument(
        "-p",
        "--precisions",
        type=str,
        default=["int4"],
        nargs="*",
        choices=["int4", "bf16"],
        help="Which precisions to use",
    )
    parser.add_argument("--use-qencoder", action="store_true", help="Whether to use 4-bit text encoder")
    parser.add_argument("--no-safety-checker", action="store_true", help="Disable safety checker")
Muyang Li's avatar
Muyang Li committed
34
    parser.add_argument("--count-use", action="store_true", help="Whether to count the number of uses")
Zhekai Zhang's avatar
Zhekai Zhang committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
    return parser.parse_args()


args = get_args()


pipelines = []
for i, precision in enumerate(args.precisions):
    pipeline = get_pipeline(
        model_name=args.model,
        precision=precision,
        use_qencoder=args.use_qencoder,
        device=f"cuda:{i}",
        lora_name="All",
    )
    pipeline.cur_lora_name = "None"
    pipeline.cur_lora_weight = 0
    pipelines.append(pipeline)

safety_checker = SafetyChecker("cuda", disabled=args.no_safety_checker)


@spaces.GPU(enable_queue=True)
def generate(
    prompt: str = None,
    height: int = 1024,
    width: int = 1024,
    num_inference_steps: int = 4,
    guidance_scale: float = 0,
    lora_name: str = "None",
    lora_weight: float = 1,
    seed: int = 0,
):
    is_unsafe_prompt = False
    if not safety_checker(prompt):
        is_unsafe_prompt = True
        prompt = "A peaceful world."
    prompt = PROMPT_TEMPLATES[lora_name].format(prompt=prompt)
    images, latency_strs = [], []
    for i, pipeline in enumerate(pipelines):
        precision = args.precisions[i]
        progress = gr.Progress(track_tqdm=True)
        if pipeline.cur_lora_name != lora_name:
            if precision == "bf16":
                for m in pipeline.transformer.modules():
                    if isinstance(m, lora.LoraLayer):
                        if pipeline.cur_lora_name != "None":
                            if pipeline.cur_lora_name in m.scaling:
                                m.scaling[pipeline.cur_lora_name] = 0
                        if lora_name != "None":
                            if lora_name in m.scaling:
                                m.scaling[lora_name] = lora_weight
            else:
                assert precision == "int4"
                if lora_name != "None":
                    pipeline.transformer.nunchaku_update_params(SVDQ_LORA_PATHS[lora_name])
                    pipeline.transformer.nunchaku_set_lora_scale(lora_weight)
                else:
                    pipeline.transformer.nunchaku_set_lora_scale(0)
        elif lora_name != "None":
            if precision == "bf16":
                if pipeline.cur_lora_weight != lora_weight:
                    for m in pipeline.transformer.modules():
                        if isinstance(m, lora.LoraLayer):
                            if lora_name in m.scaling:
                                m.scaling[lora_name] = lora_weight
            else:
                assert precision == "int4"
                pipeline.transformer.nunchaku_set_lora_scale(lora_weight)
        pipeline.cur_lora_name = lora_name
        pipeline.cur_lora_weight = lora_weight

        start_time = time.time()
        image = pipeline(
            prompt=prompt,
            height=height,
            width=width,
            num_inference_steps=num_inference_steps,
            guidance_scale=guidance_scale,
            generator=torch.Generator().manual_seed(seed),
        ).images[0]
        end_time = time.time()
        latency = end_time - start_time
        if latency < 1:
            latency = latency * 1000
            latency_str = f"{latency:.2f}ms"
        else:
            latency_str = f"{latency:.2f}s"
        images.append(image)
        latency_strs.append(latency_str)
    if is_unsafe_prompt:
        for i in range(len(latency_strs)):
            latency_strs[i] += " (Unsafe prompt detected)"
    torch.cuda.empty_cache()
Muyang Li's avatar
Muyang Li committed
129
130
131
132
133
134
135
136
137
138
139
140

    if args.count_use:
        if os.path.exists("use_count.txt"):
            with open("use_count.txt", "r") as f:
                count = int(f.read())
        else:
            count = 0
        count += 1
        print(f"Use count: {count}")
        with open("use_count.txt", "w") as f:
            f.write(str(count))

