models.nlinear.ipynb 14 KB
Newer Older
chenzk's avatar
v1.0  
chenzk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#| default_exp models.nlinear"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# NLinear"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "NLinear is a simple and fast yet accurate time series forecasting model for long-horizon forecasting.\n",
    "\n",
    "The architecture aims to boost the performance when there is a distribution shift in the dataset:\n",
    "1. NLinear first subtracts the input by the last value of the sequence;\n",
    "2. Then, the input goes through a linear layer, and the subtracted part is added back before making the final prediction."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "**References**<br>\n",
    "- [Zeng, Ailing, et al. \"Are transformers effective for time series forecasting?.\" Proceedings of the AAAI conference on artificial intelligence. Vol. 37. No. 9. 2023.\"](https://ojs.aaai.org/index.php/AAAI/article/view/26317)<br>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "![Figure 1. DLinear Architecture.](imgs_models/dlinear.png)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#| export\n",
    "from typing import Optional\n",
    "\n",
    "import torch.nn as nn\n",
    "\n",
    "from neuralforecast.common._base_windows import BaseWindows\n",
    "\n",
    "from neuralforecast.losses.pytorch import MAE"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#| hide\n",
    "from fastcore.test import test_eq\n",
    "from nbdev.showdoc import show_doc"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 1. NLinear"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#| export\n",
    "class NLinear(BaseWindows):\n",
    "    \"\"\" NLinear\n",
    "\n",
    "    *Parameters:*<br>\n",
    "    `h`: int, forecast horizon.<br>\n",
    "    `input_size`: int, maximum sequence length for truncated train backpropagation. Default -1 uses all history.<br>\n",
    "    `futr_exog_list`: str list, future exogenous columns.<br>\n",
    "    `hist_exog_list`: str list, historic exogenous columns.<br>\n",
    "    `stat_exog_list`: str list, static exogenous columns.<br>\n",
    "    `exclude_insample_y`: bool=False, the model skips the autoregressive features y[t-input_size:t] if True.<br>\n",
    "    `loss`: PyTorch module, instantiated train loss class from [losses collection](https://nixtla.github.io/neuralforecast/losses.pytorch.html).<br>\n",
    "    `max_steps`: int=1000, maximum number of training steps.<br>\n",
    "    `learning_rate`: float=1e-3, Learning rate between (0, 1).<br>\n",
    "    `num_lr_decays`: int=-1, Number of learning rate decays, evenly distributed across max_steps.<br>\n",
    "    `early_stop_patience_steps`: int=-1, Number of validation iterations before early stopping.<br>\n",
    "    `val_check_steps`: int=100, Number of training steps between every validation loss check.<br>\n",
    "    `batch_size`: int=32, number of different series in each batch.<br>\n",
    "    `valid_batch_size`: int=None, number of different series in each validation and test batch, if None uses batch_size.<br>\n",
    "    `windows_batch_size`: int=1024, number of windows to sample in each training batch, default uses all.<br>\n",
    "    `inference_windows_batch_size`: int=1024, number of windows to sample in each inference batch.<br>\n",
    "    `start_padding_enabled`: bool=False, if True, the model will pad the time series with zeros at the beginning, by input size.<br>\n",
    "    `scaler_type`: str='robust', type of scaler for temporal inputs normalization see [temporal scalers](https://nixtla.github.io/neuralforecast/common.scalers.html).<br>\n",
    "    `random_seed`: int=1, random_seed for pytorch initializer and numpy generators.<br>\n",
    "    `num_workers_loader`: int=os.cpu_count(), workers to be used by `TimeSeriesDataLoader`.<br>\n",
    "    `drop_last_loader`: bool=False, if True `TimeSeriesDataLoader` drops last non-full batch.<br>\n",
    "    `alias`: str, optional,  Custom name of the model.<br>\n",
    "    `optimizer`: Subclass of 'torch.optim.Optimizer', optional, user specified optimizer instead of the default choice (Adam).<br>\n",
    "    `optimizer_kwargs`: dict, optional, list of parameters used by the user specified `optimizer`.<br>    \n",
    "    `**trainer_kwargs`: int,  keyword trainer arguments inherited from [PyTorch Lighning's trainer](https://pytorch-lightning.readthedocs.io/en/stable/api/pytorch_lightning.trainer.trainer.Trainer.html?highlight=trainer).<br>\n",
