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整体概况-集群

集群是利用通信网络将一组计算机（节点）按某种结构连接起来，在并

行化设计及可视化人机交互集成开发环境支持下，统一调度、协调处理，实现

高效并行处理的系统。所有计算机节点一起工作如同一个单一集成的系统资源，

实现单一系统映像。

 包含计算、存储、网络等各种资源实体且彼此联系的资源集合；

 在物理上，一般由计算处理、互联通信、I/O 存储、操作系统、编译器、

运行环境、开发工具等多个软硬件子系统组成；

 节点是集群的基本组成单位，从角色上一般可以划分为管理节点、登录

节点、计算节点、存储节点等。



整体概况-集群



整体概况-应用领域



整体概况-集群节点规划
角色类型 节点范围 软件路径 运行服务

登录节点 login01~login10 1. 调度软件安装目录/opt/gridview，主
要包括munge、slurm两个软件。

munge.service

管理节点 admin01（主用)
admin02（备用）

1. 调度软件安装目录/opt/gridview，包
括munge、slurm。
2. 数据库软件目录/opt/mysql-5.7.25-
linux-glibc2.12-x86_64

munge.service
slurmdbd.service
slurmctld.service

计算节点 node1~node666 1. 调度软件安装目录/opt/gridview，包
括munge、slurm

munge.service
slurmd.service

MySQL节点 admin01（主用）
admin02（备用）

1. 数据库软件/opt/mysql-5.7.25-linux-
glibc2.12-x86_64

my_mysqld
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用户登录及提交作业
通过国产计算云登录

https://ac.sugon.com/

https://ac.sugon.com/


用户登录及提交作业

查看用户信息

及可用资源情况



用户登录及提交作业

文件传输E-File



用户登录及提交作业

作业模板：$HOME/slurm_template



用户登录及提交作业
E-Shell提交作业



用户登录及提交作业
作业查看（当前作业，历史作业，作业详情）
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软件存储目录

存储目录及用途

目录 挂载节点 备注

/public 管理节点、

登录节点、

计算节点

用户家目录为/public/home目录。

应用软件目录为/public/software目录。



可用软件

计算系统安装了多种编译环境及应用，主要包括编译器、调试器、mpi并行

开发环境及数学库等四部分。

软件安装目录为/public/software。

为方便使用，集群软件环境通过modules工具管理环境变量。



环境变量设置

查看命令帮助-H

查看可用模块avail

查看已加载模块list

加载模块load

“Environment module”(环境模块)是一组环境变量设置的集合。

module可以被加载(load)、卸载(unload)、切换(switch)，这些操作会改变

相应的环境变量设置，从而让用户方便地在不同环境间切换。

卸载模块unload

切换模块switch

卸载全部模块purge

显示模块内容show



环境变量设置

 查看可用模块avail



环境变量设置

 查看已加载模块list  查看模块配置show



环境变量设置

 加载新模块load  卸载模块unload



环境变量设置

 置换模块switch  清理已加载模块purge



环境变量设置

module 命令可以直接写在.bashrc中
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 调度系统
 查看分区
 查看节点

 作业提交
 作业查看
 作业控制



调度系统-基本概念

作业

调度系统

队列

 物理构成，一组关联的资源分配请求，以及一组关联的处理过程；
 交互方式，可以分为交互式作业和非交互式作业；

 组织资源的一种形式
 带名称的作业容器、用户访问控制、资源使用限制；

 负责监控和管理集群中资源和作业的软件系统；
 通常由资源管理器、调度器、任务执行器，以及用户命令和API组成；

资源

集群

 作业运行过程中使用的可量化实体都是资源；
 硬件资源（节点、内存、CPU 、类GPU加速卡等）和软件资源

（如License）；

 包含计算、存储、网络、操作系统、编译器、运行环境、开发工
具等各种资源实体且彼此联系的资源集合；



调度系统-主要作用

单一系统镜像系统资源整合多任务管理 资源访问控制

集群操作系统



调度系统-SLURM主要特点

架构设计优秀
• 扩展性（功能/规模）
• 高性能（提交/调度）
• 灵活性（自定义插件）
• 容错性（服务/节点/作业）

基础功能完善
• 优先级策略（Multi-Factor）
• 作业调度（FairShare/Backfill/ FCFS, etc）
• 资源竞争（Exclusive/Preempt/Gang, etc）
• 多级限制（Cluster/Account/User/Partition, etc）
• 资源预留（CPU/MEM/类GPU加速卡/License，

etc）

特色功能突出
• 资源绑定（CPU、MEM、类GPU加速卡等各类资源）
• 关联调度（如类GPU加速卡关联CPU）
• 能耗管理（限频、开关机、记账等）
• 拓扑调度（基于拓扑结构调度，限定交换机数等）

兼容性/交互性良好
• MPI兼容（IntelMPI/MVAPICH/OpenMPI,etc）
• LSF兼容（bsub/bjobs/bqueue/bhosts, etc）
• PBS兼容（qsub/qstat/pbsnodes/pestat, etc）
• 分析工具（融合Influxdb/ES/HDF5等，方便分析）



