gemm_w4a4_launch_impl.cuh 25.4 KB
Newer Older
fengzch-das's avatar
fengzch-das committed
1
#include "hip/hip_runtime.h"
muyangli's avatar
muyangli committed
2
3
4
5
6
#include "gemm_w4a4_launch.cuh"

namespace nunchaku::kernels {

#ifndef __INTELLISENSE__
7
8
template<typename Config, bool USE_FP4>
void GEMM_W4A4_Launch<Config, USE_FP4>::gemm_w4a4(
muyangli's avatar
muyangli committed
9
10
#else
template<>
11
void GEMM_W4A4_Launch<GEMMConfig_W4A4_FP16, false>::gemm_w4a4(
muyangli's avatar
muyangli committed
12
#endif
Muyang Li's avatar
Muyang Li committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
    Tensor act,            // packed act [M, K / 2]
    Tensor wgt,            // packed act [N, K / 2]
    Tensor out,            // linear     [M, N]
    Tensor qout,           // packed act [M, N / 2]
    Tensor ascales,        // packed as  [K / 64, M]
    Tensor wscales,        // packed ws  [K / 64, N]
    Tensor oscales,        // packed as  [N / 64, M]
    Tensor poolout,        // linear     [M / PoolSize, N]
    Tensor lora_act_in,    // packed lora_act [M, R]
    Tensor lora_up,        // packed lora_wgt [N, R]
    Tensor lora_down,      // packed lora_wgt [N, R]
    Tensor lora_act_out,   // packed lora_act [M, R]
    Tensor norm_q,         // linear     [HEAD_DIM]
    Tensor norm_k,         // linear     [HEAD_DIM]
    Tensor rotary_emb,     // linear     [M, HEAD_DIM / 2, 2, 2]
    Tensor bias,           // packed ws  [N]
    Tensor smooth_factor,  // packed ws  [N], for quantization of the next layer
    Tensor out_vk,         // linear     [B, num_heads, head_dim + 1, head_dim]
    Tensor out_linearattn, // linear     [B, (M), N / 3]
muyangli's avatar
muyangli committed
32
    bool act_unsigned,
Muyang Li's avatar
Muyang Li committed
33
    std::vector<float> lora_scales, // [R / 16]
34
35
36
    bool fuse_silu,
    bool fp4,
    float alpha,
Muyang Li's avatar
Muyang Li committed
37
38
39
40
41
    Tensor wcscales, // packed ws  [N]
    Tensor out_q,    // packed attention [B, H, M, D]
    Tensor out_k,    // packed attention [B, H, M, D]
    Tensor out_v,    // packed attention [B, H, M, D]
    int attn_tokens) {
42
43
44
45
46
#ifdef __INTELLISENSE__
    static constexpr bool USE_FP4 = false;
#endif
    assert(fp4 == USE_FP4);

muyangli's avatar
muyangli committed
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
    int M = act.numel() / act.shape[-1];
    int N = wgt.shape[0];
    int K = act.shape[-1] * 2;
    assert(K == wgt.shape[1] * 2);

    int actualM = 0;
    int actualN = 0;
    if (out.valid()) {
        actualM = out.numel() / out.shape[-1];
        actualN = out.shape[-1];

        assert(actualM <= M && M - actualM < GEMM::BLOCK_M);
        assert(actualN <= N && N - actualN < GEMM::BLOCK_N);
    }

    spdlog::trace("gemm_w4a4: M={} N={} K={}", M, N, K);
    spdlog::trace("act at {}", act.data_ptr());
    spdlog::trace("wgt at {}", wgt.data_ptr());
    spdlog::trace("ascales at {}", ascales.data_ptr());
    spdlog::trace("wscales at {}", wscales.data_ptr());
    if (bias.valid()) {
        spdlog::trace("bias at {}", bias.data_ptr());
    }

    int shmem = 0;

    auto launch = [&]<typename Epilogue>(Epilogue::Arguments args) {
        assert(M % GEMM::BLOCK_M == 0);
        assert(N % GEMM::BLOCK_N == 0);
        dim3 grid(M / GEMM::BLOCK_M, N / GEMM::BLOCK_N);

        bool swapBlockMN = M > N * 2;
        if (swapBlockMN) {
            std::swap(grid.x, grid.y);
        }

