
SLURM介绍与作业提交

目录

03

04

软件及环境设置

作业管理

02 用户登录及提交作业

05 作业脚本示例

01 整体概况

整体概况-集群

集群是利用通信网络将一组计算机（节点）按某种结构连接起来，在并

行化设计及可视化人机交互集成开发环境支持下，统一调度、协调处理，实现

高效并行处理的系统。所有计算机节点一起工作如同一个单一集成的系统资源，

实现单一系统映像。

 包含计算、存储、网络等各种资源实体且彼此联系的资源集合；

 在物理上，一般由计算处理、互联通信、I/O 存储、操作系统、编译器、

运行环境、开发工具等多个软硬件子系统组成；

 节点是集群的基本组成单位，从角色上一般可以划分为管理节点、登录

节点、计算节点、存储节点等。

整体概况-集群

整体概况-应用领域

整体概况-集群节点规划
角色类型 节点范围 软件路径 运行服务

登录节点 login01~login10 1. 调度软件安装目录/opt/gridview，主
要包括munge、slurm两个软件。

munge.service

管理节点 admin01（主用)
admin02（备用）

1. 调度软件安装目录/opt/gridview，包
括munge、slurm。
2. 数据库软件目录/opt/mysql-5.7.25-
linux-glibc2.12-x86_64

