finetune.py 6.21 KB
Newer Older
chenzk's avatar
v1.0  
chenzk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# -*- coding: utf-8 -*-
import json
from typing import Dict, Optional
from dataclasses import dataclass, field

import torch
from torch.utils.data import Dataset

import transformers
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModelForSequenceClassification, TrainingArguments, Trainer


@dataclass
class ModelArguments:
    model_name_or_path: Optional[str] = field(default="baichuan-inc/Baichuan2-7B-Base")


@dataclass
class DataArguments:
    train_data_path: str = field(
        default="data/AdvertiseGenChatML/train.json",
        metadata={"help": "Path to the training data."},
    )
    eval_data_path: str = field(
        default="data/AdvertiseGenChatML/dev.json",
        metadata={"help": "Path to the test data."},
    )


@dataclass
class TrainingArguments(transformers.TrainingArguments):
    cache_dir: Optional[str] = field(default=None)
    optim: str = field(default="adamw_torch")
    model_max_length: int = field(
        default=512,
        metadata={
            "help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."
        },
    )
    use_lora: bool = field(default=False)


class SupervisedDataset(Dataset):
    """Dataset for supervised fine-tuning."""

    def __init__(
        self,
        data_path,
        tokenizer,
        model_max_length=4096,
        user_tokens=[1786, 4194, 95388],
        assistant_tokens=[1786, 10850, 95388],
    ):
        super(SupervisedDataset, self).__init__()
        self.data = json.load(open(data_path))
        self.tokenizer = tokenizer
        self.model_max_length = model_max_length
        self.user_tokens = user_tokens
        self.assistant_tokens = assistant_tokens
        self.ignore_index = -100
        item = self.preprocessing(self.data[0])
        print("input:", self.tokenizer.decode(item["input_ids"]))
        labels = []
        for id_ in item["label_ids"]:
            if id_ == -100:
                continue

            labels.append(id_)
        print("label:", self.tokenizer.decode(labels))

    def __len__(self):
        return len(self.data)

    def preprocessing(self, example):
        input_ids = [self.tokenizer.bos_token_id]
        label_ids = []

        for message in example["messages"]:
            role = message["role"]
            content = message["content"]
            content_ids = self.tokenizer.encode(content, add_special_tokens=False)

            if role == "user":
                input_ids += self.user_tokens + content_ids
                label_ids += [self.ignore_index] * len(self.user_tokens) + [
                    self.ignore_index
                ] * len(content_ids)
            else:
                input_ids += self.assistant_tokens + content_ids
                label_ids += (
                    [self.ignore_index] * len(self.assistant_tokens)
                    + content_ids
                )#+ [self.tokenizer.eos_token_id]

        input_ids = input_ids[: self.model_max_length]
        label_ids = label_ids[: self.model_max_length]
        # input_ids += [self.tokenizer.eos_token_id] * (len(label_ids) - len(input_ids))
        input_ids += [self.tokenizer.eos_token_id] * (
            self.model_max_length - len(input_ids)
        )
        label_ids += [self.ignore_index] * (self.model_max_length - len(label_ids))
        input_ids = torch.LongTensor(input_ids)
        label_ids = torch.LongTensor(label_ids)
        # print(f"len input_ids: {len(input_ids)}, len label_ids: {len(label_ids)}")
        attention_mask = input_ids.ne(self.tokenizer.eos_token_id)
        return {
            "input_ids": input_ids,
            "label_ids": label_ids,
            "attention_mask": attention_mask,
        }

    def __getitem__(self, idx) -> Dict[str, torch.Tensor]:
        return self.preprocessing(self.data[idx])


def load_model_and_tokenizer(
    model_path: str,
    max_length: int = 4096,
    use_lora: bool = True,
    bf16: bool = False,
    fp16: bool = False,
):
    """load model and tokenizer"""
    tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
    tokenizer.pad_token = tokenizer.eos_token

    assert not (bf16 and fp16), "bf16 or fp16, not both"
    if bf16:
        dtype = torch.bfloat16
    elif fp16:
        dtype = torch.float16
    else:
        dtype = torch.float32
    model = AutoModelForSequenceClassification.from_pretrained(
        model_path,
        torch_dtype=dtype,
        trust_remote_code=True,
    )
    if use_lora:
        from peft import LoraConfig, TaskType, get_peft_model

        lora_config = LoraConfig(
            init_lora_weights="gaussian",
            task_type=TaskType.CAUSAL_LM,
            target_modules=["q_proj", "v_proj"],
            r=8,
            lora_alpha=32,
            lora_dropout=0.1,
            inference_mode=False,
        )
        model = get_peft_model(model, lora_config)
        # trainable params: 2,949,120 || all params: 3,010,652,928 || trainable%: 0.09795616002669305
        model.print_trainable_parameters()
        # model.enable_input_require_grads()  # need when using adapter

    return model, tokenizer


if __name__ == "__main__":
    model_path = "/mnt/data/user/tc_agi/yh/models/MiniCPM"
    max_length = 512
    parser = transformers.HfArgumentParser(
        (ModelArguments, DataArguments, TrainingArguments)
    )
    model_args, data_args, training_args = parser.parse_args_into_dataclasses()
    model, tokenizer = load_model_and_tokenizer(
        model_path=model_args.model_name_or_path,
        max_length=training_args.model_max_length,
        use_lora=training_args.use_lora,
    )

    train_dataset = SupervisedDataset(
        data_path=data_args.train_data_path,
        tokenizer=tokenizer,
        model_max_length=training_args.model_max_length,
    )
    eval_dataset = SupervisedDataset(
        data_path=data_args.eval_data_path,
        tokenizer=tokenizer,
        model_max_length=training_args.model_max_length,
    )

    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset,
        eval_dataset=eval_dataset,
        tokenizer=tokenizer,
    )

    trainer.train()
    # save the incremental PEFT weights, more details can be found in https://huggingface.co/blog/peft
    # model.save_pretrained("output_dir")