Commit 826086d2 authored by zhougaofeng's avatar zhougaofeng
Browse files

Deleted magic_pdf/__pycache__/__init__.cpython-310.pyc,...

Deleted magic_pdf/__pycache__/__init__.cpython-310.pyc, magic_pdf/__pycache__/pdf_parse_by_ocr.cpython-310.pyc, magic_pdf/__pycache__/pdf_parse_by_txt.cpython-310.pyc, magic_pdf/__pycache__/pdf_parse_union_core.cpython-310.pyc, magic_pdf/__pycache__/user_api.cpython-310.pyc, magic_pdf/dict2md/__pycache__/__init__.cpython-310.pyc, magic_pdf/dict2md/__pycache__/ocr_client.cpython-310.pyc, magic_pdf/dict2md/__pycache__/ocr_mkcontent.cpython-310.pyc, magic_pdf/dict2md/__init__.py, magic_pdf/dict2md/mkcontent.py, magic_pdf/dict2md/ocr_client.py, magic_pdf/dict2md/ocr_mkcontent.py, magic_pdf/dict2md/ocr_server.py, magic_pdf/filter/__init__.py, magic_pdf/filter/pdf_classify_by_type.py, magic_pdf/filter/pdf_meta_scan.py, magic_pdf/integrations/rag/__init__.py, magic_pdf/integrations/rag/api.py, magic_pdf/integrations/rag/type.py, magic_pdf/integrations/rag/utils.py, magic_pdf/integrations/__init__.py, magic_pdf/layout/__init__.py, magic_pdf/layout/bbox_sort.py, magic_pdf/layout/layout_det_utils.py, magic_pdf/layout/layout_sort.py, magic_pdf/layout/layout_spiler_recog.py, magic_pdf/layout/mcol_sort.py, magic_pdf/libs/Constants.py, magic_pdf/libs/MakeContentConfig.py, magic_pdf/libs/ModelBlockTypeEnum.py, magic_pdf/libs/__init__.py, magic_pdf/libs/boxbase.py, magic_pdf/libs/calc_span_stats.py, magic_pdf/libs/commons.py, magic_pdf/libs/config_reader.py, magic_pdf/libs/convert_utils.py, magic_pdf/libs/coordinate_transform.py, magic_pdf/libs/detect_language_from_model.py, magic_pdf/libs/draw_bbox.py, magic_pdf/libs/drop_reason.py, magic_pdf/libs/drop_tag.py, magic_pdf/libs/hash_utils.py, magic_pdf/libs/json_compressor.py, magic_pdf/libs/language.py, magic_pdf/libs/local_math.py, magic_pdf/libs/markdown_utils.py, magic_pdf/libs/nlp_utils.py, magic_pdf/libs/ocr_content_type.py, magic_pdf/libs/path_utils.py, magic_pdf/libs/pdf_check.py, magic_pdf/libs/pdf_image_tools.py, magic_pdf/libs/safe_filename.py, magic_pdf/libs/textbase.py, magic_pdf/libs/version.py, magic_pdf/libs/vis_utils.py, magic_pdf/model/pek_sub_modules/layoutlmv3/layoutlmft/data/__init__.py, magic_pdf/model/pek_sub_modules/layoutlmv3/layoutlmft/data/cord.py, magic_pdf/model/pek_sub_modules/layoutlmv3/layoutlmft/data/data_collator.py, magic_pdf/model/pek_sub_modules/layoutlmv3/layoutlmft/data/funsd.py, magic_pdf/model/pek_sub_modules/layoutlmv3/layoutlmft/data/image_utils.py, magic_pdf/model/pek_sub_modules/layoutlmv3/layoutlmft/data/xfund.py, magic_pdf/model/pek_sub_modules/layoutlmv3/layoutlmft/models/layoutlmv3/__init__.py, magic_pdf/model/pek_sub_modules/layoutlmv3/layoutlmft/models/layoutlmv3/configuration_layoutlmv3.py, magic_pdf/model/pek_sub_modules/layoutlmv3/layoutlmft/models/layoutlmv3/modeling_layoutlmv3.py, magic_pdf/model/pek_sub_modules/layoutlmv3/layoutlmft/models/layoutlmv3/tokenization_layoutlmv3.py, magic_pdf/model/pek_sub_modules/layoutlmv3/layoutlmft/models/layoutlmv3/tokenization_layoutlmv3_fast.py, magic_pdf/model/pek_sub_modules/layoutlmv3/layoutlmft/models/__init__.py, magic_pdf/model/pek_sub_modules/layoutlmv3/layoutlmft/__init__.py, magic_pdf/model/pek_sub_modules/layoutlmv3/__init__.py, magic_pdf/model/pek_sub_modules/layoutlmv3/backbone.py, magic_pdf/model/pek_sub_modules/layoutlmv3/beit.py, magic_pdf/model/pek_sub_modules/layoutlmv3/deit.py, magic_pdf/model/pek_sub_modules/layoutlmv3/model_init.py, magic_pdf/model/pek_sub_modules/layoutlmv3/rcnn_vl.py, magic_pdf/model/pek_sub_modules/layoutlmv3/visualizer.py, magic_pdf/model/pek_sub_modules/structeqtable/StructTableModel.py, magic_pdf/model/pek_sub_modules/structeqtable/__init__.py, magic_pdf/model/pek_sub_modules/__init__.py, magic_pdf/model/pek_sub_modules/post_process.py, magic_pdf/model/pek_sub_modules/self_modify.py, magic_pdf/model/__init__.py, magic_pdf/model/doc_analyze_by_custom_model.py, magic_pdf/model/magic_model.py, magic_pdf/model/model_list.py, magic_pdf/model/pdf_extract_kit.py, magic_pdf/model/ppTableModel.py, magic_pdf/model/pp_structure_v2.py, magic_pdf/para/__init__.py, magic_pdf/para/block_continuation_processor.py, magic_pdf/para/block_termination_processor.py, magic_pdf/para/commons.py, magic_pdf/para/denoise.py, magic_pdf/para/draw.py, magic_pdf/para/exceptions.py, magic_pdf/para/layout_match_processor.py, magic_pdf/para/para_pipeline.py, magic_pdf/para/para_split.py, magic_pdf/para/para_split_v2.py, magic_pdf/para/raw_processor.py, magic_pdf/para/stats.py, magic_pdf/para/title_processor.py, magic_pdf/parse/__init__.py, magic_pdf/parse/common_parse.py, magic_pdf/parse/excel_parse.py, magic_pdf/parse/pdf_client.py, magic_pdf/pipe/AbsPipe.py, magic_pdf/pipe/OCRPipe.py, magic_pdf/pipe/TXTPipe.py, magic_pdf/pipe/UNIPipe.py, magic_pdf/pipe/__init__.py, magic_pdf/post_proc/__init__.py, magic_pdf/post_proc/detect_para.py, magic_pdf/post_proc/pdf_post_filter.py, magic_pdf/post_proc/remove_footnote.py, magic_pdf/pre_proc/__init__.py, magic_pdf/pre_proc/citationmarker_remove.py, magic_pdf/pre_proc/construct_page_dict.py, magic_pdf/pre_proc/cut_image.py, magic_pdf/pre_proc/detect_equation.py, magic_pdf/pre_proc/detect_footer_by_model.py, magic_pdf/pre_proc/detect_footer_header_by_statistics.py, magic_pdf/pre_proc/detect_footnote.py, magic_pdf/pre_proc/detect_header.py, magic_pdf/pre_proc/detect_images.py, magic_pdf/pre_proc/detect_page_number.py, magic_pdf/pre_proc/detect_tables.py, magic_pdf/pre_proc/equations_replace.py, magic_pdf/pre_proc/fix_image.py, magic_pdf/pre_proc/fix_table.py, magic_pdf/pre_proc/main_text_font.py, magic_pdf/pre_proc/ocr_detect_all_bboxes.py, magic_pdf/pre_proc/ocr_detect_layout.py, magic_pdf/pre_proc/ocr_dict_merge.py, magic_pdf/pre_proc/ocr_span_list_modify.py, magic_pdf/pre_proc/pdf_pre_filter.py, magic_pdf/pre_proc/post_layout_split.py, magic_pdf/pre_proc/remove_bbox_overlap.py, magic_pdf/pre_proc/remove_colored_strip_bbox.py, magic_pdf/pre_proc/remove_footer_header.py, magic_pdf/pre_proc/remove_rotate_bbox.py, magic_pdf/pre_proc/resolve_bbox_conflict.py, magic_pdf/pre_proc/solve_line_alien.py, magic_pdf/pre_proc/statistics.py, magic_pdf/resources/fasttext-langdetect/lid.176.ftz, magic_pdf/resources/model_config/UniMERNet/demo.yaml, magic_pdf/resources/model_config/layoutlmv3/layoutlmv3_base_inference.yaml, magic_pdf/resources/model_config/model_configs.yaml, magic_pdf/rw/AbsReaderWriter.py, magic_pdf/rw/DiskReaderWriter.py, magic_pdf/rw/S3ReaderWriter.py, magic_pdf/rw/__init__.py, magic_pdf/spark/__init__.py, magic_pdf/spark/spark_api.py, magic_pdf/tools/__init__.py, magic_pdf/tools/cli.py, magic_pdf/tools/cli_dev.py, magic_pdf/tools/common.py, magic_pdf/tools/pdf_server.py, magic_pdf/__init__.py, magic_pdf/config.ini, magic_pdf/pdf_parse_by_ocr.py, magic_pdf/pdf_parse_by_txt.py, magic_pdf/pdf_parse_union_core.py, magic_pdf/user_api.py files
parent 57aaa1cf
from .visualizer import Visualizer
from .rcnn_vl import *
from .backbone import *
from detectron2.config import get_cfg
from detectron2.config import CfgNode as CN
from detectron2.data import MetadataCatalog, DatasetCatalog
from detectron2.data.datasets import register_coco_instances
from detectron2.engine import DefaultTrainer, default_argument_parser, default_setup, launch, DefaultPredictor
def add_vit_config(cfg):
"""
Add config for VIT.
"""
_C = cfg
_C.MODEL.VIT = CN()
# CoaT model name.
_C.MODEL.VIT.NAME = ""
# Output features from CoaT backbone.
_C.MODEL.VIT.OUT_FEATURES = ["layer3", "layer5", "layer7", "layer11"]
_C.MODEL.VIT.IMG_SIZE = [224, 224]
_C.MODEL.VIT.POS_TYPE = "shared_rel"
_C.MODEL.VIT.DROP_PATH = 0.
_C.MODEL.VIT.MODEL_KWARGS = "{}"
_C.SOLVER.OPTIMIZER = "ADAMW"
_C.SOLVER.BACKBONE_MULTIPLIER = 1.0
_C.AUG = CN()
_C.AUG.DETR = False
_C.MODEL.IMAGE_ONLY = True
_C.PUBLAYNET_DATA_DIR_TRAIN = ""
_C.PUBLAYNET_DATA_DIR_TEST = ""
_C.FOOTNOTE_DATA_DIR_TRAIN = ""
_C.FOOTNOTE_DATA_DIR_VAL = ""
_C.SCIHUB_DATA_DIR_TRAIN = ""
_C.SCIHUB_DATA_DIR_TEST = ""
_C.JIAOCAI_DATA_DIR_TRAIN = ""
_C.JIAOCAI_DATA_DIR_TEST = ""
_C.ICDAR_DATA_DIR_TRAIN = ""
_C.ICDAR_DATA_DIR_TEST = ""
_C.M6DOC_DATA_DIR_TEST = ""
_C.DOCSTRUCTBENCH_DATA_DIR_TEST = ""
_C.DOCSTRUCTBENCHv2_DATA_DIR_TEST = ""
_C.CACHE_DIR = ""
_C.MODEL.CONFIG_PATH = ""
# effective update steps would be MAX_ITER/GRADIENT_ACCUMULATION_STEPS
# maybe need to set MAX_ITER *= GRADIENT_ACCUMULATION_STEPS
_C.SOLVER.GRADIENT_ACCUMULATION_STEPS = 1
def setup(args, device):
"""
Create configs and perform basic setups.