munge.service
slurmdbd.service
slurmctld.service

计算节点 node1~node666 1. 调度软件安装目录/opt/gridview，包
括munge、slurm

munge.service
slurmd.service

MySQL节点 admin01（主用）
admin02（备用）

1. 数据库软件/opt/mysql-5.7.25-linux-
glibc2.12-x86_64

my_mysqld

03

04

目录

软件及环境设置

作业管理

02 用户登录及提交作业

05 作业脚本示例

01 整体概况

用户登录及提交作业
通过国产计算云登录

https://ac.sugon.com/

https://ac.sugon.com/

用户登录及提交作业

查看用户信息

及可用资源情况

用户登录及提交作业

文件传输E-File

用户登录及提交作业

作业模板：$HOME/slurm_template

用户登录及提交作业
E-Shell提交作业

用户登录及提交作业
作业查看（当前作业，历史作业，作业详情）

03

04

目录

软件及环境设置

作业管理

02 用户登录及提交作业

05 作业脚本示例

01 整体概况

软件存储目录

存储目录及用途

目录 挂载节点 备注

/public 管理节点、

登录节点、

计算节点

用户家目录为/public/home目录。

应用软件目录为/public/software目录。

可用软件

计算系统安装了多种编译环境及应用，主要包括编译器、调试器、mpi并行

开发环境及数学库等四部分。

软件安装目录为/public/software。

为方便使用，集群软件环境通过modules工具管理环境变量。

环境变量设置

查看命令帮助-H

查看可用模块avail

查看已加载模块list

加载模块load

“Environment module”(环境模块)是一组环境变量设置的集合。

module可以被加载(load)、卸载(unload)、切换(switch)，这些操作会改变

相应的环境变量设置，从而让用户方便地在不同环境间切换。

卸载模块unload

切换模块switch

卸载全部模块purge

显示模块内容show

环境变量设置

 查看可用模块avail

环境变量设置

 查看已加载模块list  查看模块配置show

环境变量设置

 加载新模块load  卸载模块unload

环境变量设置

 置换模块switch  清理已加载模块purge

环境变量设置

module 命令可以直接写在.bashrc中

03

04

目录

软件及环境设置

作业管理

02 用户登录及提交作业

05 作业脚本示例

01 整体概况

 调度系统
 查看分区
 查看节点

 作业提交
 作业查看
 作业控制

调度系统-基本概念

作业

调度系统

队列

 物理构成，一组关联的资源分配请求，以及一组关联的处理过程；
 交互方式，可以分为交互式作业和非交互式作业；

 组织资源的一种形式
 带名称的作业容器、用户访问控制、资源使用限制；

 负责监控和管理集群中资源和作业的软件系统；
 通常由资源管理器、调度器、任务执行器，以及用户命令和API组成；

资源

集群

 作业运行过程中使用的可量化实体都是资源；
 硬件资源（节点、内存、CPU 、类GPU加速卡等）和软件资源

（如License）；

 包含计算、存储、网络、操作系统、编译器、运行环境、开发工
具等各种资源实体且彼此联系的资源集合；

调度系统-主要作用

单一系统镜像系统资源整合多任务管理 资源访问控制

集群操作系统

调度系统-SLURM主要特点

架构设计优秀
• 扩展性（功能/规模）
• 高性能（提交/调度）
• 灵活性（自定义插件）
• 容错性（服务/节点/作业）

基础功能完善
• 优先级策略（Multi-Factor）
• 作业调度（FairShare/Backfill/ FCFS, etc）
• 资源竞争（Exclusive/Preempt/Gang, etc）
• 多级限制（Cluster/Account/User/Partition, etc）
• 资源预留（CPU/MEM/类GPU加速卡/License，

etc）

特色功能突出
• 资源绑定（CPU、MEM、类GPU加速卡等各类资源）
• 关联调度（如类GPU加速卡关联CPU）
• 能耗管理（限频、开关机、记账等）
• 拓扑调度（基于拓扑结构调度，限定交换机数等）

兼容性/交互性良好
• MPI兼容（IntelMPI/MVAPICH/OpenMPI,etc）
• LSF兼容（bsub/bjobs/bqueue/bhosts, etc）
• PBS兼容（qsub/qstat/pbsnodes/pestat, etc）
• 分析工具（融合Influxdb/ES/HDF5等，方便分析）

作业管理-查看分区sinfo

sinfo命令参数（1/2）

-p <partition>,
--partition=<partition>

查看指定分区的状态，对应环境变量SINFO_PARTITION。

示例：sinfo -p caspra
-n <nodes>,
--nodes=<nodes>

查看指定节点的信息。

示例：sinfo -p caspra -n e02r4n[00-19]
-N, --Node 以面向节点（默认为分区）的格式打印信息，每行一个节点。

示例：sinfo -N -p caspra -n e02r4n[00-19]

-t <states> ,

--states=<states>

查询指定节点状态的分区或节点的信息。
常见状态包括：alloc idle drain down drng。

-s, --summarize 查看分区中节点状态的摘要信息。

主要是限制分区中节点的状态统计，如已分配数alloc、空闲数idle、总数total等。

作业管理-查看分区sinfo

sinfo参数介绍（2/2）

-o <output_format>,

--format=

<output_format>

按照指定的格式显示信息，对应变量SINFO_FORMAT。

格式为“%[[.]size]<type> %[[.]size]<type> …”。

其中，点号（.）表示右对齐，size表示字段长度，type为代表特定字段的字符（或字符串）。

示例如下：

sinfo -o %all 以数显分隔的形式显示所有字段。

sinfo -o "%9P %.5a %.10l %.6D %.6t %N"

显示内容：分区名-分区状态 -最大运行时间-节点数-节点状态-节点列表。

-O <output_format>,

--Format=

<output_format>

按照指定的字段显示状态信息。

格式为“type[:[.]size],type[:[.]size],…”。

其中，type为代表特定字段的字段名，点号（.）表示右对齐，size表示字段长度。示例如下：

sinfo -O all

sinfo -O Partition:9,available:.6,time:.11,nodes:.6,statecompact:.6,nodelist:.12

作业管理-查看分区

示例3: 查看分区详情。
scontrol show partition

示例2: 查看分区的摘要信息（--summarize）。
等价于 sinfo -o "%9P %.5a %.10l %.16F %N"

作业管理-查看节点

节点详情： scontrol show node node151

作业管理-作业提交

srun sallocsbatch

交互式作业提交 批处理作业提交 节点资源获取

作业管理-作业提交参数
选项 含义 类型 示例

-J
作业名称，使用squeue看到

的作业名
字符串 -J wrf；表示作业名称为“wrf”

-n 作业申请的总任务数 数值
-n 32；表示作业申请32个任务。若不指定--cpus-per-task，

则表示作业申请的总核数为32个核心。

-N 作业申请的节点数 数值 -N 10 表示作业申请10个计算节点

-p 指定作业提交的队列 字符串 -p silicon表示将作业提交到silicon队列

--ntasks-per-node 指定每个节点运行进程数 数值 --ntasks-per-node=32表示每个节点运行32个进程（任务）

--ntasks-per-socket=<count>
指定在每个Socket启动的进

程数
数值 --ntasks-per-node=2标识每个Socket上运行2个进程

--cpus-per-task=<count> 指定任务需要的处理器数目 数值 --cpus-per-task=8 表示每个任务占用8个处理器核

-t
指定作业的执行时间，若超

过该时间，作业将会被杀死
数值

-t 30 表示作业的执行时间不超过30分钟，格式可以为：时:分:

秒

-w, --nodelist=hosts... 指定分配特定的计算节点 字符串 -w t0100,t0101 表示使用t0100 t0101等2个节点

--mem=<size[units]>
指定作业在每个节点使用的

内存限制。
数字

--mem=2G

限定作业在每个节点最多占用2G的最大内存。

-d, --dependency=<dependency_list> 作业依赖关系设置 字符串 -d after:123 表示本作业须待作业123开始以后再执行

--gres=<list> 指定每个节点使用通用资源

名称及数量
字符串 --gres=gpu:2 表示本作业使用gpu卡，且每个节点使用2卡

作业提交-sbatch
[sugon@gpunode1 ~]$ sbatch -n 4 sleep.job //sbatch 只接收脚本
Submitted batch job 19

[sugon@gpunode1 ~]$ cat sleep.job //脚本格式示例
#!/bin/bash
#SBATCH -J sleep //指定作业名
#SBATCH -p debug //指定队列
#SBATCH --time=00:01:00 //指定运行时间（分钟） 注：需要设定为比较准确的时间，否
则调度系统会超时强杀作业。若不设置该参数，继承队列的默认运行时长。请在程序中设置断点，保存中间结果，
防止程序中断或者异常导致中间结果丢失。
#SBATCH -N 2 //请求节点数
#SBATCH -n 2 //请求核心数
#SBATCH --gres=gpu:2 //请求gpu数
#SBATCH -o logs/%j.sleep //标准输出文件 注：若为相对路径，则必须存在该目录，否则作业会提
交失败，且无日志输出
#SBATCH -e logs/%j.sleep //错误输出文件 注：若为相对路径，则必须存在该目录，否则作业会提交
失败，且无日志输出
echo ${SLURM_JOB_NODELIST} 作业占用节点列表
echo start on $(date) 开始时间
sleep 100 执行命令
echo end on $(date) 结束时间

作业提交-srun

例：提交请求2个节点2个核心的并且指定作业的名称为job1

srun –J job1 –N 2 –n 2 sleep 10

提交命令 申请节点数作业名称 运行命令申请核心数

作业管理-作业查看

squeue:查询排队和运行状态的作业

参数 解释

-A, --account=account(s) 查询指定账号的作业，默认全部账号下的作业

-j, --jobs <job_id_list> 查看指定JOB IDS的作业信息，默认显示全部

-n, --name=<name> 查看指定名称的作业信息

-p, --partition=<names> 查看指定分区的作业信息

--state=<names> 指定状态查看作业信息

--users=<names> 指定用户名称查看作业信息

作业管理-作业查看

查询指定作业详情:
scontrol show job [-d] [<jobid>]

作业管理-作业删除

scancel：删除作业命令

COMMAND 解释

scancel <jobid> 删除指定作业

scancel -t ST 删除指定状态的作业

scancel --account=<name> 删除指定账号的作业

scancel --name=<name> 删除指定名称的作业

scancel --partition=<names> 删除指定分区的作业

scancel --reservation=<name> 删除指定预约名称的作业

scancel --state=<names> 删除指定状态的作业

scancel --user=<name> 删除指定用户的作业

scancel --nodelist=<names> 删除指定节点的作业

作业控制 - scontrol

scontrol：控制作业命令

COMMAND 解释 备注

scontrol suspend <jobid> 挂起作业 运行作业可挂起

scontrol resume <jobid> 恢复作业 挂起作业可恢复

scontrol requeue <jobid> 作业重新排队 运行作业可重新排队

scontrol hold <id/name> 保留作业 排队作业可保留

scontrol release <id/name> 释放作业 保留作业可释放

03

04

目录

软件及环境设置

作业管理

02 用户登录及提交作业

05 作业脚本示例

01 整体概况

进程绑定：SLURM绑定参数

绑定资源
CPU MEM 类GPU加速卡

常用参数：
 --ntasks-per-

<node|socket|core..>
 --mem/--mem-per-

cpu
 --cpu-bind=
<socket|core|ldoms|verbose
…>

https://slurm.schedmd.com
/mc_support.html

https://slurm.schedmd.com/mc_support.html

作业脚本示例1—串行作业示例

串行作业的提交示例：
#!/bin/bash
#SBATCH -o log/%j
#SBATCH -J SERIAL
#SBATCH -p debug
#SBATCH -t 00:10:00
#SBATCH --mem-per-cpu=3G
#SBATCH -n 1
#SBATCH -w e16r1n00
#SBATCH --tasks-per-node=1