83
84
85
86
87
        // test_sizeof<typename Epilogue::Arguments>();
        // std::apply([](auto ...args) {
        //     (test_sizeof<decltype(args)>(), ...);
        // }, args);

fengzch-das's avatar
fengzch-das committed
88
        // constexpr bool FP4_AVAILABLE = __DTK_ARCH__ >= 1200;
89
90
91

        if constexpr (!USE_FP4) {
            dispatchBool(act_unsigned, [&]<bool ACT_UNSIGNED>() {
Muyang Li's avatar
Muyang Li committed
92
93
94
95
96
97
98
99
100
101
102
                auto func = invoke_kernel<typename GEMM::gemm_w4a4_kernel<Epilogue, ACT_UNSIGNED>,
                                          const packed_act_t *,
                                          const packed_wgt_t *,
                                          const packed_ascale_t *,
                                          const packed_wscale_t *,
                                          int,
                                          int,
                                          int,
                                          typename Epilogue::Arguments,
                                          bool,
                                          bool>;
103
104

                if (shmem >= 24 * 1024) {
fengzch-das's avatar
fengzch-das committed
105
                    checkCUDA(hipFuncSetAttribute(func, hipFuncAttributeMaxDynamicSharedMemorySize, shmem));
106
                }
muyangli's avatar
muyangli committed
107

108
                assert(alpha == 1.0f);
Muyang Li's avatar
Muyang Li committed
109

fengzch-das's avatar
fengzch-das committed
110
               hipLaunchKernelGGL(( func), dim3(grid), dim3(GEMM::WARP_SIZE * GEMM::NUM_WARPS), shmem, getCurrentHIPStreamMasqueradingAsCUDA(), 
111
112
113
114
                    act.data_ptr<packed_act_t>(),
                    wgt.data_ptr<packed_wgt_t>(),
                    ascales.data_ptr<packed_ascale_t>(),
                    wscales.data_ptr<packed_wscale_t>(),
Muyang Li's avatar
Muyang Li committed
115
116
117
                    M,
                    N,
                    K,
118
119
                    args,
                    swapBlockMN,
Muyang Li's avatar
Muyang Li committed
120
                    false);
fengzch-das's avatar
fengzch-das committed
121
                checkCUDA(hipGetLastError());
122
123
124
            });
            return;
        }
125

126
127
128
129
        if constexpr (USE_FP4) {
            dispatchBool(alpha != 1.0f, [&]<bool USE_ALPHA>() {
                assert(!act_unsigned);

Muyang Li's avatar
Muyang Li committed
130
131
132
133
134
135
136
137
138
139
140
141
                auto func = invoke_kernel<typename GEMM::gemm_w4a4_fp4_kernel<Epilogue, USE_ALPHA>,
                                          const packed_act_t *,
                                          const packed_wgt_t *,
                                          const packed_amscale_t *,
                                          const packed_wmscale_t *,
                                          float,
                                          int,
                                          int,
                                          int,
                                          typename Epilogue::Arguments,
                                          bool,
                                          bool>;
142
143

                if (shmem >= 24 * 1024) {
fengzch-das's avatar
fengzch-das committed
144
                    checkCUDA(hipFuncSetAttribute(func, hipFuncAttributeMaxDynamicSharedMemorySize, shmem));
145
146
147
148
                }

                assert(ascales.dtype() == Tensor::FP8_E4M3);
                assert(wscales.dtype() == Tensor::FP8_E4M3);
Muyang Li's avatar
Muyang Li committed
149

fengzch-das's avatar
fengzch-das committed
150
               hipLaunchKernelGGL(( func), dim3(grid), dim3(GEMM::WARP_SIZE * GEMM::NUM_WARPS), shmem, getCurrentHIPStreamMasqueradingAsCUDA(), 
151
152
153
154
155
                    act.data_ptr<packed_act_t>(),
                    wgt.data_ptr<packed_wgt_t>(),
                    ascales.data_ptr<packed_amscale_t>(),
                    wscales.data_ptr<packed_wmscale_t>(),
                    alpha,
Muyang Li's avatar
Muyang Li committed
156
157
158
                    M,
                    N,
                    K,
159
160
                    args,
                    swapBlockMN,
Muyang Li's avatar
Muyang Li committed
161
                    false);
fengzch-das's avatar
fengzch-das committed
162
                checkCUDA(hipGetLastError());
163
            });
Muyang Li's avatar
Muyang Li committed
164

