mlp.py 7.8 KB
Newer Older
chenzk's avatar
v1.0  
chenzk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# AUTOGENERATED! DO NOT EDIT! File to edit: ../../nbs/models.mlp.ipynb.

# %% auto 0
__all__ = ['MLP']

# %% ../../nbs/models.mlp.ipynb 5
from typing import Optional

import torch
import torch.nn as nn

from ..losses.pytorch import MAE
from ..common._base_windows import BaseWindows

# %% ../../nbs/models.mlp.ipynb 6
class MLP(BaseWindows):
    """MLP

    Simple Multi Layer Perceptron architecture (MLP).
    This deep neural network has constant units through its layers, each with
    ReLU non-linearities, it is trained using ADAM stochastic gradient descent.
    The network accepts static, historic and future exogenous data, flattens
    the inputs and learns fully connected relationships against the target variable.

    **Parameters:**<br>
    `h`: int, forecast horizon.<br>
    `input_size`: int, considered autorregresive inputs (lags), y=[1,2,3,4] input_size=2 -> lags=[1,2].<br>
    `stat_exog_list`: str list, static exogenous columns.<br>
    `hist_exog_list`: str list, historic exogenous columns.<br>
    `futr_exog_list`: str list, future exogenous columns.<br>
    `exclude_insample_y`: bool=False, the model skips the autoregressive features y[t-input_size:t] if True.<br>
    `n_layers`: int, number of layers for the MLP.<br>
    `hidden_size`: int, number of units for each layer of the MLP.<br>
    `loss`: PyTorch module, instantiated train loss class from [losses collection](https://nixtla.github.io/neuralforecast/losses.pytorch.html).<br>
    `valid_loss`: PyTorch module=`loss`, instantiated valid loss class from [losses collection](https://nixtla.github.io/neuralforecast/losses.pytorch.html).<br>
    `max_steps`: int=1000, maximum number of training steps.<br>
    `learning_rate`: float=1e-3, Learning rate between (0, 1).<br>
    `num_lr_decays`: int=-1, Number of learning rate decays, evenly distributed across max_steps.<br>
    `early_stop_patience_steps`: int=-1, Number of validation iterations before early stopping.<br>
    `val_check_steps`: int=100, Number of training steps between every validation loss check.<br>
    `batch_size`: int=32, number of different series in each batch.<br>
    `valid_batch_size`: int=None, number of different series in each validation and test batch, if None uses batch_size.<br>
    `windows_batch_size`: int=1024, number of windows to sample in each training batch, default uses all.<br>
    `inference_windows_batch_size`: int=-1, number of windows to sample in each inference batch, -1 uses all.<br>
    `start_padding_enabled`: bool=False, if True, the model will pad the time series with zeros at the beginning, by input size.<br>
    `step_size`: int=1, step size between each window of temporal data.<br>
    `scaler_type`: str='identity', type of scaler for temporal inputs normalization see [temporal scalers](https://nixtla.github.io/neuralforecast/common.scalers.html).<br>
    `random_seed`: int=1, random_seed for pytorch initializer and numpy generators.<br>
    `num_workers_loader`: int=os.cpu_count(), workers to be used by `TimeSeriesDataLoader`.<br>
    `drop_last_loader`: bool=False, if True `TimeSeriesDataLoader` drops last non-full batch.<br>
    `alias`: str, optional,  Custom name of the model.<br>
    `optimizer`: Subclass of 'torch.optim.Optimizer', optional, user specified optimizer instead of the default choice (Adam).<br>
    `optimizer_kwargs`: dict, optional, list of parameters used by the user specified `optimizer`.<br>
    `**trainer_kwargs`: int,  keyword trainer arguments inherited from [PyTorch Lighning's trainer](https://pytorch-lightning.readthedocs.io/en/stable/api/pytorch_lightning.trainer.trainer.Trainer.html?highlight=trainer).<br>
    """

