misc_kernels_impl.cuh 7.93 KB
Newer Older
fengzch-das's avatar
fengzch-das committed
1
#include "hip/hip_runtime.h"
Zhekai Zhang's avatar
Zhekai Zhang committed
2
3
4
#include "reduction_utils.cuh"
#include <array>

fengzch-das's avatar
fengzch-das committed
5
6
#include <hip/hip_fp16.h>
#include <hip/hip_bf16.h>
7

Zhekai Zhang's avatar
Zhekai Zhang committed
8
9
10
#include "utils.cuh"
#include "activation_kernels_impl.cuh"

muyangli's avatar
muyangli committed
11
12
namespace nunchaku::kernels {

Zhekai Zhang's avatar
Zhekai Zhang committed
13
14
15
16
17
18
19
20
21
22
23
24
25
template<typename T>
__global__ void add_kernel(T *a, T *b, T *c, size_t length) {
    int i = threadIdx.x + blockIdx.x * blockDim.x;
    if (i < length) {
        c[i] = a[i] + b[i];
    }
}

template<typename T, int unroll>
struct alignas(sizeof(T) * unroll) Tvec {
    T data[unroll];
};

muyangli's avatar
muyangli committed
26
template<typename T, int unroll, bool no_scale>
Muyang Li's avatar
Muyang Li committed
27
28
29
30
31
32
33
34
35
36
__global__ void mul_add_kernel(T *x,
                               T *scale,
                               T *bias,
                               T scale_shift,
                               size_t length,
                               int mod_scale,
                               int mod_bias,
                               int64_t batch_stride_x,
                               int64_t batch_stride_scale,
                               int64_t batch_stride_bias) {
muyangli's avatar
muyangli committed
37
    const int batch_id = blockIdx.y;
Muyang Li's avatar
Muyang Li committed
38
39
40
41
    int thread         = threadIdx.x + blockIdx.x * blockDim.x;
    int i              = thread * unroll;
    int i_scale        = i % mod_scale;
    int i_bias         = i % mod_bias;
Zhekai Zhang's avatar
Zhekai Zhang committed
42
43
44
45
46

    if (i >= length) {
        return;
    }

muyangli's avatar
muyangli committed
47
    using Tvec = nunchaku::kernels::Tvec<T, unroll>;
Zhekai Zhang's avatar
Zhekai Zhang committed
48

Muyang Li's avatar
Muyang Li committed
49
    Tvec rx     = *reinterpret_cast<Tvec *>(&x[i + batch_stride_x * batch_id]);
muyangli's avatar
muyangli committed
50
    Tvec rscale = *reinterpret_cast<Tvec *>(&scale[i_scale + batch_stride_scale * batch_id]);
Muyang Li's avatar
Muyang Li committed
51
    Tvec rbias  = *reinterpret_cast<Tvec *>(&bias[i_bias + batch_stride_bias * batch_id]);
Zhekai Zhang's avatar
Zhekai Zhang committed
52
53
54

#pragma unroll
    for (int k = 0; k < unroll; k++) {
muyangli's avatar
muyangli committed
55
56
57
58
59
60
        T tmp;
        if constexpr (no_scale) {
            tmp = rx.data[k] + rbias.data[k];
        } else {
            tmp = rx.data[k] * (rscale.data[k] + scale_shift) + rbias.data[k];
        }
Zhekai Zhang's avatar
Zhekai Zhang committed
61
62
63
64
65
66
67
        if constexpr (std::is_same_v<T, half>) {
            tmp = __hmin(tmp, (half)65504);
            tmp = __hmax(tmp, (half)-65504);
        }
        rx.data[k] = tmp;
    }

muyangli's avatar
muyangli committed
68
    *reinterpret_cast<Tvec *>(&x[i + batch_stride_x * batch_id]) = rx;
Zhekai Zhang's avatar
Zhekai Zhang committed
69