165
166
167
168
169
170
            return;
        }

        // if constexpr (USE_FP4 && !FP4_AVAILABLE) {
        //     throw std::runtime_error("FP4 kernel is not available");
        // }
muyangli's avatar
muyangli committed
171
172
173
    };

    auto launch_bias = [&]<typename NextEpilogue>(NextEpilogue::Arguments nextArgs) {
174
175
176
177
178
179
        assert(!bias.valid() || bias.numel() == N);
        assert(!wcscales.valid() || wcscales.numel() == N);

        dispatchBool(bias.valid(), [&]<bool USE_BIAS>() {
            dispatchBool(wcscales.valid(), [&]<bool USE_SCALE>() {
                using EpilogueBias = typename GEMM::EpilogueBias<USE_BIAS, USE_SCALE>;
Muyang Li's avatar
Muyang Li committed
180
181
                // append EpilgoueNop to workaround mismatched memory layout of std::tuple between device and host code
                // on Windows
182
                // ** sizeof(std::tuple<std::tuple<int>>) == 8 on device **
Muyang Li's avatar
Muyang Li committed
183
184
185
186
187
188
189
190
191
                using Epilogue =
                    typename GEMM::EpilogueCombination<EpilogueBias, NextEpilogue, typename GEMM::EpilogueNop>;
                return launch.template operator()<Epilogue>(
                    {typename EpilogueBias::Arguments{
                         .bias  = USE_BIAS ? bias.data_ptr<packed_wscale_t>() : nullptr,
                         .scale = USE_SCALE ? wcscales.data_ptr<packed_wscale_t>() : nullptr,
                     },
                     nextArgs,
                     {}});
192
            });
muyangli's avatar
muyangli committed
193
194
195
196
        });
    };
    // auto launch_bias = launch;

Muyang Li's avatar
Muyang Li committed
197
198
    auto launch_lora = [&]<typename NextEpilogue, typename MidEpilogue>(NextEpilogue::Arguments nextArgs,
                                                                        MidEpilogue::Arguments midArgs) {
muyangli's avatar
muyangli committed
199
200
201
        assert(lora_up.valid() == lora_act_in.valid());
        assert(lora_down.valid() == lora_act_out.valid());

Muyang Li's avatar
Muyang Li committed
202
        const int rank_up   = lora_up.valid() ? lora_up.shape[1] : 0;
sxtyzhangzk's avatar
sxtyzhangzk committed
203
204
205
206
        const int rank_down = lora_down.valid() ? lora_down.shape[1] : 0;

        if (rank_up == 0) {
            assert(rank_down == 0);
Muyang Li's avatar
Muyang Li committed
207
208
            return launch_bias.template operator()<typename GEMM::EpilogueCombination<MidEpilogue, NextEpilogue>>(
                {midArgs, nextArgs});
muyangli's avatar
muyangli committed
209
210
        }

sxtyzhangzk's avatar
sxtyzhangzk committed
211
        assert(rank_up % 16 == 0);
muyangli's avatar
muyangli committed
212
213
214
215
216
217

        assert(lora_up.shape[0] == N);
        // assert(lora_up.shape[1] == Lora::LORA_RANK);
        assert(lora_act_in.shape[0] == M);
        assert(lora_act_in.shape[1] == rank_up);

Muyang Li's avatar
Muyang Li committed
218
        using LoraUp  = Lora;
sxtyzhangzk's avatar
sxtyzhangzk committed
219
        using scale_t = typename LoraUp::scale_t;
muyangli's avatar
muyangli committed
220

sxtyzhangzk's avatar
sxtyzhangzk committed
221
222
223
224
        scale_t scales;
        if constexpr (scales.size() > 0) {
            for (size_t i = 0; i < scales.size(); i++) {
                scales[i] = i < lora_scales.size() ? lora_scales[i] : 0.0f;
muyangli's avatar
muyangli committed
225
            }
sxtyzhangzk's avatar
sxtyzhangzk committed
226
        }
muyangli's avatar
muyangli committed
227