    "\n",
    "\t*References*<br>\n",
    "\t- Zeng, Ailing, et al. \"Are transformers effective for time series forecasting?.\" Proceedings of the AAAI conference on artificial intelligence. Vol. 37. No. 9. 2023.\"\n",
    "    \"\"\"\n",
    "    # Class attributes\n",
    "    SAMPLING_TYPE = 'windows'\n",
    "\n",
    "    def __init__(self,\n",
    "                 h: int, \n",
    "                 input_size: int,\n",
    "                 stat_exog_list = None,\n",
    "                 hist_exog_list = None,\n",
    "                 futr_exog_list = None,\n",
    "                 exclude_insample_y = False,\n",
    "                 loss = MAE(),\n",
    "                 valid_loss = None,\n",
    "                 max_steps: int = 5000,\n",
    "                 learning_rate: float = 1e-4,\n",
    "                 num_lr_decays: int = -1,\n",
    "                 early_stop_patience_steps: int =-1,\n",
    "                 val_check_steps: int = 100,\n",
    "                 batch_size: int = 32,\n",
    "                 valid_batch_size: Optional[int] = None,\n",
    "                 windows_batch_size = 1024,\n",
    "                 inference_windows_batch_size = 1024,\n",
    "                 start_padding_enabled = False,\n",
    "                 step_size: int = 1,\n",
    "                 scaler_type: str = 'identity',\n",
    "                 random_seed: int = 1,\n",
    "                 num_workers_loader: int = 0,\n",
    "                 drop_last_loader: bool = False,\n",
    "                 optimizer = None,\n",
    "                 optimizer_kwargs = None,\n",
    "                 **trainer_kwargs):\n",
    "        super(NLinear, self).__init__(h=h,\n",
    "                                       input_size=input_size,\n",
    "                                       hist_exog_list=hist_exog_list,\n",
    "                                       stat_exog_list=stat_exog_list,\n",
    "                                       futr_exog_list = futr_exog_list,\n",
    "                                       exclude_insample_y = exclude_insample_y,\n",
    "                                       loss=loss,\n",
    "                                       valid_loss=valid_loss,\n",
    "                                       max_steps=max_steps,\n",
    "                                       learning_rate=learning_rate,\n",
    "                                       num_lr_decays=num_lr_decays,\n",
    "                                       early_stop_patience_steps=early_stop_patience_steps,\n",
    "                                       val_check_steps=val_check_steps,\n",
    "                                       batch_size=batch_size,\n",
    "                                       windows_batch_size=windows_batch_size,\n",
    "                                       valid_batch_size=valid_batch_size,\n",
    "                                       inference_windows_batch_size=inference_windows_batch_size,\n",
    "                                       start_padding_enabled = start_padding_enabled,\n",
    "                                       step_size=step_size,\n",
    "                                       scaler_type=scaler_type,\n",
    "                                       num_workers_loader=num_workers_loader,\n",
    "                                       drop_last_loader=drop_last_loader,\n",
    "                                       random_seed=random_seed,\n",
    "                                       optimizer=optimizer,\n",
    "                                       optimizer_kwargs=optimizer_kwargs,\n",
    "                                       **trainer_kwargs)\n",
    "\n",
    "        # Architecture\n",
    "        self.futr_input_size = len(self.futr_exog_list)\n",
    "        self.hist_input_size = len(self.hist_exog_list)\n",
    "        self.stat_input_size = len(self.stat_exog_list)\n",
    "\n",
    "        if self.stat_input_size > 0:\n",
    "            raise Exception('NLinear does not support static variables yet')\n",
    "        \n",
    "        if self.hist_input_size > 0:\n",
    "            raise Exception('NLinear does not support historical variables yet')\n",
    "        \n",
    "        if self.futr_input_size > 0:\n",
    "            raise Exception('NLinear does not support future variables yet')\n",
    "\n",
    "        self.c_out = self.loss.outputsize_multiplier\n",
