dequantize.cuh 6.61 KB
Newer Older
Zhekai Zhang's avatar
Zhekai Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
/*
Modified from NVIDIA FasterTransformer: https://github.com/NVIDIA/FasterTransformer/blob/main/src/fastertransformer/cutlass_extensions/include/cutlass_extensions/interleaved_numeric_conversion.h

@article{lin2023awq,
  title={AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration},
  author={Lin, Ji and Tang, Jiaming and Tang, Haotian and Yang, Shang and Dang, Xingyu and Han, Song},
  journal={arXiv},
  year={2023}
}
*/
#pragma once

#include <cuda_fp16.h>
#include <cstdint>

__forceinline__ __device__ 
void dequantize_s4_to_fp16x2(half2 const &source, uint4 *result) {

    uint32_t *h = reinterpret_cast<uint32_t *>(result);
    uint32_t const i4s = reinterpret_cast<uint32_t const &>(source);

    // First, we extract the i4s and construct an intermediate fp16 number.
    static constexpr uint32_t immLut = (0xf0 & 0xcc) | 0xaa;
    static constexpr uint32_t BOTTOM_MASK = 0x000f000f;
    static constexpr uint32_t TOP_MASK = 0x00f000f0;
    static constexpr uint32_t I4s_TO_F16s_MAGIC_NUM = 0x64006400;

    // Note that the entire sequence only requires 1 shift instruction. This is thanks to the register packing
    // format and the fact that we force our integers to be unsigned, and account for this in the fp16 subtractions.
    // In addition, I exploit the fact that sub and fma have the same throughput in order to convert elt_23 and
    // elt_67 to fp16 without having to shift them to the bottom bits before hand.

    // Shift right by 8 to now consider elt_45 and elt_67. Issue first to hide RAW dependency if we issue
    // immediately before required.
    const uint32_t top_i4s = i4s >> 8;
    // Extract elt_01 - (i4s & 0x000f000f) | 0x64006400
    asm volatile("lop3.b32 %0, %1, %2, %3, %4;\n"
                 : "=r"(h[0])
                 : "r"(i4s), "n"(BOTTOM_MASK), "n"(I4s_TO_F16s_MAGIC_NUM), "n"(immLut));
    // Extract elt_23 (i4s & 0x00f000f0) | 0x64006400
    asm volatile("lop3.b32 %0, %1, %2, %3, %4;\n"
                 : "=r"(h[1])
                 : "r"(i4s), "n"(TOP_MASK), "n"(I4s_TO_F16s_MAGIC_NUM), "n"(immLut));
    // Extract elt_45 (top_i4s & 0x000f000f) | 0x64006400
    asm volatile("lop3.b32 %0, %1, %2, %3, %4;\n"
                 : "=r"(h[2])
                 : "r"(top_i4s), "n"(BOTTOM_MASK), "n"(I4s_TO_F16s_MAGIC_NUM), "n"(immLut));
    // Extract elt_67 (top_i4s & 0x00f000f0) | 0x64006400
    asm volatile("lop3.b32 %0, %1, %2, %3, %4;\n"
                 : "=r"(h[3])
                 : "r"(top_i4s), "n"(TOP_MASK), "n"(I4s_TO_F16s_MAGIC_NUM), "n"(immLut));

    // I use inline PTX below because I am not sure if the compiler will emit float2half instructions if I use the
    // half2 ctor. In this case, I chose performance reliability over code readability.

    // This is the half2 {1032, 1032} represented as an integer.
    // static constexpr uint32_t FP16_TOP_MAGIC_NUM = 0x64086408;
    // Haotian: subtract {1024, 1024} instead, we do not need to map to [-8, 7]
    static constexpr uint32_t FP16_TOP_MAGIC_NUM = 0x64006400;
    // This is the half2 {1 / 16, 1 / 16} represented as an integer.
    static constexpr uint32_t ONE_SIXTEENTH = 0x2c002c00;
    // This is the half2 {-72, -72} represented as an integer.
    // static constexpr uint32_t NEG_72 = 0xd480d480;
    // Haotian: Let's use {-64, -64}.
    static constexpr uint32_t NEG_64 = 0xd400d400;

