dump_flux.py 19.9 KB
Newer Older
Zhekai Zhang's avatar
Zhekai Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
import torch
import torch.nn as nn
import torch.nn.functional as F
from diffusers import FluxPipeline, FluxTransformer2DModel
from diffusers.models.transformers.transformer_flux import FluxSingleTransformerBlock, FluxTransformerBlock
from diffusers.models.attention import FeedForward
import safetensors.torch
from dataclasses import dataclass
from typing import Optional

import qmodule

TensorDict = dict[str, torch.Tensor]

@dataclass
class DeepCompressorModel:
    model:  dict[str, torch.Tensor]
    smooth: dict[str, torch.Tensor]
    branch: dict[str, dict[str, torch.Tensor]]
    lora:   dict[str, torch.Tensor]

def merge_dict(old: dict, new: dict, prefix: str):
    for key, value in new.items():
        newkey = prefix + key
        assert not newkey in old
        old[newkey] = value

def group_scale(weight: torch.Tensor, num_bits: int, group_size: int) -> torch.Tensor:
    oc, ic = weight.shape
    assert ic % group_size == 0
    maxvalues = weight.reshape(oc, ic // group_size, group_size).abs().max(dim=-1).values
    qmax = 2 ** (num_bits - 1) - 1
    scale = (maxvalues.float() / qmax) 
    scale[scale == 0] = 1
    return scale.to(weight.dtype)

def ceil_div(x, y):
    return (x + y - 1) // y

def quantize_4bit(weight: torch.Tensor, wscales: torch.Tensor) -> torch.Tensor:
    oc, ic = weight.shape
    group_size = ic // wscales.shape[-1]

    # print(group_size)
    # print(weight.shape)
    # print(wscales.shape)

    # print(f"wscales={wscales}")

    qweight = weight.reshape(oc, ic // group_size, group_size).to(dtype=torch.float32) / wscales[..., None]

    # print(f"qweight={qweight}")

    qweight = qweight.reshape(oc, ic // 8, 8).round().clamp(-8, 7).to(dtype=torch.int32)
    qweight = qweight.bitwise_and_(0xf)

    shift = torch.arange(0, 32, 4, dtype=torch.int32)
    qweight = qweight.bitwise_left_shift_(shift)
    qweight = qweight.sum(dim=-1, dtype=torch.int32)

    return qweight

def dump_linear_awq(weight: torch.Tensor, bias: torch.Tensor) -> dict[str, torch.Tensor]:
    tensors = qmodule.dump_linear_awq(weight, bias, w_bit=4, group_size=64, zero_point=False)
    tensors["qweight"] = tensors["qweight"].view(dtype=torch.int32)
    return tensors

def pack_wscales(wscales: torch.Tensor) -> torch.Tensor:
    N, groups = wscales.shape

    assert wscales.dtype.itemsize == 2

    BLOCK_N = 128
    WSCALES_PACK_SIZE = 4
    WSCALES_NUM_PACKS = 1
    WSCALES_VALID_LANES = 32

    wscales = wscales.reshape(ceil_div(N, BLOCK_N), BLOCK_N, groups)
    wscales = wscales.permute(0, 2, 1)  # [..., BLOCK_N]

    wscales = wscales.reshape(*wscales.shape[0:2], WSCALES_NUM_PACKS, WSCALES_VALID_LANES // 4, WSCALES_PACK_SIZE // 2, 4, 2)
    wscales = wscales.permute(0, 1, 2, 3, 5, 4, 6)

    wscales = wscales.contiguous()
    wscales = wscales.view(groups, N)

    return wscales

# print(pack_wscales(torch.arange(0, 256, dtype=torch.int16)[..., None]))
# exit(0)

def pack_qweight(qweight: torch.Tensor) -> torch.Tensor:
    N, K = qweight.shape
    K *= 8

    assert qweight.dtype.itemsize == 4

    BLOCK_N = 128
    WARP_K = 64
    WARP_N_TILES = BLOCK_N // 16

    qweight = qweight.reshape(ceil_div(N, BLOCK_N), WARP_N_TILES, 16, ceil_div(K, WARP_K), WARP_K // 8)
    qweight = qweight.permute(0, 3, 1, 2, 4)        # [N / BLOCK_N, K / WARP_K, WARP_N_TILES, (INSN_N) => 16 , WARP_K / 8 => 8]