sxtyzhangzk's avatar
sxtyzhangzk committed
228
        if (rank_down == 0) {
Muyang Li's avatar
Muyang Li committed
229
230
231
232
233
234
235
236
237
238
239
240
241
242
            using Epilogue = typename GEMM::EpilogueCombination<typename LoraUp::EpilogueLoraUp,
                                                                MidEpilogue,
                                                                NextEpilogue,
                                                                typename GEMM::EpilogueNop>;
            return launch_bias.template operator()<Epilogue>({typename LoraUp::EpilogueLoraUp::Arguments{
                                                                  .lora_act    = lora_act_in.data_ptr<float>(),
                                                                  .lora_wgt_up = lora_up.data_ptr<packed_fpsum_t>(),
                                                                  .rank        = rank_up,
                                                                  .scales      = scales,
                                                                  .alwaysfalse = false,
                                                              },
                                                              midArgs,
                                                              nextArgs,
                                                              {}});
sxtyzhangzk's avatar
sxtyzhangzk committed
243
        }
muyangli's avatar
muyangli committed
244

sxtyzhangzk's avatar
sxtyzhangzk committed
245
246
247
248
249
250
251
252
253
254
255
256
257
        // assert(rank_down == rank_up);
        assert(rank_down % 16 == 0);

        assert(lora_down.shape[0] == N);
        // assert(lora_down.shape[1] == Lora::LORA_RANK);
        assert(lora_act_out.shape[0] == M);
        assert(lora_act_out.shape[1] == rank_down);

        lora_act_out.zero_();

        // dispatchVal(rank_down, std::integer_sequence<int, 16, 32, 48, 64, 80>(), [&]<int RANK_DOWN>() {

        using LoraDown = LoraUp; // GEMM::Lora<RANK_DOWN>;
Muyang Li's avatar
Muyang Li committed
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
        using Epilogue = typename GEMM::EpilogueCombination<typename LoraUp::EpilogueLoraUp,
                                                            MidEpilogue,
                                                            typename LoraDown::EpilogueLoraDown,
                                                            NextEpilogue,
                                                            typename GEMM::EpilogueNop>;
        return launch_bias.template operator()<Epilogue>({typename LoraUp::EpilogueLoraUp::Arguments{
                                                              .lora_act    = lora_act_in.data_ptr<float>(),
                                                              .lora_wgt_up = lora_up.data_ptr<packed_fpsum_t>(),
                                                              .rank        = rank_up,
                                                              .scales      = scales,
                                                              .alwaysfalse = false,
                                                          },
                                                          midArgs,
                                                          typename LoraDown::EpilogueLoraDown::Arguments{
                                                              .lora_wgt_down = lora_down.data_ptr<packed_fpsum_t>(),
                                                              .lora_act      = lora_act_out.data_ptr<float>(),
                                                              .rank          = rank_down,
                                                              .alwaysfalse   = false,
                                                          },
                                                          nextArgs,
                                                          {}});
sxtyzhangzk's avatar
sxtyzhangzk committed
279
280

        // });
muyangli's avatar
muyangli committed
281
282
283
284
285
286
287
288
    };

    if (qout.valid() && oscales.valid()) {

        // dispatchBool(qout_unsigned, [&]<bool USE_UNSIGNED>() {

        static constexpr float SHIFT_GELU = 0.171875f;

289
        constexpr bool USE_UNSIGNED = !USE_FP4;
Muyang Li's avatar
Muyang Li committed
290
291
292
293
294
295
        using EpilogueQuantize      = typename GEMM::EpilogueQuantize<false, USE_UNSIGNED, USE_FP4>;
        auto argsQuantize =
            typename EpilogueQuantize::Arguments{.qout    = qout.data_ptr<packed_act_t>(),
                                                 .oscales = oscales.data_ptr<typename EpilogueQuantize::oscales_t>(),
                                                 .shift_value   = USE_FP4 ? 0.0f : SHIFT_GELU,
                                                 .smooth_factor = smooth_factor.data_ptr<packed_wscale_t>()};
296
297
298

        // TODO: check if gelu is needed
        if (out.valid()) {
Muyang Li's avatar
Muyang Li committed
299
300
301
302
303
304
305
306
307
            launch_lora.template
            operator()<typename GEMM::EpilogueCombination<typename GEMM::EpilogueDefault, EpilogueQuantize>,
                       typename Epilogues::EpilogueGelu>({typename GEMM::EpilogueDefault::Arguments{
                                                              .out     = out.data_ptr<half_t>(),
                                                              .actualM = actualM,
                                                              .actualN = actualN,
                                                          },
                                                          argsQuantize},
                                                         {});
308
        } else {
sxtyzhangzk's avatar
sxtyzhangzk committed
309
            launch_lora.template operator()<EpilogueQuantize, typename Epilogues::EpilogueGelu>(argsQuantize, {});
310
        }
muyangli's avatar
muyangli committed
311
312
313
314
315

    } else if (out_linearattn.valid()) {

        assert(out_vk.valid());

sxtyzhangzk's avatar
sxtyzhangzk committed
316
        using Epilogue = typename Epilogues::EpilogueLiteLA;
muyangli's avatar
muyangli committed
317
318
319
320
321
322
323

        assert(out_vk.dtype() == Tensor::FP32);
        assert(out_vk.ndims() == 4);
        assert(out_vk.shape[2] == Epilogue::LITELA_HEAD_DIM + 1);
        assert(out_vk.shape[3] == Epilogue::LITELA_HEAD_DIM);
        assert(out_vk.shape[1] * Epilogue::LITELA_HEAD_DIM * 3 == N);
        int batch_size = out_vk.shape[0];
Muyang Li's avatar
Muyang Li committed
324
        int num_heads  = out_vk.shape[1];
muyangli's avatar
muyangli committed
325
326
327
328
329
330
331
332
333
334
335
336
337
338

        assert(isTypeMatch<half_t>(out_linearattn.dtype()));
        assert(out_linearattn.ndims() == 3);
        assert(out_linearattn.shape[0] == batch_size);
        assert(out_linearattn.shape[2] * 3 == N);
        int num_tokens = out_linearattn.shape[1];

        assert(num_tokens % GEMM::BLOCK_M == 0);
        int num_blocks_per_batch = ceilDiv(num_tokens, GEMM::BLOCK_M);

        shmem = std::max(shmem, Epilogue::SHMEM_SIZE);

        out_vk.zero_();

Muyang Li's avatar
Muyang Li committed
339
340
341
342
343
344
345
346
        launch_lora.template operator()<Epilogue, typename GEMM::EpilogueNop>(
            typename Epilogue::Arguments{
                .out_q                = out_linearattn.data_ptr<half_t>(),
                .out_vk               = out_vk.data_ptr<float>(),
                .num_blocks_per_batch = num_blocks_per_batch,
                .actualM              = M,
            },
            {});
muyangli's avatar
muyangli committed
347
348
349
350
351
352

    } else if (rotary_emb.valid()) {
        assert(norm_q.valid());
        assert(norm_k.valid());
        // assert(isTypeMatch<half_t>(rotary_emb.scalar_type()));
        assert(rotary_emb.scalar_type() == Tensor::FP32);
353
354
        assert(rotary_emb.ndims() == 3);
        assert(rotary_emb.shape[0] * rotary_emb.shape[1] == M);
sxtyzhangzk's avatar
sxtyzhangzk committed
355
        assert(rotary_emb.shape[2] == Epilogues::EpilogueRMSNormRope::HEAD_DIM);
356

Muyang Li's avatar
Muyang Li committed
357
358
359
        // assert(rotary_emb.numel() == M * GEMM::EpilogueQKVProj::HEAD_DIM / 2 *
        // GEMM::EpilogueQKVProj::ROTARY_EMB_NUM_ELEMENTS); launch_lora.template operator()<typename
        // GEMM::EpilogueQKVProj, typename GEMM::EpilogueNop>(typename GEMM::EpilogueQKVProj::Arguments{
360
361
362
363
364
365
366
367
368
369
        //     .out = out.data_ptr<half_t>(),
        //     .actualM = actualM,
        //     .actualN = actualN,
        //     .pool_out = poolout.valid() ? poolout.data_ptr<half_t>() : nullptr,
        //     .rotary_emb = rotary_emb.data_ptr<float>(),
        //     .rmsnorm_weight_q = norm_q.data_ptr<half_t>(),
        //     .rmsnorm_weight_k = norm_k.data_ptr<half_t>(),
        //     .epsilon = 1e-6,
        // }, {});

sxtyzhangzk's avatar
sxtyzhangzk committed
370
        using EpilogueRope = typename Epilogues::EpilogueRMSNormRope;
Muyang Li's avatar
Muyang Li committed
371
372
373
374
375
        auto argsRope      = typename Epilogues::EpilogueRMSNormRope::Arguments{
                 .rotary_emb       = rotary_emb.data_ptr<typename EpilogueRope::packed_rotemb_t>(),
                 .rmsnorm_weight_q = norm_q.data_ptr<half_t>(),
                 .rmsnorm_weight_k = norm_k.data_ptr<half_t>(),
                 .epsilon          = 1e-6,
376
377
378
        };

