import torch from lightning.fabric import Fabric import hydra from omegaconf import DictConfig, OmegaConf import pyrootutils # Allow TF32 on Ampere GPUs torch.set_float32_matmul_precision("high") torch.backends.cudnn.allow_tf32 = True # register eval resolver and root pyrootutils.setup_root(__file__, indicator=".project-root", pythonpath=True) OmegaConf.register_new_resolver("eval", eval) # flake8: noqa: E402 from speech_lm.dataset import build_dataset @hydra.main(version_base="1.3", config_path="./configs", config_name="pretrain.yaml") def main(cfg: DictConfig): print(cfg) if __name__ == "__main__": main()