    # print(qweight.shape)
    # https://docs.nvidia.com/cuda/parallel-thread-execution/#mma-16864-b-1
    assert qweight.shape[3:] == (16, 8)
    qweight = qweight.reshape(*qweight.shape[0:3], 2, 8, 2, 4)
    qweight = qweight.permute(0, 1, 2, 4, 6, 3, 5)
    assert qweight.shape[3:] == (8, 4, 2, 2)

    print(qweight.dtype)
    print(qweight.shape)

    qweight = qweight.contiguous()
    qweight = qweight.view(dtype=torch.int8)    # assume little-endian

    print(qweight.shape)

    qweight = qweight.view(N, K // 2)

    return qweight

def pack_lora(weight: torch.Tensor, is_lora_down: bool) -> torch.Tensor:
    N, R = weight.shape

    assert N % 16 == 0
    assert R % 16 == 0
    assert weight.dtype.itemsize == 2

    weight = weight.reshape(N // 16, 16, R // 16, 16)
    weight = weight.permute(0, 2, 1, 3)

    if is_lora_down:
        weight = weight.transpose(-1, -2)

    # https://docs.nvidia.com/cuda/parallel-thread-execution/#mma-16816-b-f16
    assert weight.shape[2:] == (16, 16)
    weight = weight.reshape(*weight.shape[0:2], 2, 8, 2, 4, 2)
    weight = weight.permute(0, 1, 3, 5, 2, 4, 6)

    weight = weight.contiguous()
    weight = weight.view(N, R)

    return weight

def dump_linear_w4a4(
        weight: torch.Tensor, 
        bias: torch.Tensor | None = None, 
        smooth: torch.Tensor | None = None,
        lora_down: torch.Tensor | None = None,
        lora_up: torch.Tensor | None = None) -> dict[str, torch.Tensor]:
    
    print(f"dump_linear_w4a4: weight.shape={weight.shape}")
    
    tensors = {}

    group_size = 64
    oc, ic = weight.shape
    N, K = oc, ic

    # LORA_RANK = 32

    wscales = group_scale(weight, num_bits=4, group_size=group_size)

    qweight = quantize_4bit(weight, wscales)        # [N, K / 8]
    assert qweight.shape == (N, K // 8)
    qweight = pack_qweight(qweight)
    
    wscales = pack_wscales(wscales)

    if bias is None:
        bias = torch.zeros([oc], dtype=weight.dtype)
    bias = pack_wscales(bias[..., None])
    assert bias.shape == (1, oc)
    bias = bias[0]

    if smooth is None:
        smooth = torch.ones([ic], dtype=weight.dtype)
    if smooth.dtype != weight.dtype:
        print(f"Convert smooth dtype from {smooth.dtype} to {weight.dtype}")
        smooth = smooth.to(weight.dtype)
    smooth = pack_wscales(smooth[..., None])
    assert smooth.shape == (1, ic)
    smooth = smooth[0]

    # if lora_down is None:
    #     lora_down = torch.zeros([LORA_RANK, ic], dtype=weight.dtype)
    # if lora_up is None:
    #     lora_up = torch.zeros([oc, LORA_RANK], dtype=weight.dtype)

    if not lora_down is None:
        lora_down = pack_lora(lora_down.transpose(0, 1), is_lora_down=True)
    if not lora_up is None:
        lora_up = pack_lora(lora_up, is_lora_down=False)

    tensors["qweight"] = qweight
    tensors["wscales"] = wscales
    tensors["bias"] = bias

    if not lora_down is None:
        tensors["lora_down"] = lora_down
    if not lora_up is None:
        tensors["lora_up"] = lora_up
    tensors["smooth"] = smooth

    return tensors

def dump_linear_adanorm_single(weight: torch.Tensor, bias: torch.Tensor) -> TensorDict:
    oc, ic = weight.shape
    assert oc % 3 == 0