        if (out_q.valid()) {
Muyang Li's avatar
Muyang Li committed
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
            launch_lora.template
            operator()<typename GEMM::EpilogueCombination<EpilogueRope, typename Epilogues::EpiloguePackQKV>,
                       typename GEMM::EpilogueNop>(
                {argsRope,
                 typename Epilogues::EpiloguePackQKV::Arguments{
                     .out_q        = out_q.data_ptr<typename Epilogues::EpiloguePackQKV::packed_qkv_t>(),
                     .out_k        = out_k.data_ptr<typename Epilogues::EpiloguePackQKV::packed_qkv_t>(),
                     .out_v        = out_v.data_ptr<typename Epilogues::EpiloguePackQKV::packed_qkv_t>(),
                     .actualM      = attn_tokens,
                     .strideHead_q = int(out_q.stride(1) * out_q.scalar_size() /
                                         sizeof(typename Epilogues::EpiloguePackQKV::packed_qkv_t)),
                     .strideHead_k = int(out_k.stride(1) * out_k.scalar_size() /
                                         sizeof(typename Epilogues::EpiloguePackQKV::packed_qkv_t)),
                     .strideHead_v = int(out_v.stride(1) * out_v.scalar_size() /
                                         sizeof(typename Epilogues::EpiloguePackQKV::packed_qkv_t)),
                 }},
                {});
396
        } else {
Muyang Li's avatar
Muyang Li committed
397
398
399
400
401
402
403
404
405
            launch_lora
                .template operator()<typename GEMM::EpilogueCombination<EpilogueRope, typename GEMM::EpilogueDefault>,
                                     typename GEMM::EpilogueNop>({argsRope,
                                                                  typename GEMM::EpilogueDefault::Arguments{
                                                                      .out     = out.data_ptr<half_t>(),
                                                                      .actualM = actualM,
                                                                      .actualN = actualN,
                                                                  }},
                                                                 {});
406
        }
Muyang Li's avatar
Muyang Li committed
407

muyangli's avatar
muyangli committed
408
409
410
411
    } else if (out.valid()) {

        using Epilogue = typename GEMM::EpilogueDefault;
        typename Epilogue::Arguments args{
Muyang Li's avatar
Muyang Li committed
412
            .out     = out.data_ptr<half_t>(),
muyangli's avatar
muyangli committed
413
414
415
416
417
418
419
420
421
422
423
424
425
426
            .actualM = actualM,
            .actualN = actualN,
        };

        if (fuse_silu) {
            launch_lora.template operator()<Epilogue, typename GEMM::EpilogueSilu>(args, {});
        } else {
            launch_lora.template operator()<Epilogue, typename GEMM::EpilogueNop>(args, {});
        }
    } else {
        assert(false);
    }
}

427
428
template<typename Config, bool USE_FP4>
void GEMM_W4A4_Launch<Config, USE_FP4>::linearattn_vk_mul_q(Tensor q, Tensor vk) {
sxtyzhangzk's avatar
sxtyzhangzk committed
429
    using Epilogue = typename Epilogues::EpilogueLiteLA;
muyangli's avatar
muyangli committed
430
431

    int batch_size = vk.shape[0];
Muyang Li's avatar
Muyang Li committed
432
    int num_heads  = vk.shape[1];
muyangli's avatar
muyangli committed
433
434
435
436
437
438
439
440
441
442
443
444
    int num_tokens = q.shape[1];

    assert(isTypeMatch<half_t>(q.scalar_type()));
    assert(vk.scalar_type() == Tensor::FP32);

    int BLOCK_SIZE;
    if (num_tokens % 256 == 0) {
        BLOCK_SIZE = 256;
    } else {
        BLOCK_SIZE = 128;
    }

fengzch-das's avatar
fengzch-das committed
445
446
   hipLaunchKernelGGL(( invoke_kernel<typename Epilogue::vk_mul_q_kernel>)
        , dim3(dim3(ceilDiv(num_tokens, BLOCK_SIZE), num_heads, batch_size)), dim3(BLOCK_SIZE), 0, getCurrentHIPStreamMasqueradingAsCUDA(), 
Muyang Li's avatar
Muyang Li committed
447
            q.data_ptr<half_t>(), vk.data_ptr<float>(), 1e-6f, num_tokens);
fengzch-das's avatar
fengzch-das committed
448
    checkCUDA(hipGetLastError());
muyangli's avatar
muyangli committed
449
450
}