"""
cfg = get_cfg()
# add_coat_config(cfg)
add_vit_config(cfg)
cfg.merge_from_file(args.config_file)
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.2 # set threshold for this model
cfg.merge_from_list(args.opts)
# 使用统一的device配置
cfg.MODEL.DEVICE = device
cfg.freeze()
default_setup(cfg, args)
#@todo 可以删掉这块?
# register_coco_instances(
# "scihub_train",
# {},
# cfg.SCIHUB_DATA_DIR_TRAIN + ".json",
# cfg.SCIHUB_DATA_DIR_TRAIN
# )
return cfg
class DotDict(dict):
def __init__(self, *args, **kwargs):
super(DotDict, self).__init__(*args, **kwargs)
def __getattr__(self, key):
if key not in self.keys():
return None
value = self[key]
if isinstance(value, dict):
value = DotDict(value)
return value
def __setattr__(self, key, value):
self[key] = value
class Layoutlmv3_Predictor(object):
def __init__(self, weights, config_file, device):
layout_args = {
"config_file": config_file,
"resume": False,
"eval_only": False,
"num_gpus": 1,
"num_machines": 1,
"machine_rank": 0,
"dist_url": "tcp://127.0.0.1:57823",
"opts": ["MODEL.WEIGHTS", weights],
}
layout_args = DotDict(layout_args)
cfg = setup(layout_args, device)
self.mapping = ["title", "plain text", "abandon", "figure", "figure_caption", "table", "table_caption",
"table_footnote", "isolate_formula", "formula_caption"]
MetadataCatalog.get(cfg.DATASETS.TRAIN[0]).thing_classes = self.mapping
self.predictor = DefaultPredictor(cfg)
def __call__(self, image, ignore_catids=[]):
# page_layout_result = {
# "layout_dets": []
# }
layout_dets = []
outputs = self.predictor(image)
boxes = outputs["instances"].to("cpu")._fields["pred_boxes"].tensor.tolist()
labels = outputs["instances"].to("cpu")._fields["pred_classes"].tolist()
scores = outputs["instances"].to("cpu")._fields["scores"].tolist()
for bbox_idx in range(len(boxes)):
if labels[bbox_idx] in ignore_catids:
continue
layout_dets.append({
"category_id": labels[bbox_idx],
"poly": [
boxes[bbox_idx][0], boxes[bbox_idx][1],
boxes[bbox_idx][2], boxes[bbox_idx][1],
boxes[bbox_idx][2], boxes[bbox_idx][3],
boxes[bbox_idx][0], boxes[bbox_idx][3],
],
"score": scores[bbox_idx]
})
return layout_dets
# Copyright (c) Facebook, Inc. and its affiliates.
import logging
import numpy as np
from typing import Dict, List, Optional, Tuple
import torch
from torch import nn
from detectron2.config import configurable
from detectron2.structures import ImageList, Instances
from detectron2.utils.events import get_event_storage
from detectron2.modeling.backbone import Backbone, build_backbone
from detectron2.modeling.meta_arch.build import META_ARCH_REGISTRY
from detectron2.modeling.meta_arch import GeneralizedRCNN
from detectron2.modeling.postprocessing import detector_postprocess
from detectron2.modeling.roi_heads.fast_rcnn import fast_rcnn_inference_single_image
from contextlib import contextmanager
from itertools import count
@META_ARCH_REGISTRY.register()
class VLGeneralizedRCNN(GeneralizedRCNN):
"""
Generalized R-CNN. Any models that contains the following three components:
1. Per-image feature extraction (aka backbone)
2. Region proposal generation
3. Per-region feature extraction and prediction
"""
def forward(self, batched_inputs: List[Dict[str, torch.Tensor]]):
"""
Args:
batched_inputs: a list, batched outputs of :class:`DatasetMapper` .
Each item in the list contains the inputs for one image.
For now, each item in the list is a dict that contains:
* image: Tensor, image in (C, H, W) format.
* instances (optional): groundtruth :class:`Instances`
* proposals (optional): :class:`Instances`, precomputed proposals.
Other information that's included in the original dicts, such as:
* "height", "width" (int): the output resolution of the model, used in inference.
See :meth:`postprocess` for details.
Returns:
list[dict]:
Each dict is the output for one input image.
