test_t2i.py 1.86 KB
Newer Older
1
import pytest
muyangli's avatar
muyangli committed
2
3
4
5
import torch
from diffusers import SanaPAGPipeline, SanaPipeline

from nunchaku import NunchakuSanaTransformer2DModel
6
from nunchaku.utils import get_precision, is_turing
muyangli's avatar
muyangli committed
7
8


9
@pytest.mark.skipif(is_turing() or get_precision() == "fp4", reason="Skip tests due to Turing GPUs")
muyangli's avatar
muyangli committed
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
def test_sana():
    transformer = NunchakuSanaTransformer2DModel.from_pretrained("mit-han-lab/svdq-int4-sana-1600m")
    pipe = SanaPipeline.from_pretrained(
        "Efficient-Large-Model/Sana_1600M_1024px_BF16_diffusers",
        transformer=transformer,
        variant="bf16",
        torch_dtype=torch.bfloat16,
    ).to("cuda")
    pipe.vae.to(torch.bfloat16)
    pipe.text_encoder.to(torch.bfloat16)

    prompt = "A cute 🐼 eating 🎋, ink drawing style"
    image = pipe(
        prompt=prompt,
        height=1024,
        width=1024,
        guidance_scale=4.5,
        num_inference_steps=20,
        generator=torch.Generator().manual_seed(42),
    ).images[0]

    image.save("sana_1600m.png")


34
@pytest.mark.skipif(is_turing() or get_precision() == "fp4", reason="Skip tests due to Turing GPUs")
muyangli's avatar
muyangli committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
def test_sana_pag():
    transformer = NunchakuSanaTransformer2DModel.from_pretrained("mit-han-lab/svdq-int4-sana-1600m", pag_layers=8)
    pipe = SanaPAGPipeline.from_pretrained(
        "Efficient-Large-Model/Sana_1600M_1024px_BF16_diffusers",
        transformer=transformer,
        variant="bf16",
        torch_dtype=torch.bfloat16,
        pag_applied_layers="transformer_blocks.8",
    ).to("cuda")
    pipe._set_pag_attn_processor = lambda *args, **kwargs: None

    pipe.text_encoder.to(torch.bfloat16)
    pipe.vae.to(torch.bfloat16)

    image = pipe(
        prompt="A cute 🐼 eating 🎋, ink drawing style",
        height=1024,
        width=1024,
        guidance_scale=5.0,
        pag_scale=2.0,
        num_inference_steps=20,
    ).images[0]
    image.save("sana_1600m_pag.png")