test_flux_tools.py 3.98 KB
Newer Older
1
import pytest
muyangli's avatar
muyangli committed
2
3
import torch

4
5
from nunchaku.utils import get_precision, is_turing
from .utils import run_test
muyangli's avatar
muyangli committed
6
7


muyangli's avatar
muyangli committed
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
@pytest.mark.skipif(is_turing(), reason="Skip tests due to using Turing GPUs")
def test_flux_canny_dev():
    run_test(
        precision=get_precision(),
        model_name="flux.1-canny-dev",
        dataset_name="MJHQ-control",
        task="canny",
        dtype=torch.bfloat16,
        height=1024,
        width=1024,
        num_inference_steps=30,
        guidance_scale=30,
        attention_impl="nunchaku-fp16",
        cpu_offload=False,
        cache_threshold=0,
        expected_lpips=0.076 if get_precision() == "int4" else 0.164,
    )


@pytest.mark.skipif(is_turing(), reason="Skip tests due to using Turing GPUs")
def test_flux_depth_dev():
    run_test(
        precision=get_precision(),
        model_name="flux.1-depth-dev",
        dataset_name="MJHQ-control",
        task="depth",
        dtype=torch.bfloat16,
        height=1024,
        width=1024,
        num_inference_steps=30,
        guidance_scale=10,
        attention_impl="nunchaku-fp16",
        cpu_offload=False,
        cache_threshold=0,
        expected_lpips=0.137 if get_precision() == "int4" else 0.120,
    )


@pytest.mark.skipif(is_turing(), reason="Skip tests due to using Turing GPUs")
def test_flux_fill_dev():
    run_test(
        precision=get_precision(),
        model_name="flux.1-fill-dev",
        dataset_name="MJHQ-control",
        task="fill",
        dtype=torch.bfloat16,
        height=1024,
        width=1024,
        num_inference_steps=30,
        guidance_scale=30,
        attention_impl="nunchaku-fp16",
        cpu_offload=False,
        cache_threshold=0,
        expected_lpips=0.046,
    )


muyangli's avatar
muyangli committed
65
# @pytest.mark.skipif(is_turing(), reason="Skip tests due to using Turing GPUs")
muyangli's avatar
muyangli committed
66
# def test_flux_dev_canny_lora():
muyangli's avatar
muyangli committed
67
68
#     run_test(
#         precision=get_precision(),
muyangli's avatar
muyangli committed
69
#         model_name="flux.1-dev",
muyangli's avatar
muyangli committed
70
71
72
73
74
75
76
77
78
#         dataset_name="MJHQ-control",
#         task="canny",
#         dtype=torch.bfloat16,
#         height=1024,
#         width=1024,
#         num_inference_steps=30,
#         guidance_scale=30,
#         attention_impl="nunchaku-fp16",
#         cpu_offload=False,
muyangli's avatar
muyangli committed
79
#         lora_names="canny",
muyangli's avatar
muyangli committed
80
81
#         lora_strengths=0.85,
#         cache_threshold=0,
muyangli's avatar
muyangli committed
82
#         expected_lpips=0.081,
muyangli's avatar
muyangli committed
83
#     )
muyangli's avatar
muyangli committed
84
85


muyangli's avatar
muyangli committed
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
@pytest.mark.skipif(is_turing(), reason="Skip tests due to using Turing GPUs")
def test_flux_dev_depth_lora():
    run_test(
        precision=get_precision(),
        model_name="flux.1-dev",
        dataset_name="MJHQ-control",
        task="depth",
        dtype=torch.bfloat16,
        height=1024,
        width=1024,
        num_inference_steps=30,
        guidance_scale=10,
        attention_impl="nunchaku-fp16",
        cpu_offload=False,
        cache_threshold=0,
        lora_names="depth",
        lora_strengths=0.85,
        expected_lpips=0.181,
    )


@pytest.mark.skipif(is_turing(), reason="Skip tests due to using Turing GPUs")
def test_flux_fill_dev_turbo():
    run_test(
        precision=get_precision(),
        model_name="flux.1-fill-dev",
        dataset_name="MJHQ-control",
        task="fill",
        dtype=torch.bfloat16,
        height=1024,
        width=1024,
        num_inference_steps=8,
        guidance_scale=30,
        attention_impl="nunchaku-fp16",
        cpu_offload=False,
        cache_threshold=0,
        lora_names="turbo8",
        lora_strengths=1,
        expected_lpips=0.036,
    )


muyangli's avatar
muyangli committed
128
@pytest.mark.skipif(is_turing(), reason="Skip tests due to using Turing GPUs")
muyangli's avatar
muyangli committed
129
def test_flux_dev_redux():
130
131
132
133
134
135
136
137
    run_test(
        precision=get_precision(),
        model_name="flux.1-dev",
        dataset_name="MJHQ-control",
        task="redux",
        dtype=torch.bfloat16,
        height=1024,
        width=1024,
muyangli's avatar
muyangli committed
138
        num_inference_steps=20,
139
140
141
142
        guidance_scale=2.5,
        attention_impl="nunchaku-fp16",
        cpu_offload=False,
        cache_threshold=0,
muyangli's avatar
update  
muyangli committed
143
        expected_lpips=(0.162 if get_precision() == "int4" else 0.5),  # not sure why the fp4 model is so different
144
    )