run_gradio.py 7.35 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
# Changed from https://github.com/GaParmar/img2img-turbo/blob/main/gradio_sketch2image.py
import os
import random
import time
from datetime import datetime

import torch
from diffusers import FluxKontextPipeline
from PIL import Image
from utils import get_args
from vars import EXAMPLES, MAX_SEED

from nunchaku.models.transformers.transformer_flux import NunchakuFluxTransformer2dModel

# import gradio last to avoid conflicts with other imports
import gradio as gr  # noqa: isort: skip

args = get_args()

if args.precision == "bf16":
    pipeline = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16)
    pipeline = pipeline.to("cuda")
    pipeline.precision = "bf16"
else:
    assert args.precision == "int4"
    pipeline_init_kwargs = {}
    transformer = NunchakuFluxTransformer2dModel.from_pretrained(
        "mit-han-lab/nunchaku-flux.1-kontext-dev/svdq-int4_r32-flux.1-kontext-dev.safetensors"
    )
    pipeline_init_kwargs["transformer"] = transformer
    if args.use_qencoder:
        from nunchaku.models.text_encoders.t5_encoder import NunchakuT5EncoderModel

        text_encoder_2 = NunchakuT5EncoderModel.from_pretrained(
            "mit-han-lab/nunchaku-t5/awq-int4-flux.1-t5xxl.safetensors"
        )
        pipeline_init_kwargs["text_encoder_2"] = text_encoder_2

    pipeline = FluxKontextPipeline.from_pretrained(
        "black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16, **pipeline_init_kwargs
    )
    pipeline = pipeline.to("cuda")
    pipeline.precision = "int4"


def run(image, prompt: str, num_inference_steps: int, guidance_scale: float, seed: int) -> tuple[Image, str]:
    img = image["composite"].convert("RGB")

    start_time = time.time()
    result_image = pipeline(
        prompt=prompt,
        image=img,
        height=img.height,
        width=img.width,
        num_inference_steps=num_inference_steps,
        guidance_scale=guidance_scale,
        generator=torch.Generator().manual_seed(seed),
    ).images[0]

    latency = time.time() - start_time
    if latency < 1:
        latency = latency * 1000
        latency_str = f"{latency:.2f}ms"
    else:
        latency_str = f"{latency:.2f}s"
    torch.cuda.empty_cache()
    if args.count_use:
        if os.path.exists(f"{args.model}-use_count.txt"):
            with open(f"{args.model}-use_count.txt", "r") as f:
                count = int(f.read())
        else:
            count = 0
        count += 1
        current_time = datetime.now()
        print(f"{current_time}: {count}")
        with open(f"{args.model}-use_count.txt", "w") as f:
            f.write(str(count))
        with open(f"{args.model}-use_record.txt", "a") as f:
            f.write(f"{current_time}: {count}\n")
    return result_image, latency_str


with gr.Blocks(css_paths="assets/style.css", title="Nunchaku FLUX.1-Kontext Demo") as demo:
    with open("assets/description.html", "r") as f:
        DESCRIPTION = f.read()
    # Get the GPU properties
    if torch.cuda.device_count() > 0:
        gpu_properties = torch.cuda.get_device_properties(0)
        gpu_memory = gpu_properties.total_memory / (1024**3)  # Convert to GiB
        gpu_name = torch.cuda.get_device_name(0)
        device_info = f"Running on {gpu_name} with {gpu_memory:.0f} GiB memory."
    else:
        device_info = "Running on CPU 🥶 This demo does not work on CPU."
    notice = '<strong>Notice:</strong>&nbsp;We will replace unsafe prompts with a default prompt: "A peaceful world."'

    def get_header_str():

        if args.count_use:
            if os.path.exists("use_count.txt"):
                with open("use_count.txt", "r") as f:
                    count = int(f.read())
            else:
                count = 0
            count_info = (
                f"<div style='display: flex; justify-content: center; align-items: center; text-align: center;'>"
                f"<span style='font-size: 18px; font-weight: bold;'>Total inference runs: </span>"
                f"<span style='font-size: 18px; color:red; font-weight: bold;'>&nbsp;{count}</span></div>"
            )
        else:
            count_info = ""
        header_str = DESCRIPTION.format(device_info=device_info, notice=notice, count_info=count_info)
        return header_str

    header = gr.HTML(get_header_str())
    demo.load(fn=get_header_str, outputs=header)

    with gr.Row(elem_id="main_row"):
        with gr.Column(elem_id="column_input"):
            gr.Markdown("## INPUT", elem_id="input_header")
            with gr.Group():
                canvas = gr.ImageEditor(
                    height=640,
                    image_mode="RGB",
                    sources=["upload", "clipboard"],
                    type="pil",
                    label="Input",
                    show_label=False,
                    show_download_button=True,
                    interactive=True,
                    transforms=[],
                    canvas_size=(1024, 1024),
                    scale=1,
                    format="png",
                    layers=False,
                )
                with gr.Row():
                    prompt = gr.Text(label="Prompt", placeholder="Enter your prompt", scale=6)
                    run_button = gr.Button("Run", scale=1, elem_id="run_button")

            with gr.Row():
                seed = gr.Slider(label="Seed", show_label=True, minimum=0, maximum=MAX_SEED, value=233, step=1, scale=4)
                randomize_seed = gr.Button("Random Seed", scale=1, min_width=50, elem_id="random_seed")
            with gr.Accordion("Advanced options", open=False):
                with gr.Group():
                    num_inference_steps = gr.Slider(label="Inference Steps", minimum=10, maximum=50, step=1, value=28)
                    guidance_scale = gr.Slider(label="Guidance Scale", minimum=1, maximum=10, step=0.1, value=2.5)

        with gr.Column(elem_id="column_output"):
            gr.Markdown("## OUTPUT", elem_id="output_header")
            with gr.Group():
                result = gr.Image(
                    format="png",
                    height=640,
                    image_mode="RGB",
                    type="pil",
                    label="Result",
                    show_label=False,
                    show_download_button=True,
                    interactive=False,
                    elem_id="output_image",
                )
                latency_result = gr.Text(label="Inference Latency", show_label=True)

            gr.Markdown("### Instructions")
            gr.Markdown("**1**. Enter a text prompt")
            gr.Markdown("**2**. Upload an image")
            gr.Markdown("**3**. Try different seeds to generate different results")

    run_inputs = [canvas, prompt, num_inference_steps, guidance_scale, seed]
    run_outputs = [result, latency_result]

    gr.Examples(examples=EXAMPLES, inputs=run_inputs, outputs=run_outputs, fn=run)

    randomize_seed.click(
        lambda: random.randint(0, MAX_SEED), inputs=[], outputs=seed, api_name=False, queue=False
    ).then(run, inputs=run_inputs, outputs=run_outputs, api_name=False)

    gr.on(
        triggers=[prompt.submit, run_button.click],
        fn=run,
        inputs=run_inputs,
        outputs=run_outputs,
        api_name=False,
    )

    gr.Markdown("MIT Accessibility: https://accessibility.mit.edu/", elem_id="accessibility")


if __name__ == "__main__":
    demo.queue().launch(debug=True, share=True, root_path=args.gradio_root_path)