Muyang Li's avatar
Muyang Li committed
70
71
72
73
74
75
76
77
78
79
    // #pragma unroll
    //     for (int k = 0; k < unroll; k++) {
    //         // assert(i < length);
    //         x[i] = x[i] * scale[i_scale] + bias[i_bias];
    //         i++;
    //         i_scale++;
    //         i_bias++;
    //         // assert(i_scale < mod_scale);
    //         // assert(i_bias < mod_bias);
    //     }
Zhekai Zhang's avatar
Zhekai Zhang committed
80
81
82
83
84
85
86
87
88
89
90
91
92
93
}

template<typename T, size_t N>
__global__ void split_mod_kernel(T *input, std::array<T *, N> output, size_t length) {
    int i = threadIdx.x + blockIdx.x * blockDim.x;
    if (i * N < length) {
#pragma unroll
        for (int k = 0; k < N; k++) {
            output[k][i] = input[i * N + k];
        }
    }
}

template<typename T>
Muyang Li's avatar
Muyang Li committed
94
95
__global__ void
EmbeddingKernel(int32_t *__restrict__ input_id, T *__restrict__ output, T *__restrict__ lookup, int embed_dim) {
Zhekai Zhang's avatar
Zhekai Zhang committed
96
97
    int i = blockIdx.x;

Muyang Li's avatar
Muyang Li committed
98
    int32_t token_id     = input_id[i];
Zhekai Zhang's avatar
Zhekai Zhang committed
99
    T *output_sample_ptr = output + i * embed_dim;
Muyang Li's avatar
Muyang Li committed
100
    T *target_embed      = lookup + token_id * embed_dim;
Zhekai Zhang's avatar
Zhekai Zhang committed
101
102
103
104
105
106
107
108
109

    for (int j = threadIdx.x; j < embed_dim; j += blockDim.x) {
        output_sample_ptr[j] = target_embed[j];
    }
}

template<typename T>
__global__ void argmax_sample_kernel(T *input, int32_t *output, int hidden_dim) {
    float maxValue = -1e20;
Muyang Li's avatar
Muyang Li committed
110
    int argmax     = 0;
Zhekai Zhang's avatar
Zhekai Zhang committed
111
112
113
114
115
116
117
    for (int i = threadIdx.x; i < hidden_dim; i += blockDim.x) {
        float data = (float)input[blockIdx.x * hidden_dim + i];
        if (data > maxValue) {
            maxValue = data;
            argmax   = i;
        }
    }
Muyang Li's avatar
Muyang Li committed
118
    // blockAllReduceMax seems to be broken when T=half
Zhekai Zhang's avatar
Zhekai Zhang committed
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
    float maxValueBlock = vllm::blockAllReduceMax(maxValue);
    if (maxValue == maxValueBlock) {
        output[blockIdx.x] = argmax;
    }
}

template<typename T>
__global__ void splitqkv_kernel(T *qkv, T *q, T *k, T *v, int q_size, int kv_size) {
    int qkv_size = q_size + 2 * kv_size;
    for (int i = threadIdx.x; i < qkv_size; i += blockDim.x) {
        T data = qkv[blockIdx.x * qkv_size + i];
        if (i < q_size) {
            q[blockIdx.x * q_size + i] = data;
        } else if (i < q_size + kv_size) {
            k[blockIdx.x * kv_size + i - q_size] = data;
        } else {
            v[blockIdx.x * kv_size + i - q_size - kv_size] = data;
        }
    }
}

Muyang Li's avatar
Muyang Li committed
140
141
template<typename T, int unroll>
__global__ void quant_kernel_static(const T *input, int8_t *output, T scale, size_t length) {
Zhekai Zhang's avatar
Zhekai Zhang committed
142
143
144
145
146
    int i = (blockIdx.x * blockDim.x + threadIdx.x) * unroll;
    if (i >= length) {
        return;
    }

Muyang Li's avatar
Muyang Li committed
147
    using Tvec  = nunchaku::kernels::Tvec<T, unroll>;
muyangli's avatar
muyangli committed
148
    using I8vec = nunchaku::kernels::Tvec<int8_t, unroll>;
Zhekai Zhang's avatar
Zhekai Zhang committed
149
150
151
152
153
154
155
156
157
158
159
160
161

    Tvec rinput = *reinterpret_cast<const Tvec *>(&input[i]);
    I8vec routput;
    float fscale = 1.0f / (float)scale;

#pragma unroll
    for (int k = 0; k < unroll; k++) {
        routput.data[k] = float_to_int8_rn(((float)rinput.data[k]) * fscale);
    }

    *reinterpret_cast<I8vec *>(&output[i]) = routput;
}

Muyang Li's avatar
Muyang Li committed
162
163
template<typename T, int unroll>
__global__ void quant_kernel_static_fuse_gelu(const T *input, int8_t *output, T scale, size_t length) {
Zhekai Zhang's avatar
Zhekai Zhang committed
164
165
166
167
168
    int i = (blockIdx.x * blockDim.x + threadIdx.x) * unroll;
    if (i >= length) {
        return;
    }

