inference.ipynb 4.12 KB
Newer Older
chenzk's avatar
v1.0  
chenzk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from dataclasses import asdict\n",
    "import torch\n",
    "import torchaudio\n",
    "from IPython.display import Audio, display\n",
    "\n",
    "from utils.audio import LogMelSpectrogram\n",
    "from config import ModelConfig, VocosConfig, MelConfig\n",
    "from models.model import StableTTS\n",
    "from vocos_pytorch.models.model import Vocos\n",
    "from text.mandarin import chinese_to_cnm3\n",
    "from text.english import english_to_ipa2\n",
    "from text.japanese import japanese_to_ipa2\n",
    "from text import cleaned_text_to_sequence\n",
    "from text import symbols\n",
    "from datas.dataset import intersperse\n",
    "\n",
    "device = 'cuda' if torch.cuda.is_available() else 'cpu'\n",
    "\n",
    "g2p_mapping = {\n",
    "    'chinese': chinese_to_cnm3,\n",
    "    'japanese': japanese_to_ipa2,\n",
    "    'english': english_to_ipa2,\n",
    "}\n",
    "\n",
    "@ torch.inference_mode()\n",
    "def inference(text: str, ref_audio: torch.Tensor, tts_model: StableTTS, mel_extractor: LogMelSpectrogram, vocoder: Vocos, phonemizer, sample_rate: int, step: int=10) -> torch.Tensor:\n",
    "    x = torch.tensor(intersperse(cleaned_text_to_sequence(phonemizer(text)), item=0), dtype=torch.long, device=device).unsqueeze(0)\n",
    "    x_len = torch.tensor([x.size(-1)], dtype=torch.long, device=device)\n",
    "    waveform, sr = torchaudio.load(ref_audio)\n",
    "    if sr != sample_rate:\n",
    "        waveform = torchaudio.functional.resample(waveform, sr, sample_rate)\n",
    "    y = mel_extractor(waveform).to(device)\n",
    "    mel = tts_model.synthesise(x, x_len, step, y=y, temperature=0.667, length_scale=1)['decoder_outputs']\n",
    "    audio = vocoder(mel)\n",
    "    return audio.cpu(), mel.cpu()\n",
    "\n",
    "def get_pipeline(n_vocab: int, tts_model_config: ModelConfig, mel_config: MelConfig, vocoder_config: VocosConfig, tts_checkpoint_path: str, vocoder_checkpoint_path: str):\n",
    "    tts_model = StableTTS(n_vocab, mel_config.n_mels, **asdict(tts_model_config))\n",
    "    mel_extractor = LogMelSpectrogram(mel_config)\n",
    "    vocoder = Vocos(vocoder_config, mel_config)\n",
    "    tts_model.load_state_dict(torch.load(tts_checkpoint_path, map_location='cpu'))\n",
    "    tts_model.to(device)\n",
    "    tts_model.eval()\n",
    "    vocoder.load_state_dict(torch.load(vocoder_checkpoint_path, map_location='cpu'))\n",
    "    vocoder.to(device)\n",
    "    vocoder.eval()\n",
    "    return tts_model, mel_extractor, vocoder\n",
    "\n",
    "tts_model_config = ModelConfig()\n",
    "mel_config = MelConfig()\n",
    "vocoder_config = VocosConfig()\n",
    "\n",
    "tts_checkpoint_path = './checkpoints/checkpoint-zh_0.pt'\n",
    "vocoder_checkpoint_path = './checkpoints/vocoder.pt'\n",
    "\n",
    "tts_model, mel_extractor, vocoder = get_pipeline(len(symbols), tts_model_config, mel_config, vocoder_config, tts_checkpoint_path, vocoder_checkpoint_path)\n",
    "total_params = sum(p.numel() for p in tts_model.parameters()) / 1e6\n",
    "print(f'Total params: {total_params} M')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "language = 'chinese' # now we only support chinese, japanese and english\n",
    "\n",
    "phonemizer = g2p_mapping.get(language)\n",
    "\n",
    "text = '你好,世界!'\n",
    "ref_audio = './audio.wav'\n",
    "output, mel = inference(text, ref_audio, tts_model, mel_extractor, vocoder, phonemizer, mel_config.sample_rate, 15)\n",
    "display(Audio(ref_audio))\n",
    "display(Audio(output, rate=mel_config.sample_rate))"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "lxn_vits",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.8"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}