    # Class attributes
    SAMPLING_TYPE = "windows"

    def __init__(
        self,
        h,
        input_size,
        futr_exog_list=None,
        hist_exog_list=None,
        stat_exog_list=None,
        exclude_insample_y=False,
        num_layers=2,
        hidden_size=1024,
        loss=MAE(),
        valid_loss=None,
        max_steps: int = 1000,
        learning_rate: float = 1e-3,
        num_lr_decays: int = -1,
        early_stop_patience_steps: int = -1,
        val_check_steps: int = 100,
        batch_size: int = 32,
        valid_batch_size: Optional[int] = None,
        windows_batch_size=1024,
        inference_windows_batch_size=-1,
        start_padding_enabled=False,
        step_size: int = 1,
        scaler_type: str = "identity",
        random_seed: int = 1,
        num_workers_loader: int = 0,
        drop_last_loader: bool = False,
        optimizer=None,
        optimizer_kwargs=None,
        **trainer_kwargs
    ):

        # Inherit BaseWindows class
        super(MLP, self).__init__(
            h=h,
            input_size=input_size,
            futr_exog_list=futr_exog_list,
            hist_exog_list=hist_exog_list,
            stat_exog_list=stat_exog_list,
            exclude_insample_y=exclude_insample_y,
            loss=loss,
            valid_loss=valid_loss,
            max_steps=max_steps,
            learning_rate=learning_rate,
            num_lr_decays=num_lr_decays,
            early_stop_patience_steps=early_stop_patience_steps,
            val_check_steps=val_check_steps,
            batch_size=batch_size,
            valid_batch_size=valid_batch_size,
            windows_batch_size=windows_batch_size,
            inference_windows_batch_size=inference_windows_batch_size,
            start_padding_enabled=start_padding_enabled,
            step_size=step_size,
            scaler_type=scaler_type,
            num_workers_loader=num_workers_loader,
            drop_last_loader=drop_last_loader,
            random_seed=random_seed,
            optimizer=optimizer,
            optimizer_kwargs=optimizer_kwargs,
            **trainer_kwargs
        )

        # Architecture
        self.num_layers = num_layers
        self.hidden_size = hidden_size

        self.futr_input_size = len(self.futr_exog_list)
        self.hist_input_size = len(self.hist_exog_list)
        self.stat_input_size = len(self.stat_exog_list)

        input_size_first_layer = (
            input_size
            + self.hist_input_size * input_size
            + self.futr_input_size * (input_size + h)
            + self.stat_input_size
        )

        # MultiLayer Perceptron
        layers = [
            nn.Linear(in_features=input_size_first_layer, out_features=hidden_size)
        ]
        for i in range(num_layers - 1):
            layers += [nn.Linear(in_features=hidden_size, out_features=hidden_size)]
        self.mlp = nn.ModuleList(layers)

        # Adapter with Loss dependent dimensions
        self.out = nn.Linear(
            in_features=hidden_size, out_features=h * self.loss.outputsize_multiplier
        )

    def forward(self, windows_batch):

        # Parse windows_batch
        insample_y = windows_batch["insample_y"]
        futr_exog = windows_batch["futr_exog"]
        hist_exog = windows_batch["hist_exog"]
        stat_exog = windows_batch["stat_exog"]

        # Flatten MLP inputs [B, L+H, C] -> [B, (L+H)*C]
        # Contatenate [ Y_t, | X_{t-L},..., X_{t} | F_{t-L},..., F_{t+H} | S ]
        batch_size = len(insample_y)
        if self.hist_input_size > 0:
            insample_y = torch.cat(
                (insample_y, hist_exog.reshape(batch_size, -1)), dim=1
            )

        if self.futr_input_size > 0:
            insample_y = torch.cat(
                (insample_y, futr_exog.reshape(batch_size, -1)), dim=1
            )

        if self.stat_input_size > 0:
            insample_y = torch.cat(
                (insample_y, stat_exog.reshape(batch_size, -1)), dim=1
            )

        y_pred = insample_y.clone()
        for layer in self.mlp:
            y_pred = torch.relu(layer(y_pred))
        y_pred = self.out(y_pred)

        y_pred = y_pred.reshape(batch_size, self.h, self.loss.outputsize_multiplier)
        y_pred = self.loss.domain_map(y_pred)
        return y_pred