module load compiler/devtoolset/7.3.1
module load compiler/rocm/2.9
module load mpi/hpcx/2.4.1/gcc-7.3.1

4x32, about 60 sec
export LOOPMAX=1000000

time srun --mpi=pmix_v3 ./open_fire_v5 $LOOPMAX
或者直接运行
#time ./open_fire_v5 $LOOPMAX

提交串行作业时，在脚本中直接调用可执行程序

作业脚本示例2—MPI作业

#SBATCH -o log/%j
#SBATCH -J MPI
#SBATCH -p debug
#SBATCH -t 00:10:00
#SBATCH --mem-per-cpu=3G
#SBATCH -N 20
#SBATCH --tasks-per-node=32

module load compiler/devtoolset/7.3.1
module load compiler/rocm/2.9
module load mpi/hpcx/2.4.1/gcc-7.3.1

echo "============================="
env | grep "SLURM"
echo "============================="

ulimit -a
which mpirun

20x32, 60 sec
export LOOPMAX=5000000

echo "use srun, loop=$LOOPMAX" && time srun --mpi=pmix_v3 ./open_fire_v5 $LOOPMAX

简化的MPI作业的提交示例：

作业脚本示例3—单节点OpenMP作业
简化的OpenMP作业脚本示例：

#!/bin/bash
#SBATCH -J OPENMP
#SBATCH -p debug
#SBATCH -N 1
#SBATCH -n 4
#SBATCH --cpus-per-task=2
#SBATCH -o log/%j.loop

module load compiler/devtoolset/7.3.1
module load compiler/rocm/2.9
module load mpi/hpcx/2.4.1/gcc-7.3.1

export OMP_NUM_THREADS=2
srun ./calc_openmp_init

设置变量OMP_NUM_THREADS，控制单进程的并发线程数

作业脚本示例4—MPI+OpenMP
简化的MPI+OpenMP作业脚本示例：

#!/bin/bash
#SBATCH -J OPENMP
#SBATCH -p debug
#SBATCH -N 2
#SBATCH -n 8
#SBATCH --ntasks-per-node=4
#SBATCH --cpus-per-task=8

module load compiler/devtoolset/7.3.1
module load compiler/rocm/2.9
module load mpi/hpcx/2.4.1/gcc-7.3.1

export OMP_NUM_THREADS=8
srun --mpi=pmix_v3 ./calc_openmp_mpi
#或用mpirun运行
#mpirun <options> ./ calc_openmp_mpi

设置变量OMP_NUM_THREADS，控制单进程的并发线程数

谢 谢

	幻灯片编号 1
	幻灯片编号 2
	幻灯片编号 3
	幻灯片编号 4
	幻灯片编号 5
	幻灯片编号 6
	幻灯片编号 7
	幻灯片编号 8
	幻灯片编号 9
	幻灯片编号 10
	幻灯片编号 11
	幻灯片编号 12
	幻灯片编号 13
	幻灯片编号 14
	幻灯片编号 15
	幻灯片编号 16
	幻灯片编号 17
	幻灯片编号 18
	幻灯片编号 19
	幻灯片编号 20
	幻灯片编号 21
	幻灯片编号 22
	幻灯片编号 23
	幻灯片编号 24
	幻灯片编号 25
	幻灯片编号 26
	幻灯片编号 27
	幻灯片编号 28
	幻灯片编号 29
	幻灯片编号 30
	幻灯片编号 31
	幻灯片编号 32
	幻灯片编号 33
	幻灯片编号 34
	幻灯片编号 35
	幻灯片编号 36
	幻灯片编号 37
	幻灯片编号 38
	幻灯片编号 39
	幻灯片编号 40
	幻灯片编号 41
	幻灯片编号 42
	幻灯片编号 43
	幻灯片编号 44
	幻灯片编号 45