451
template<typename Config, bool USE_FP4>
Muyang Li's avatar
Muyang Li committed
452
453
454
455
456
457
458
459
void GEMM_W4A4_Launch<Config, USE_FP4>::quantize_w4a4_act_fuse_lora(Tensor input,
                                                                    Tensor output,
                                                                    Tensor oscales,
                                                                    Tensor lora_down,
                                                                    Tensor lora_act_out,
                                                                    Tensor smooth,
                                                                    bool fuse_glu,
                                                                    bool fp4) {
muyangli's avatar
muyangli committed
460
461
462
463
464
465
466
467
468
469
470
    const int actualM = input.numel() / input.shape[-1];
    const int actualN = input.shape[-1];

    const int M = ceilDiv(actualM, GEMM::BLOCK_M) * GEMM::BLOCK_M;
    const int N = ceilDiv(actualN / (fuse_glu ? 2 : 1), GEMM::BLOCK_N) * GEMM::BLOCK_N;

    assert(output.dtype() == Tensor::INT8);
    assert(output.numel() / output.shape[-1] == M);
    assert(output.shape[-1] == N / 2);

    // assert(oscales.dtype() == Tensor::FP16);
471
472
473
474
475
476
477
    if (fp4) {
        assert(oscales.dtype() == Tensor::FP8_E4M3);
        assert(oscales.numel() == M * N / GEMM::WARP_K * 4);
    } else {
        assert(isTypeMatch<half_t>(oscales.dtype()));
        assert(oscales.numel() == M * N / GEMM::WARP_K);
    }
muyangli's avatar
muyangli committed
478
479
480

    const int rank = lora_down.shape[1];

sxtyzhangzk's avatar
sxtyzhangzk committed
481
482
    assert(rank % 16 == 0);

muyangli's avatar
muyangli committed
483
484
485
486
487
488
489
490
491
    assert(lora_down.shape[0] == N);
    // assert(lora_down.shape[1] == Lora::LORA_RANK);
    assert(lora_act_out.shape[0] == M);
    assert(lora_act_out.shape[1] == rank);

    lora_act_out.zero_();

    dim3 grid(M / GEMM::BLOCK_M, N / GEMM::BLOCK_N);

sxtyzhangzk's avatar
sxtyzhangzk committed
492
493
494
495
496
497
498
    // dispatchVal(rank, LoraRanks(), [&]<int RANK>() {
    dispatchBool(fuse_glu, [&]<bool FUSE_GLU>() {
        // using Lora = typename GEMM::Lora<RANK>;
        using kernel = typename GEMM::quantize_w4a4_fuse_lora_kernel<FUSE_GLU, USE_FP4>;

        auto func = invoke_kernel<kernel, typename kernel::Arguments>;

fengzch-das's avatar
fengzch-das committed
499
        checkCUDA(hipFuncSetAttribute(func, hipFuncAttributeMaxDynamicSharedMemorySize, kernel::SHMEM_SIZE));
sxtyzhangzk's avatar
sxtyzhangzk committed
500

Muyang Li's avatar
Muyang Li committed
501
502
        // log(std::format("quantize_w4a4_act_fuse_lora M={} N={} input={} output={} (size={} numel={})", M, N,
        // input.data_ptr(), output.data_ptr(), output.buffer->getSize(), output.numel()));
sxtyzhangzk's avatar
sxtyzhangzk committed
503