Zhekai Zhang's avatar
Zhekai Zhang committed
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
    return *images, *latency_strs


with open("./assets/description.html", "r") as f:
    DESCRIPTION = f.read()
gpus = GPUtil.getGPUs()
if len(gpus) > 0:
    gpu = gpus[0]
    memory = gpu.memoryTotal / 1024
    device_info = f"Running on {gpu.name} with {memory:.0f} GiB memory."
else:
    device_info = "Running on CPU 🥶 This demo does not work on CPU."
notice = f'<strong>Notice:</strong>&nbsp;We will replace unsafe prompts with a default prompt: "A peaceful world."'

with gr.Blocks(
    css_paths=[f"assets/frame{len(args.precisions)}.css", "assets/common.css"],
    title=f"SVDQuant FLUX.1-{args.model} Demo",
) as demo:
    gr.HTML(DESCRIPTION.format(model=args.model, device_info=device_info, notice=notice))
    with gr.Row():
        image_results, latency_results = [], []
        for i, precision in enumerate(args.precisions):
            with gr.Column():
                gr.Markdown(f"# {precision.upper()}", elem_id="image_header")
                with gr.Group():
                    image_result = gr.Image(
                        format="png",
                        image_mode="RGB",
                        label="Result",
                        show_label=False,
                        show_download_button=True,
                        interactive=False,
                    )
                    latency_result = gr.Text(label="Inference Latency", show_label=True)
                    image_results.append(image_result)
                    latency_results.append(latency_result)
    with gr.Row():
        prompt = gr.Text(
            label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, scale=4
        )
        run_button = gr.Button("Run", scale=1)
    if args.model == "dev":
        with gr.Row():
            lora_name = gr.Dropdown(label="LoRA Name", choices=PROMPT_TEMPLATES.keys(), value="None", scale=1)
            prompt_template = gr.Textbox(
                label="LoRA Prompt Template", value=PROMPT_TEMPLATES["None"], scale=1, max_lines=1
            )
    else:
        lora_name = "None"

    with gr.Row():
        seed = gr.Slider(label="Seed", show_label=True, minimum=0, maximum=MAX_SEED, value=233, step=1, scale=4)
        randomize_seed = gr.Button("Random Seed", scale=1, min_width=50, elem_id="random_seed")
    with gr.Accordion("Advanced options", open=False):
        with gr.Group():
            if args.model == "schnell":
                num_inference_steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=8, step=1, value=4)
                guidance_scale = 0
                lora_weight = 0
            elif args.model == "dev":
                num_inference_steps = gr.Slider(label="Sampling Steps", minimum=10, maximum=50, step=1, value=25)
                guidance_scale = gr.Slider(label="Guidance Scale", minimum=1, maximum=10, step=0.1, value=3.5)
                lora_weight = gr.Slider(label="LoRA Weight", minimum=0, maximum=2, step=0.1, value=1)
            else:
                raise NotImplementedError(f"Model {args.model} not implemented")
    if args.model == "schnell":

        def generate_func(prompt, num_inference_steps, seed):
            return generate(
                prompt, DEFAULT_HEIGHT, DEFAULT_WIDTH, num_inference_steps, guidance_scale, lora_name, lora_weight, seed
            )

        input_args = [prompt, num_inference_steps, seed]
    elif args.model == "dev":

        def generate_func(prompt, num_inference_steps, guidance_scale, lora_name, lora_weight, seed):
            return generate(
                prompt, DEFAULT_HEIGHT, DEFAULT_WIDTH, num_inference_steps, guidance_scale, lora_name, lora_weight, seed
            )

        input_args = [prompt, num_inference_steps, guidance_scale, lora_name, lora_weight, seed]

    gr.Examples(
        examples=EXAMPLES[args.model], inputs=input_args, outputs=[*image_results, *latency_results], fn=generate_func
    )

    gr.on(
        triggers=[prompt.submit, run_button.click],
        fn=generate_func,
        inputs=input_args,
        outputs=[*image_results, *latency_results],
        api_name="run",
    )
    randomize_seed.click(
        lambda: random.randint(0, MAX_SEED), inputs=[], outputs=seed, api_name=False, queue=False
    ).then(fn=generate_func, inputs=input_args, outputs=[*image_results, *latency_results], api_name=False, queue=False)

    if args.model == "dev":
        lora_name.change(
            lambda x: PROMPT_TEMPLATES[x],
            inputs=[lora_name],
            outputs=[prompt_template],
            api_name=False,
            queue=False,
        ).then(
            fn=generate_func, inputs=input_args, outputs=[*image_results, *latency_results], api_name=False, queue=False
        )

if __name__ == "__main__":
    demo.queue(max_size=20).launch(server_name="0.0.0.0", debug=True, share=True)