    // Finally, we construct the output numbers.
    // Convert elt_01
    asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(h[0]) : "r"(h[0]), "r"(FP16_TOP_MAGIC_NUM));
    // Convert elt_23
    asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(h[1]) : "r"(h[1]), "r"(ONE_SIXTEENTH), "r"(NEG_64));
    // Convert elt_45
    asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(h[2]) : "r"(h[2]), "r"(FP16_TOP_MAGIC_NUM));
    // Convert elt_67
    asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(h[3]) : "r"(h[3]), "r"(ONE_SIXTEENTH), "r"(NEG_64));
}

__forceinline__ __device__ 
void dequantize_s4_to_fp16x2(__nv_bfloat162 const &source, uint4 *result) {
    // dequantize_s4_to_fp16x2(reinterpret_cast<const half2 &>(source), result);
    
    // *reinterpret_cast<__nv_bfloat162 *>(&result->x) = cuda_cast<__nv_bfloat162>(*reinterpret_cast<half2 *>(&result->x));
    // *reinterpret_cast<__nv_bfloat162 *>(&result->y) = cuda_cast<__nv_bfloat162>(*reinterpret_cast<half2 *>(&result->y));
    // *reinterpret_cast<__nv_bfloat162 *>(&result->z) = cuda_cast<__nv_bfloat162>(*reinterpret_cast<half2 *>(&result->z));
    // *reinterpret_cast<__nv_bfloat162 *>(&result->w) = cuda_cast<__nv_bfloat162>(*reinterpret_cast<half2 *>(&result->w));

    // return;

    // uint4 result;

    uint32_t *h = reinterpret_cast<uint32_t *>(result);
    uint32_t const i4s = reinterpret_cast<uint32_t const &>(source);

    // First, we extract the i4s and construct an intermediate fp16 number.
    static constexpr uint32_t immLut = (0xf0 & 0xcc) | 0xaa;
    static constexpr uint32_t MASK = 0x000f000f;
    static constexpr uint32_t I4s_TO_BF16s_MAGIC_NUM = 0x43004300;

    // Extract elt_01 - (i4s & 0x000f000f) | 0x43004300
    asm volatile("lop3.b32 %0, %1, %2, %3, %4;\n"
                 : "=r"(h[0])
                 : "r"(i4s), "n"(MASK), "n"(I4s_TO_BF16s_MAGIC_NUM), "n"(immLut));
    // Extract elt_23 ((i4s >> 4) & 0x000f000f) | 0x43004300
    asm volatile("lop3.b32 %0, %1, %2, %3, %4;\n"
                 : "=r"(h[1])
                 : "r"(i4s >> 4), "n"(MASK), "n"(I4s_TO_BF16s_MAGIC_NUM), "n"(immLut));
    // Extract elt_45 ((i4s >> 8) & 0x000f000f) | 0x43004300
    asm volatile("lop3.b32 %0, %1, %2, %3, %4;\n"
                 : "=r"(h[2])
                 : "r"(i4s >> 8), "n"(MASK), "n"(I4s_TO_BF16s_MAGIC_NUM), "n"(immLut));
    // Extract elt_67 ((i4s >> 12) & 0x000f000f) | 0x43004300
    asm volatile("lop3.b32 %0, %1, %2, %3, %4;\n"
                 : "=r"(h[3])
                 : "r"(i4s >> 12), "n"(MASK), "n"(I4s_TO_BF16s_MAGIC_NUM), "n"(immLut));

    // static constexpr uint32_t BF16_BIAS = 0xC308C308;
    // This is the BF16 {-128, -128} represented as an integer, we do not need to map to [-8, 7]
    static constexpr uint32_t BF16_BIAS = 0xC300C300;
    static constexpr uint32_t BF16_ONE  = 0x3F803F80;

    // Finally, we construct the output numbers.
    // Convert elt_01
    asm volatile("fma.rn.bf16x2 %0, %1, %2, %3;\n" : "=r"(h[0]) : "r"(h[0]), "r"(BF16_ONE), "r"(BF16_BIAS));
    // Convert elt_23
    asm volatile("fma.rn.bf16x2 %0, %1, %2, %3;\n" : "=r"(h[1]) : "r"(h[1]), "r"(BF16_ONE), "r"(BF16_BIAS));
    // Convert elt_45
    asm volatile("fma.rn.bf16x2 %0, %1, %2, %3;\n" : "=r"(h[2]) : "r"(h[2]), "r"(BF16_ONE), "r"(BF16_BIAS));
    // Convert elt_67
    asm volatile("fma.rn.bf16x2 %0, %1, %2, %3;\n" : "=r"(h[3]) : "r"(h[3]), "r"(BF16_ONE), "r"(BF16_BIAS));
}