作业管理-查看分区sinfo

sinfo命令参数（1/2）

-p <partition>,
--partition=<partition>

查看指定分区的状态，对应环境变量SINFO_PARTITION。

示例：sinfo -p caspra
-n <nodes>,
--nodes=<nodes>

查看指定节点的信息。

示例：sinfo -p caspra -n e02r4n[00-19]
-N, --Node 以面向节点（默认为分区）的格式打印信息，每行一个节点。

示例：sinfo -N -p caspra -n e02r4n[00-19]

-t <states> ,

--states=<states>

查询指定节点状态的分区或节点的信息。
常见状态包括：alloc idle drain down drng。

-s, --summarize 查看分区中节点状态的摘要信息。

主要是限制分区中节点的状态统计，如已分配数alloc、空闲数idle、总数total等。



作业管理-查看分区sinfo

sinfo参数介绍（2/2）

-o <output_format>,

--format=

<output_format>

按照指定的格式显示信息，对应变量SINFO_FORMAT。

格式为“%[[.]size]<type> %[[.]size]<type> …”。

其中，点号（.）表示右对齐，size表示字段长度，type为代表特定字段的字符（或字符串）。

示例如下：

sinfo -o %all 以数显分隔的形式显示所有字段。

sinfo -o "%9P %.5a %.10l %.6D %.6t %N"

显示内容：分区名-分区状态 -最大运行时间-节点数-节点状态-节点列表。

-O <output_format>,

--Format=

<output_format>

按照指定的字段显示状态信息。

格式为“type[:[.]size],type[:[.]size],…”。

其中，type为代表特定字段的字段名，点号（.）表示右对齐，size表示字段长度。示例如下：

sinfo -O all

sinfo -O Partition:9,available:.6,time:.11,nodes:.6,statecompact:.6,nodelist:.12



作业管理-查看分区

示例3: 查看分区详情。
scontrol show partition 

示例2: 查看分区的摘要信息（--summarize）。
等价于 sinfo -o "%9P %.5a %.10l %.16F  %N"



作业管理-查看节点

节点详情： scontrol show node node151



作业管理-作业提交

srun sallocsbatch

交互式作业提交 批处理作业提交 节点资源获取



作业管理-作业提交参数
选项 含义 类型 示例

-J
作业名称，使用squeue看到

的作业名
字符串 -J wrf；表示作业名称为“wrf”

-n 作业申请的总任务数 数值
-n 32；表示作业申请32个任务。若不指定--cpus-per-task，

则表示作业申请的总核数为32个核心。

-N 作业申请的节点数 数值 -N 10 表示作业申请10个计算节点

-p 指定作业提交的队列 字符串 -p silicon表示将作业提交到silicon队列

--ntasks-per-node 指定每个节点运行进程数 数值 --ntasks-per-node=32表示每个节点运行32个进程（任务）

--ntasks-per-socket=<count>
指定在每个Socket启动的进

程数
数值 --ntasks-per-node=2标识每个Socket上运行2个进程

--cpus-per-task=<count> 指定任务需要的处理器数目 数值 --cpus-per-task=8 表示每个任务占用8个处理器核

-t
指定作业的执行时间，若超

过该时间，作业将会被杀死
数值

-t 30 表示作业的执行时间不超过30分钟，格式可以为：时:分:

秒

-w, --nodelist=hosts... 指定分配特定的计算节点 字符串 -w t0100,t0101 表示使用t0100 t0101等2个节点

--mem=<size[units]>
指定作业在每个节点使用的

内存限制。
数字

--mem=2G

限定作业在每个节点最多占用2G的最大内存。

-d, --dependency=<dependency_list> 作业依赖关系设置 字符串 -d after:123 表示本作业须待作业123开始以后再执行

--gres=<list> 指定每个节点使用通用资源

名称及数量
字符串 --gres=gpu:2 表示本作业使用gpu卡，且每个节点使用2卡



作业提交-sbatch
[sugon@gpunode1 ~]$ sbatch -n 4 sleep.job //sbatch 只接收脚本
Submitted batch job 19

[sugon@gpunode1 ~]$ cat sleep.job //脚本格式示例
#!/bin/bash
#SBATCH -J sleep                  //指定作业名
#SBATCH -p debug               //指定队列
#SBATCH --time=00:01:00                //指定运行时间（分钟） 注：需要设定为比较准确的时间，否
则调度系统会超时强杀作业。若不设置该参数，继承队列的默认运行时长。请在程序中设置断点，保存中间结果，
防止程序中断或者异常导致中间结果丢失。
#SBATCH -N 2                        //请求节点数
#SBATCH -n 2                         //请求核心数
#SBATCH --gres=gpu:2          //请求gpu数
#SBATCH -o logs/%j.sleep //标准输出文件 注：若为相对路径，则必须存在该目录，否则作业会提
交失败，且无日志输出
#SBATCH -e logs/%j.sleep   //错误输出文件 注：若为相对路径，则必须存在该目录，否则作业会提交
失败，且无日志输出
echo ${SLURM_JOB_NODELIST}    作业占用节点列表
echo  start on $(date)                     开始时间
sleep 100                                           执行命令
echo end on $(date)                        结束时间