    "        self.output_attention = False\n",
    "        self.enc_in = 1 \n",
    "        self.dec_in = 1\n",
    "\n",
    "        self.linear = nn.Linear(self.input_size, self.loss.outputsize_multiplier * h, bias=True)\n",
    "\n",
    "    def forward(self, windows_batch):\n",
    "        # Parse windows_batch\n",
    "        insample_y    = windows_batch['insample_y']\n",
    "        #insample_mask = windows_batch['insample_mask']\n",
    "        #hist_exog     = windows_batch['hist_exog']\n",
    "        #stat_exog     = windows_batch['stat_exog']\n",
    "        #futr_exog     = windows_batch['futr_exog']\n",
    "\n",
    "        # Parse inputs\n",
    "        batch_size = len(insample_y)\n",
    "        \n",
    "        # Input normalization\n",
    "        last_value = insample_y[:, -1:]\n",
    "        norm_insample_y = insample_y - last_value\n",
    "        \n",
    "        # Final\n",
    "        forecast = self.linear(norm_insample_y) + last_value\n",
    "        forecast = forecast.reshape(batch_size, self.h, self.loss.outputsize_multiplier)\n",
    "        forecast = self.loss.domain_map(forecast)\n",
    "        return forecast"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "show_doc(NLinear)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "show_doc(NLinear.fit, name='NLinear.fit')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "show_doc(NLinear.predict, name='NLinear.predict')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Usage Example"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#| eval: false\n",
    "import numpy as np\n",
    "import pandas as pd\n",
    "import pytorch_lightning as pl\n",
    "import matplotlib.pyplot as plt\n",
    "\n",
    "from neuralforecast import NeuralForecast\n",
    "from neuralforecast.models import MLP\n",
    "from neuralforecast.losses.pytorch import MQLoss, DistributionLoss\n",
    "from neuralforecast.tsdataset import TimeSeriesDataset\n",
    "from neuralforecast.utils import AirPassengers, AirPassengersPanel, AirPassengersStatic, augment_calendar_df\n",
    "\n",
    "AirPassengersPanel, calendar_cols = augment_calendar_df(df=AirPassengersPanel, freq='M')\n",
    "\n",
    "Y_train_df = AirPassengersPanel[AirPassengersPanel.ds<AirPassengersPanel['ds'].values[-12]] # 132 train\n",
    "Y_test_df = AirPassengersPanel[AirPassengersPanel.ds>=AirPassengersPanel['ds'].values[-12]].reset_index(drop=True) # 12 test\n",
    "\n",
    "model = NLinear(h=12,\n",
    "                 input_size=24,\n",
    "                 loss=MAE(),\n",
    "                 #loss=DistributionLoss(distribution='StudentT', level=[80, 90], return_params=True),\n",
    "                 scaler_type='robust',\n",
    "                 learning_rate=1e-3,\n",
    "                 max_steps=500,\n",
    "                 val_check_steps=50,\n",
    "                 early_stop_patience_steps=2)\n",
    "\n",
    "nf = NeuralForecast(\n",
    "    models=[model],\n",
    "    freq='M'\n",
    ")\n",
    "nf.fit(df=Y_train_df, static_df=AirPassengersStatic, val_size=12)\n",
    "forecasts = nf.predict(futr_df=Y_test_df)\n",
    "\n",
    "Y_hat_df = forecasts.reset_index(drop=False).drop(columns=['unique_id','ds'])\n",
    "plot_df = pd.concat([Y_test_df, Y_hat_df], axis=1)\n",
    "plot_df = pd.concat([Y_train_df, plot_df])\n",
    "\n",
    "if model.loss.is_distribution_output:\n",
    "    plot_df = plot_df[plot_df.unique_id=='Airline1'].drop('unique_id', axis=1)\n",
    "    plt.plot(plot_df['ds'], plot_df['y'], c='black', label='True')\n",
    "    plt.plot(plot_df['ds'], plot_df['NLinear-median'], c='blue', label='median')\n",
    "    plt.fill_between(x=plot_df['ds'][-12:], \n",
    "                    y1=plot_df['NLinear-lo-90'][-12:].values, \n",
    "                    y2=plot_df['NLinear-hi-90'][-12:].values,\n",
    "                    alpha=0.4, label='level 90')\n",
    "    plt.grid()\n",
    "    plt.legend()\n",
    "    plt.plot()\n",
    "else:\n",
    "    plot_df = plot_df[plot_df.unique_id=='Airline1'].drop('unique_id', axis=1)\n",
    "    plt.plot(plot_df['ds'], plot_df['y'], c='black', label='True')\n",
    "    plt.plot(plot_df['ds'], plot_df['NLinear'], c='blue', label='Forecast')\n",
    "    plt.legend()\n",
    "    plt.grid()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "python3",
   "language": "python",
   "name": "python3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}