Muyang Li's avatar
Muyang Li committed
169
    using Tvec  = nunchaku::kernels::Tvec<T, unroll>;
muyangli's avatar
muyangli committed
170
    using I8vec = nunchaku::kernels::Tvec<int8_t, unroll>;
Zhekai Zhang's avatar
Zhekai Zhang committed
171
172
173
174
175
176
177
178
179
180
181
182
183

    Tvec rinput = *reinterpret_cast<const Tvec *>(&input[i]);
    I8vec routput;
    float fscale = 1.0f / (float)scale;

#pragma unroll
    for (int k = 0; k < unroll; k++) {
        routput.data[k] = float_to_int8_rn(((float)vllm::gelu_new_kernel(rinput.data[k])) * fscale);
    }

    *reinterpret_cast<I8vec *>(&output[i]) = routput;
}

184
185
186
187
template<typename Tin, typename Tout, int unroll>
__global__ void cast_kernel(const Tin *input, Tout *output, size_t length) {
    const int i = (blockIdx.x * blockDim.x + threadIdx.x) * unroll;

Muyang Li's avatar
Muyang Li committed
188
    using Tvec_in  = nunchaku::kernels::Tvec<Tin, unroll>;
muyangli's avatar
muyangli committed
189
    using Tvec_out = nunchaku::kernels::Tvec<Tout, unroll>;
190

Muyang Li's avatar
Muyang Li committed
191
    Tvec_in rinput = *reinterpret_cast<const Tvec_in *>(&input[i]);
192
193
194
195
196
197
198
199
200
201
202
203
204
    Tvec_out routput;

#pragma unroll
    for (int k = 0; k < unroll; k++) {
        routput.data[k] = cuda_cast<Tout, Tin>(rinput.data[k]);
        if constexpr (std::is_same_v<Tout, half>) {
            routput.data[k] = __hmin(routput.data[k], (half)65504);
            routput.data[k] = __hmax(routput.data[k], (half)-65504);
        }
    }

    *reinterpret_cast<Tvec_out *>(&output[i]) = routput;
}
Zhekai Zhang's avatar
Zhekai Zhang committed
205
206
207
208

// input:  [..., N]
// output: [..., K] of index in reverse order
template<typename T, int K>
Muyang Li's avatar
Muyang Li committed
209
210
__global__ void topk_kernel(const T *input, int *output, int N, int strideInput, int numRows) {
    const int row    = blockIdx.x * blockDim.x + threadIdx.x;
Zhekai Zhang's avatar
Zhekai Zhang committed
211
212
213
214
215
216
    const int offset = row * strideInput;

    if (row >= numRows) {
        return;
    }

Muyang Li's avatar
Muyang Li committed
217
    T val[K];
Zhekai Zhang's avatar
Zhekai Zhang committed
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
    int16_t idx[K];

#pragma unroll
    for (int i = 0; i < K; i++) {
        val[i] = input[offset + i];
        idx[i] = i;
    }

    // if (blockIdx.x == 0 && threadIdx.x == 0) {
    //     for (int i = 0; i < K; i++) {
    //         printf("%d ", idx[i]);
    //     }
    //     printf("\n");
    // }

    for (int i = K; i < N; i++) {
        T newval = input[offset + i];

Muyang Li's avatar
Muyang Li committed
236
        T minval   = val[0];
Zhekai Zhang's avatar
Zhekai Zhang committed
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
        int minpos = 0;
#pragma unroll
        for (int j = 1; j < K; j++) {
            if (val[j] < minval) {
                minval = val[j];
                minpos = j;
            }
        }

        if (newval >= minval) {
#pragma unroll
            for (int j = 0; j < K; j++) {
                if (j >= minpos) {
                    val[j] = val[j + 1];
                    idx[j] = idx[j + 1];
                }
            }
            val[K - 1] = newval;
            idx[K - 1] = i;
        }

        // if (blockIdx.x == 0 && threadIdx.x == 0) {
        //     for (int i = 0; i < K; i++) {
        //         printf("%d ", idx[i]);
        //     }
        //     printf("\n");
        // }
    }

    for (int i = 0; i < K; i++) {
        output[row * K + i] = idx[K - i - 1];
    }
muyangli's avatar
muyangli committed
269
270
}

Muyang Li's avatar
Muyang Li committed
271
}; // namespace nunchaku::kernels