    # shift_msa, scale_msa, gate_msa
    weight = weight.reshape(3, oc // 3, ic).transpose(0, 1).reshape(oc, ic).contiguous()
    
    bias = bias.reshape(3, oc // 3).transpose(0, 1)
    # [oc // 3, 3]
    bias = bias + torch.tensor([0, 1, 0], dtype=bias.dtype)
    bias = bias.reshape(oc).contiguous()

    return dump_linear_awq(weight, bias)

def dump_linear_adanorm_zero(weight: torch.Tensor, bias: torch.Tensor) -> dict[str, torch.Tensor]:
    oc, ic = weight.shape
    assert oc % 6 == 0

    # shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp
    weight = weight.reshape(6, oc // 6, ic).transpose(0, 1).reshape(oc, ic).contiguous()
    
    bias = bias.reshape(6, oc // 6).transpose(0, 1)
    # [oc // 6, 6]
    bias = bias + torch.tensor([0, 1, 0, 0, 1, 0], dtype=bias.dtype)
    bias = bias.reshape(oc).contiguous()

    return dump_linear_awq(weight, bias)

def dump_linear_layer_w4a4(layer: torch.nn.Linear):
    return dump_linear_w4a4(layer.weight.detach(), layer.bias.detach())

def dump_linear_layer_adanorm_single(block: torch.nn.Linear) -> TensorDict:
    return dump_linear_adanorm_single(block.weight.detach(), block.bias.detach())

def dump_linear_layer_adanorm_zero(block: torch.nn.Linear) -> dict[str, torch.Tensor]:
    return dump_linear_adanorm_zero(block.weight.detach(), block.bias.detach())

def dump_qkv_proj(q: torch.nn.Linear, k: torch.nn.Linear, v: torch.nn.Linear) -> TensorDict:
    qkv = [q, k, v]
    qkv_weight = torch.cat([linear.weight.detach() for linear in qkv], dim=0)
    qkv_bias = torch.cat([linear.bias.detach() for linear in qkv], dim=0)
    print(qkv_weight.shape)
    print(qkv_bias.shape)
    return dump_linear_w4a4(qkv_weight, qkv_bias)

def dump_single_transformer(block: FluxSingleTransformerBlock) -> dict[str, torch.Tensor]:
    tensors = {}

    merge_dict(tensors, dump_linear_layer_adanorm_single(block.norm.linear), "norm.linear.")
    
    merge_dict(tensors, dump_qkv_proj(block.attn.to_q, block.attn.to_k, block.attn.to_v), "qkv_proj.")

    tensors["norm_q.weight"] = block.attn.norm_q.weight.detach()
    tensors["norm_k.weight"] = block.attn.norm_k.weight.detach()

    merge_dict(tensors, dump_linear_layer_w4a4(block.proj_mlp), "mlp_fc1.")

    merge_dict(tensors, dump_linear_w4a4(
        block.proj_out.weight.detach()[:, 0:block.attn.out_dim], 
        bias=None
    ), "out_proj.")

    merge_dict(tensors, dump_linear_w4a4(
        block.proj_out.weight.detach()[:, block.attn.out_dim:], 
        bias=block.proj_out.bias.detach()
        # block.proj_out.weight.detach()
    ), "mlp_fc2.")

    # print(dict(block.named_parameters()).keys())

    return tensors
    

def dump_transformer(block: FluxTransformerBlock) -> TensorDict:
    tensors = {}

    merge_dict(tensors, dump_linear_layer_adanorm_zero(block.norm1.linear), "norm1.linear.")
    merge_dict(tensors, dump_linear_layer_adanorm_zero(block.norm1_context.linear), "norm1_context.linear.")

    merge_dict(tensors, dump_qkv_proj(block.attn.to_q, block.attn.to_k, block.attn.to_v), "qkv_proj.")
    merge_dict(tensors, dump_qkv_proj(block.attn.add_q_proj, block.attn.add_k_proj, block.attn.add_v_proj), "qkv_proj_context.")

    tensors["norm_q.weight"] = block.attn.norm_q.weight.detach()
    tensors["norm_k.weight"] = block.attn.norm_k.weight.detach()
    tensors["norm_added_q.weight"] = block.attn.norm_added_q.weight.detach()
    tensors["norm_added_k.weight"] = block.attn.norm_added_k.weight.detach()

    merge_dict(tensors, dump_linear_layer_w4a4(block.attn.to_out[0]), "out_proj.")
    merge_dict(tensors, dump_linear_layer_w4a4(block.attn.to_add_out), "out_proj_context.")