fengzch-das's avatar
fengzch-das committed
504
       hipLaunchKernelGGL(( func), dim3(grid), dim3(GEMM::WARP_SIZE * GEMM::NUM_WARPS), kernel::SHMEM_SIZE, getCurrentHIPStreamMasqueradingAsCUDA(), 
sxtyzhangzk's avatar
sxtyzhangzk committed
505
            typename kernel::Arguments{
Muyang Li's avatar
Muyang Li committed
506
                .input         = input.data_ptr<half_t>(),
sxtyzhangzk's avatar
sxtyzhangzk committed
507
                .smooth_factor = smooth.valid() ? smooth.data_ptr<packed_wscale_t>() : nullptr,
Muyang Li's avatar
Muyang Li committed
508
509
                .output        = output.data_ptr<packed_act_t>(),
                .oscales       = oscales.data_ptr<typename kernel::oscales_t>(),
sxtyzhangzk's avatar
sxtyzhangzk committed
510
                .lora_wgt_down = lora_down.data_ptr<packed_fpsum_t>(),
Muyang Li's avatar
Muyang Li committed
511
512
513
514
515
516
517
518
                .lora_act      = lora_act_out.data_ptr<float>(),
                .lora_rank     = rank,
                .M             = M,
                .N             = N,
                .actualM       = actualM,
                .actualN       = actualN,
                .alwaysfalse   = false,
            });
fengzch-das's avatar
fengzch-das committed
519
        checkCUDA(hipGetLastError());
muyangli's avatar
muyangli committed
520
    });
sxtyzhangzk's avatar
sxtyzhangzk committed
521
    // });
muyangli's avatar
muyangli committed
522
523
}

524
525
526
template<typename Config, bool USE_FP4>
void GEMM_W4A4_Launch<Config, USE_FP4>::quantize_w4a4_act(Tensor input, Tensor output, Tensor oscales) {
    if constexpr (USE_FP4) {
Muyang Li's avatar
Muyang Li committed
527
        assert(false); // not implemented
528
529
530
        return;
    }

muyangli's avatar
muyangli committed
531
532
533
534
535
536
537
538
539
540
541
542
    int M = input.numel() / input.shape[-1];
    int K = input.shape[-1];

    assert(output.dtype() == Tensor::INT8);
    assert(output.numel() / output.shape[-1] == M);
    assert(output.shape[-1] == K / 2);

    // assert(oscales.dtype() == Tensor::FP16);
    assert(isTypeMatch<half_t>(oscales.dtype()));
    assert(oscales.numel() == M * K / GEMM::WARP_K);

    dim3 grid(M / GEMM::WARP_M, K / GEMM::WARP_K);
fengzch-das's avatar
fengzch-das committed
543
   hipLaunchKernelGGL(( invoke_kernel<typename GEMM::quantize_w4a4_act_kernel>), dim3(grid), dim3(GEMM::WARP_SIZE), 0, getCurrentHIPStreamMasqueradingAsCUDA(), 
Muyang Li's avatar
Muyang Li committed
544
        input.data_ptr<half_t>(), output.data_ptr<packed_act_t>(), oscales.data_ptr<packed_ascale_t>(), K);
fengzch-das's avatar
fengzch-das committed
545
    checkCUDA(hipGetLastError());
muyangli's avatar
muyangli committed
546
547
}

548
549
550
551
552
553
554
template<typename Config, bool USE_FP4>
void GEMM_W4A4_Launch<Config, USE_FP4>::quantize_w4a4_wgt(Tensor input, Tensor output, Tensor oscales) {
    if constexpr (USE_FP4) {
        assert(false);
        return;
    }

muyangli's avatar
muyangli committed
555
556
557
558
559
560
561
    int N = input.numel() / input.shape[-1];
    int K = input.shape[-1];

    assert(output.dtype() == Tensor::INT8);
    assert(output.ndims() == 2);
    assert(output.shape[0] == N);
    assert(output.shape[1] == K / 2);
Muyang Li's avatar
Muyang Li committed
562

muyangli's avatar
muyangli committed
563
564
565
566
567
    assert(isTypeMatch<half_t>(oscales.dtype()));
    // assert(oscales.dtype() == Tensor::FP16);
    assert(oscales.numel() == N * K / GEMM::WARP_K);

    dim3 grid(N / GEMM::WARP_N, K / GEMM::WARP_K);
fengzch-das's avatar
fengzch-das committed
568
   hipLaunchKernelGGL(( invoke_kernel<typename GEMM::quantize_w4a4_wgt_kernel>), dim3(grid), dim3(GEMM::WARP_SIZE), 0, getCurrentHIPStreamMasqueradingAsCUDA(), 
Muyang Li's avatar
Muyang Li committed
569
        input.data_ptr<half_t>(), output.data_ptr<packed_wgt_t>(), oscales.data_ptr<packed_wscale_t>(), K);
fengzch-das's avatar
fengzch-das committed
570
    checkCUDA(hipGetLastError());
muyangli's avatar
muyangli committed
571
572
}

Muyang Li's avatar
Muyang Li committed
573
}; // namespace nunchaku::kernels