The dict contains one key "instances" whose value is a :class:`Instances`.
The :class:`Instances` object has the following keys:
"pred_boxes", "pred_classes", "scores", "pred_masks", "pred_keypoints"
"""
if not self.training:
return self.inference(batched_inputs)
images = self.preprocess_image(batched_inputs)
if "instances" in batched_inputs[0]:
gt_instances = [x["instances"].to(self.device) for x in batched_inputs]
else:
gt_instances = None
# features = self.backbone(images.tensor)
input = self.get_batch(batched_inputs, images)
features = self.backbone(input)
if self.proposal_generator is not None:
proposals, proposal_losses = self.proposal_generator(images, features, gt_instances)
else:
assert "proposals" in batched_inputs[0]
proposals = [x["proposals"].to(self.device) for x in batched_inputs]
proposal_losses = {}
_, detector_losses = self.roi_heads(images, features, proposals, gt_instances)
if self.vis_period > 0:
storage = get_event_storage()
if storage.iter % self.vis_period == 0:
self.visualize_training(batched_inputs, proposals)
losses = {}
losses.update(detector_losses)
losses.update(proposal_losses)
return losses
def inference(
self,
batched_inputs: List[Dict[str, torch.Tensor]],
detected_instances: Optional[List[Instances]] = None,
do_postprocess: bool = True,
):
"""
Run inference on the given inputs.
Args:
batched_inputs (list[dict]): same as in :meth:`forward`
detected_instances (None or list[Instances]): if not None, it
contains an `Instances` object per image. The `Instances`
object contains "pred_boxes" and "pred_classes" which are
known boxes in the image.
The inference will then skip the detection of bounding boxes,
and only predict other per-ROI outputs.
do_postprocess (bool): whether to apply post-processing on the outputs.
Returns:
When do_postprocess=True, same as in :meth:`forward`.
Otherwise, a list[Instances] containing raw network outputs.
"""
assert not self.training
images = self.preprocess_image(batched_inputs)
# features = self.backbone(images.tensor)
input = self.get_batch(batched_inputs, images)
features = self.backbone(input)
if detected_instances is None:
if self.proposal_generator is not None:
proposals, _ = self.proposal_generator(images, features, None)
else:
assert "proposals" in batched_inputs[0]
proposals = [x["proposals"].to(self.device) for x in batched_inputs]
results, _ = self.roi_heads(images, features, proposals, None)
else:
detected_instances = [x.to(self.device) for x in detected_instances]
results = self.roi_heads.forward_with_given_boxes(features, detected_instances)
if do_postprocess:
assert not torch.jit.is_scripting(), "Scripting is not supported for postprocess."
return GeneralizedRCNN._postprocess(results, batched_inputs, images.image_sizes)
else:
return results
def get_batch(self, examples, images):
if len(examples) >= 1 and "bbox" not in examples[0]: # image_only
return {"images": images.tensor}
return input
def _batch_inference(self, batched_inputs, detected_instances=None):
"""
Execute inference on a list of inputs,
using batch size = self.batch_size (e.g., 2), instead of the length of the list.
Inputs & outputs have the same format as :meth:`GeneralizedRCNN.inference`
"""
if detected_instances is None:
detected_instances = [None] * len(batched_inputs)
outputs = []
inputs, instances = [], []
for idx, input, instance in zip(count(), batched_inputs, detected_instances):
inputs.append(input)
instances.append(instance)
if len(inputs) == 2 or idx == len(batched_inputs) - 1:
outputs.extend(
self.inference(
inputs,
instances if instances[0] is not None else None,
do_postprocess=True, # False
)
)
inputs, instances = [], []