    # no params for norm2

    merge_dict(tensors, dump_linear_layer_w4a4(block.ff.net[0].proj), "mlp_fc1.")
    merge_dict(tensors, dump_linear_layer_w4a4(block.ff.net[2]), "mlp_fc2.")
    
    merge_dict(tensors, dump_linear_layer_w4a4(block.ff_context.net[0].proj), "mlp_context_fc1.")
    merge_dict(tensors, dump_linear_layer_w4a4(block.ff_context.net[2]), "mlp_context_fc2.")

    return tensors

def recip_smooth(smooth: Optional[torch.Tensor]) -> Optional[torch.Tensor]:
    if smooth is None:
        return None
    return (1. / smooth.to(torch.float64)).to(smooth.dtype)

def unsmooth(weight: torch.Tensor, smooth: Optional[torch.Tensor]) -> torch.Tensor:
    if smooth is None:
        return weight
    assert smooth.ndim == 1
    assert weight.ndim == 2
    assert weight.shape[1] == smooth.shape[0]
    return (weight.to(torch.float64) / smooth[None, ...].to(torch.float64)).to(weight.dtype)

def dump_qkv_proj_svdq(
        qmodel: DeepCompressorModel,
        key_qkv: tuple[str, str, str],
        key_smooth: str,
    ) -> TensorDict:
    
    qkv_weight = torch.cat([qmodel.model[f"{k}.weight"] for k in key_qkv], dim=0)
    qkv_bias = torch.cat([qmodel.model[f"{k}.bias"] for k in key_qkv], dim=0)
    print(qkv_weight.shape)
    print(qkv_bias.shape)

    smooth = qmodel.smooth[key_smooth].to(qkv_weight.dtype).float()
    return dump_linear_w4a4(
        qkv_weight, qkv_bias, 
        smooth=smooth,  # recip_smooth(smooth),
        lora_down=unsmooth(qmodel.branch[key_smooth]["a.weight"], smooth),
        lora_up=qmodel.branch[key_smooth]["b.weight"]
    )

def dump_linear_layer_w4a4_svdq(
        qmodel: DeepCompressorModel, 
        key: str, 
        alt_smooth: bool = False, 
        smooth: Optional[torch.Tensor] = None, 
        alt_bias: bool = False,
        bias: Optional[torch.Tensor] = None,
        bias_fuse_shift: float = 0
    ) -> TensorDict:
    
    if not alt_smooth:
        smooth = qmodel.smooth[key]
    if not alt_bias:
        bias = qmodel.model[f"{key}.bias"]
    weight = qmodel.model[f"{key}.weight"]
    if smooth is not None:
        smooth = smooth.to(weight.dtype).float()
    
    if bias_fuse_shift != 0:
        oc, ic = weight.shape
        shift = torch.ones([ic], dtype=weight.dtype, device=weight.device) * bias_fuse_shift
        if smooth is not None:
            shift = (shift / smooth).to(weight.dtype)
        delta = F.linear(shift, weight)
        if bias is None:
            bias = torch.zeros([oc], dtype=weight.dtype, device=weight.device)
        bias -= delta
        
    return dump_linear_w4a4(
        weight=weight,
        bias=bias,
        smooth=smooth, # recip_smooth(smooth),
        lora_down=unsmooth(qmodel.branch[key]["a.weight"], smooth),
        lora_up=qmodel.branch[key]["b.weight"]
    )