作业提交-srun

例：提交请求2个节点2个核心的并且指定作业的名称为job1

srun –J  job1 –N 2 –n 2 sleep 10

提交命令 申请节点数作业名称 运行命令申请核心数



作业管理-作业查看

squeue:查询排队和运行状态的作业

参数 解释

-A, --account=account(s) 查询指定账号的作业，默认全部账号下的作业

-j, --jobs <job_id_list> 查看指定JOB IDS的作业信息，默认显示全部

-n, --name=<name> 查看指定名称的作业信息

-p, --partition=<names> 查看指定分区的作业信息

--state=<names> 指定状态查看作业信息

--users=<names> 指定用户名称查看作业信息



作业管理-作业查看

查询指定作业详情:
scontrol show job [-d] [<jobid>]



作业管理-作业删除

scancel：删除作业命令

COMMAND 解释

scancel <jobid> 删除指定作业

scancel -t ST 删除指定状态的作业

scancel --account=<name> 删除指定账号的作业

scancel --name=<name> 删除指定名称的作业

scancel --partition=<names> 删除指定分区的作业

scancel --reservation=<name> 删除指定预约名称的作业

scancel --state=<names> 删除指定状态的作业

scancel --user=<name> 删除指定用户的作业

scancel --nodelist=<names> 删除指定节点的作业



作业控制 - scontrol

scontrol：控制作业命令

COMMAND 解释 备注

scontrol suspend <jobid> 挂起作业 运行作业可挂起

scontrol resume <jobid> 恢复作业 挂起作业可恢复

scontrol requeue <jobid> 作业重新排队 运行作业可重新排队

scontrol hold <id/name> 保留作业 排队作业可保留

scontrol release <id/name> 释放作业 保留作业可释放
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进程绑定：SLURM绑定参数

绑定资源
CPU MEM 类GPU加速卡

常用参数：
 --ntasks-per-

<node|socket|core..>
 --mem/--mem-per-

cpu
 --cpu-bind=
<socket|core|ldoms|verbose
…>

https://slurm.schedmd.com
/mc_support.html

https://slurm.schedmd.com/mc_support.html


作业脚本示例1—串行作业示例

串行作业的提交示例：
#!/bin/bash
#SBATCH -o log/%j
#SBATCH -J SERIAL
#SBATCH -p debug
#SBATCH -t 00:10:00
#SBATCH --mem-per-cpu=3G
#SBATCH -n 1
#SBATCH -w e16r1n00
#SBATCH --tasks-per-node=1

module load compiler/devtoolset/7.3.1
module load compiler/rocm/2.9
module load mpi/hpcx/2.4.1/gcc-7.3.1

# 4x32, about 60 sec
export LOOPMAX=1000000

time srun --mpi=pmix_v3 ./open_fire_v5 $LOOPMAX
# 或者直接运行
#time ./open_fire_v5 $LOOPMAX

提交串行作业时，在脚本中直接调用可执行程序



作业脚本示例2—MPI作业

#SBATCH -o log/%j
#SBATCH -J MPI
#SBATCH -p debug
#SBATCH -t 00:10:00
#SBATCH --mem-per-cpu=3G
#SBATCH -N 20
#SBATCH --tasks-per-node=32

module load compiler/devtoolset/7.3.1
module load compiler/rocm/2.9
module load mpi/hpcx/2.4.1/gcc-7.3.1

echo "============================="
env | grep "SLURM"
echo "============================="

ulimit -a
which mpirun

# 20x32, 60 sec
export LOOPMAX=5000000

echo "use srun, loop=$LOOPMAX" && time srun --mpi=pmix_v3 ./open_fire_v5 $LOOPMAX

简化的MPI作业的提交示例：



作业脚本示例3—单节点OpenMP作业
简化的OpenMP作业脚本示例：

#!/bin/bash
#SBATCH -J OPENMP
#SBATCH -p debug
#SBATCH -N 1
#SBATCH -n 4
#SBATCH --cpus-per-task=2
#SBATCH -o log/%j.loop

module load compiler/devtoolset/7.3.1
module load compiler/rocm/2.9
module load mpi/hpcx/2.4.1/gcc-7.3.1

export OMP_NUM_THREADS=2
srun ./calc_openmp_init

设置变量OMP_NUM_THREADS，控制单进程的并发线程数



作业脚本示例4—MPI+OpenMP
简化的MPI+OpenMP作业脚本示例：

#!/bin/bash
#SBATCH -J OPENMP
#SBATCH -p debug
#SBATCH -N 2
#SBATCH -n 8
#SBATCH --ntasks-per-node=4
#SBATCH --cpus-per-task=8

module load compiler/devtoolset/7.3.1
module load compiler/rocm/2.9
module load mpi/hpcx/2.4.1/gcc-7.3.1

export OMP_NUM_THREADS=8
srun --mpi=pmix_v3 ./calc_openmp_mpi
#或用mpirun运行
#mpirun <options> ./ calc_openmp_mpi

设置变量OMP_NUM_THREADS，控制单进程的并发线程数



谢 谢
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