return outputs
# Copyright (c) Facebook, Inc. and its affiliates.
import colorsys
import logging
import math
import numpy as np
from enum import Enum, unique
import cv2
import matplotlib as mpl
import matplotlib.colors as mplc
import matplotlib.figure as mplfigure
import pycocotools.mask as mask_util
import torch
from matplotlib.backends.backend_agg import FigureCanvasAgg
from PIL import Image
from detectron2.data import MetadataCatalog
from detectron2.structures import BitMasks, Boxes, BoxMode, Keypoints, PolygonMasks, RotatedBoxes
from detectron2.utils.file_io import PathManager
from detectron2.utils.colormap import random_color
import pdb
logger = logging.getLogger(__name__)
__all__ = ["ColorMode", "VisImage", "Visualizer"]
_SMALL_OBJECT_AREA_THRESH = 1000
_LARGE_MASK_AREA_THRESH = 120000
_OFF_WHITE = (1.0, 1.0, 240.0 / 255)
_BLACK = (0, 0, 0)
_RED = (1.0, 0, 0)
_KEYPOINT_THRESHOLD = 0.05
#CLASS_NAMES = ["footnote", "footer", "header"]
@unique
class ColorMode(Enum):
"""
Enum of different color modes to use for instance visualizations.
"""
IMAGE = 0
"""
Picks a random color for every instance and overlay segmentations with low opacity.
"""
SEGMENTATION = 1
"""
Let instances of the same category have similar colors
(from metadata.thing_colors), and overlay them with
high opacity. This provides more attention on the quality of segmentation.
"""
IMAGE_BW = 2
"""
Same as IMAGE, but convert all areas without masks to gray-scale.
Only available for drawing per-instance mask predictions.
"""
class GenericMask:
"""
Attribute:
polygons (list[ndarray]): list[ndarray]: polygons for this mask.
Each ndarray has format [x, y, x, y, ...]
mask (ndarray): a binary mask
"""
def __init__(self, mask_or_polygons, height, width):
self._mask = self._polygons = self._has_holes = None
self.height = height
self.width = width
m = mask_or_polygons
if isinstance(m, dict):
# RLEs
assert "counts" in m and "size" in m
if isinstance(m["counts"], list): # uncompressed RLEs
h, w = m["size"]
assert h == height and w == width
m = mask_util.frPyObjects(m, h, w)
self._mask = mask_util.decode(m)[:, :]
return
if isinstance(m, list): # list[ndarray]
self._polygons = [np.asarray(x).reshape(-1) for x in m]
return
if isinstance(m, np.ndarray): # assumed to be a binary mask
assert m.shape[1] != 2, m.shape
assert m.shape == (
height,
width,
), f"mask shape: {m.shape}, target dims: {height}, {width}"
self._mask = m.astype("uint8")
return
raise ValueError("GenericMask cannot handle object {} of type '{}'".format(m, type(m)))
@property
def mask(self):
if self._mask is None:
self._mask = self.polygons_to_mask(self._polygons)
return self._mask
@property
def polygons(self):
if self._polygons is None:
self._polygons, self._has_holes = self.mask_to_polygons(self._mask)
return self._polygons
@property
def has_holes(self):
if self._has_holes is None:
if self._mask is not None:
self._polygons, self._has_holes = self.mask_to_polygons(self._mask)
else:
self._has_holes = False # if original format is polygon, does not have holes
return self._has_holes
def mask_to_polygons(self, mask):
# cv2.RETR_CCOMP flag retrieves all the contours and arranges them to a 2-level
# hierarchy. External contours (boundary) of the object are placed in hierarchy-1.
# Internal contours (holes) are placed in hierarchy-2.
# cv2.CHAIN_APPROX_NONE flag gets vertices of polygons from contours.
mask = np.ascontiguousarray(mask) # some versions of cv2 does not support incontiguous arr
res = cv2.findContours(mask.astype("uint8"), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_NONE)
hierarchy = res[-1]
if hierarchy is None: # empty mask
return [], False
has_holes = (hierarchy.reshape(-1, 4)[:, 3] >= 0).sum() > 0
res = res[-2]
res = [x.flatten() for x in res]