GELU_SHIFT_VALUE = 0.171875

def dump_transformer_svdq(
        qmodel: DeepCompressorModel, 
        layer_id: int, 
        original_net: Optional[FluxTransformer2DModel],
        use_original_adanorm: bool = False,
        num_svdq_joint: int = 19,
        shift_gelu: bool = True,
        **kwargs,
    ) -> TensorDict:

    tensors = {}

    original_block: FluxTransformerBlock = original_net.transformer_blocks[layer_id]

    if layer_id >= num_svdq_joint:
        return dump_transformer(original_block)

    prefix = f"transformer_blocks.{layer_id}"
    def model(key: str):
        return qmodel.model[f"{prefix}.{key}"]
    def linear(key: str, **kwargs):
        return dump_linear_layer_w4a4_svdq(qmodel, f"{prefix}.{key}", **kwargs)
    
    if use_original_adanorm:
        merge_dict(tensors, dump_linear_layer_adanorm_zero(original_block.norm1.linear), "norm1.linear.")
        merge_dict(tensors, dump_linear_layer_adanorm_zero(original_block.norm1_context.linear), "norm1_context.linear.")
    else:
        merge_dict(tensors, dump_linear_adanorm_zero(model("norm1.linear.weight"), model("norm1.linear.bias")), "norm1.linear.")
        merge_dict(tensors, dump_linear_adanorm_zero(model("norm1_context.linear.weight"), model("norm1_context.linear.bias")), "norm1_context.linear.")

    merge_dict(tensors, dump_qkv_proj_svdq(
        qmodel, 
        (f"{prefix}.attn.to_q", f"{prefix}.attn.to_k", f"{prefix}.attn.to_v"), 
        f"{prefix}.attn.to_q"
    ), "qkv_proj.")

    merge_dict(tensors, dump_qkv_proj_svdq(
        qmodel, 
        (f"{prefix}.attn.add_q_proj", f"{prefix}.attn.add_k_proj", f"{prefix}.attn.add_v_proj"), 
        f"{prefix}.attn.add_k_proj"
    ), "qkv_proj_context.")

    tensors["norm_q.weight"] = model("attn.norm_q.weight")
    tensors["norm_k.weight"] = model("attn.norm_k.weight")
    tensors["norm_added_q.weight"] = model("attn.norm_added_q.weight")
    tensors["norm_added_k.weight"] = model("attn.norm_added_k.weight")

    # DONE GELU should be before lora up, also +shift
    # DONE smooth factor 1/smooth
    # DONE smooth fuse to lora down
    merge_dict(tensors, linear("attn.to_out.0", alt_smooth=True, smooth=None), "out_proj.")
    merge_dict(tensors, linear("attn.to_add_out", alt_smooth=True, smooth=None), "out_proj_context.")

    merge_dict(tensors, linear("ff.net.0.proj"), "mlp_fc1.")
    merge_dict(tensors, linear("ff.net.2.linear", alt_bias=True, bias=original_block.ff.net[2].bias, bias_fuse_shift=GELU_SHIFT_VALUE if shift_gelu else 0), "mlp_fc2.")
    
    merge_dict(tensors, linear("ff_context.net.0.proj"), "mlp_context_fc1.")
    merge_dict(tensors, linear("ff_context.net.2.linear", alt_bias=True, bias=original_block.ff_context.net[2].bias, bias_fuse_shift=GELU_SHIFT_VALUE if shift_gelu else 0), "mlp_context_fc2.")

    return tensors

def dump_single_transformer_svdq(
        qmodel: DeepCompressorModel, 
        layer_id: int, 
        original_net: Optional[FluxTransformer2DModel],
        use_original_adanorm: bool = False,
        num_svdq_single: int = 38,
        shift_gelu: bool = True,
        **kwargs
    ) -> TensorDict:

    tensors = {}

    original_block: FluxSingleTransformerBlock = original_net.single_transformer_blocks[layer_id]

    if layer_id >= num_svdq_single:
        return dump_single_transformer(original_block)

    prefix = f"single_transformer_blocks.{layer_id}"
    def model(key: str):
        return qmodel.model[f"{prefix}.{key}"]
    def linear(key: str, **kwargs):
        return dump_linear_layer_w4a4_svdq(qmodel, f"{prefix}.{key}", **kwargs)
    
    if use_original_adanorm:
        merge_dict(tensors, dump_linear_layer_adanorm_single(original_block.norm.linear), "norm.linear.")
    else:
        merge_dict(tensors, dump_linear_adanorm_single(model("norm.linear.weight"), model("norm.linear.bias")), "norm.linear.")
    
    merge_dict(tensors, dump_qkv_proj_svdq(
        qmodel,
        (f"{prefix}.attn.to_q", f"{prefix}.attn.to_k", f"{prefix}.attn.to_v"), 
        f"{prefix}.attn.to_q"
    ), "qkv_proj.")

    tensors["norm_q.weight"] = model("attn.norm_q.weight")
    tensors["norm_k.weight"] = model("attn.norm_k.weight")

    merge_dict(tensors, linear("proj_mlp", alt_smooth=True, smooth=qmodel.smooth[f"{prefix}.attn.to_q"]), "mlp_fc1.")

    merge_dict(tensors, linear("proj_out.linears.0", alt_smooth=True, smooth=None, alt_bias=True, bias=None), "out_proj.")
    merge_dict(tensors, linear("proj_out.linears.1.linear", alt_bias=True, bias=original_block.proj_out.bias, bias_fuse_shift=GELU_SHIFT_VALUE if shift_gelu else 0), "mlp_fc2.")

    return tensors

@torch.inference_mode()
def dump_flux(net: FluxTransformer2DModel) -> TensorDict:
    tensors = {}
    for i in range(len(net.transformer_blocks)):
        merge_dict(tensors, dump_transformer(net.transformer_blocks[i]), f"transformer_blocks.{i}.")
    for i in range(len(net.single_transformer_blocks)):
        merge_dict(tensors, dump_single_transformer(net.single_transformer_blocks[i]), f"single_transformer_blocks.{i}.")
    return tensors

@torch.inference_mode()
def dump_flux_svdq(qmodel: DeepCompressorModel, **kwargs) -> TensorDict:
    tensors = {}
    for i in range(19):
        merge_dict(tensors, dump_transformer_svdq(qmodel, i, **kwargs), f"transformer_blocks.{i}.")
    for i in range(38):
        merge_dict(tensors, dump_single_transformer_svdq(qmodel, i, **kwargs), f"single_transformer_blocks.{i}.")
    return tensors

def load_svdq(path: str) -> DeepCompressorModel:
    return DeepCompressorModel(
        model=torch.load(f"{path}/model.pt", map_location="cpu"),
        smooth=torch.load(f"{path}/smooth.pt", map_location="cpu"),
        branch=torch.load(f"{path}/branch.pt", map_location="cpu"),
        lora={}
    )
    
if __name__ == "__main__":
    use_svdq = True
    use_original_adanorm = True
    shift_gelu = True
    dev = False

    num_svdq_joint = 19
    num_svdq_single = 38

    if not use_svdq:
        pipe = FluxPipeline.from_pretrained(
            f"black-forest-labs/FLUX.1-{'dev' if dev else 'schnell'}", torch_dtype=torch.bfloat16)
        net: FluxTransformer2DModel = pipe.transformer
        print(net)
        tensors = dump_flux(net)
        dtype = pipe.dtype
    else:
        pipe = FluxPipeline.from_pretrained(
            f"black-forest-labs/FLUX.1-{'dev' if dev else 'schnell'}", torch_dtype=torch.bfloat16)
        net: FluxTransformer2DModel = pipe.transformer
        tensors = dump_flux_svdq(
            load_svdq(path="model-dev" if dev else "model-schnell"), 
            original_net=net, 
            use_original_adanorm=use_original_adanorm, 
            num_svdq_joint=num_svdq_joint, 
            num_svdq_single=num_svdq_single,
            shift_gelu=shift_gelu,
        )
        dtype = torch.bfloat16

    for k, v in tensors.items():
        assert not v.isnan().any()
        assert not v.isinf().any()
    
    safetensors.torch.save_file(
        tensors, 
        f"/tmp/flux{f'-dev' if dev else ''}{f'-svdq-{num_svdq_joint}-{num_svdq_single}' if use_svdq else ''}-divsmooth{'-shift' if shift_gelu else ''}{'-ada' if use_original_adanorm else ''}-{'bf16' if dtype == torch.bfloat16 else 'fp16'}.safetensors")

    # tensors = dump_single_transformer(net.single_transformer_blocks[0])
    # print(tensors)

    # print(dump_transformer(net.transformer_blocks[0]))
    # print(dict(net.named_parameters()))