# These coordinates from OpenCV are integers in range [0, W-1 or H-1].
# We add 0.5 to turn them into real-value coordinate space. A better solution
# would be to first +0.5 and then dilate the returned polygon by 0.5.
res = [x + 0.5 for x in res if len(x) >= 6]
return res, has_holes
def polygons_to_mask(self, polygons):
rle = mask_util.frPyObjects(polygons, self.height, self.width)
rle = mask_util.merge(rle)
return mask_util.decode(rle)[:, :]
def area(self):
return self.mask.sum()
def bbox(self):
p = mask_util.frPyObjects(self.polygons, self.height, self.width)
p = mask_util.merge(p)
bbox = mask_util.toBbox(p)
bbox[2] += bbox[0]
bbox[3] += bbox[1]
return bbox
class _PanopticPrediction:
"""
Unify different panoptic annotation/prediction formats
"""
def __init__(self, panoptic_seg, segments_info, metadata=None):
if segments_info is None:
assert metadata is not None
# If "segments_info" is None, we assume "panoptic_img" is a
# H*W int32 image storing the panoptic_id in the format of
# category_id * label_divisor + instance_id. We reserve -1 for
# VOID label.
label_divisor = metadata.label_divisor
segments_info = []
for panoptic_label in np.unique(panoptic_seg.numpy()):
if panoptic_label == -1:
# VOID region.
continue
pred_class = panoptic_label // label_divisor
isthing = pred_class in metadata.thing_dataset_id_to_contiguous_id.values()
segments_info.append(
{
"id": int(panoptic_label),
"category_id": int(pred_class),
"isthing": bool(isthing),
}
)
del metadata
self._seg = panoptic_seg
self._sinfo = {s["id"]: s for s in segments_info} # seg id -> seg info
segment_ids, areas = torch.unique(panoptic_seg, sorted=True, return_counts=True)
areas = areas.numpy()
sorted_idxs = np.argsort(-areas)
self._seg_ids, self._seg_areas = segment_ids[sorted_idxs], areas[sorted_idxs]
self._seg_ids = self._seg_ids.tolist()
for sid, area in zip(self._seg_ids, self._seg_areas):
if sid in self._sinfo:
self._sinfo[sid]["area"] = float(area)
def non_empty_mask(self):
"""
Returns:
(H, W) array, a mask for all pixels that have a prediction
"""
empty_ids = []
for id in self._seg_ids:
if id not in self._sinfo:
empty_ids.append(id)
if len(empty_ids) == 0:
return np.zeros(self._seg.shape, dtype=np.uint8)
assert (
len(empty_ids) == 1
), ">1 ids corresponds to no labels. This is currently not supported"
return (self._seg != empty_ids[0]).numpy().astype(np.bool)
def semantic_masks(self):
for sid in self._seg_ids:
sinfo = self._sinfo.get(sid)
if sinfo is None or sinfo["isthing"]:
# Some pixels (e.g. id 0 in PanopticFPN) have no instance or semantic predictions.
continue
yield (self._seg == sid).numpy().astype(np.bool), sinfo
def instance_masks(self):
for sid in self._seg_ids:
sinfo = self._sinfo.get(sid)
if sinfo is None or not sinfo["isthing"]:
continue
mask = (self._seg == sid).numpy().astype(np.bool)
if mask.sum() > 0:
yield mask, sinfo
def _create_text_labels(classes, scores, class_names, is_crowd=None):
"""
Args:
classes (list[int] or None):
scores (list[float] or None):
class_names (list[str] or None):
is_crowd (list[bool] or None):
Returns:
list[str] or None
"""
#class_names = CLASS_NAMES
labels = None
if classes is not None:
if class_names is not None and len(class_names) > 0:
labels = [class_names[i] for i in classes]
else:
labels = [str(i) for i in classes]
if scores is not None:
if labels is None:
labels = ["{:.0f}%".format(s * 100) for s in scores]
else:
labels = ["{} {:.0f}%".format(l, s * 100) for l, s in zip(labels, scores)]
if labels is not None and is_crowd is not None:
labels = [l + ("|crowd" if crowd else "") for l, crowd in zip(labels, is_crowd)]
return labels
class VisImage:
def __init__(self, img, scale=1.0):
"""
Args:
img (ndarray): an RGB image of shape (H, W, 3) in range [0, 255].
scale (float): scale the input image
"""
self.img = img
self.scale = scale
self.width, self.height = img.shape[1], img.shape[0]
self._setup_figure(img)
def _setup_figure(self, img):
"""
Args:
Same as in :meth:`__init__()`.
Returns:
fig (matplotlib.pyplot.figure): top level container for all the image plot elements.
ax (matplotlib.pyplot.Axes): contains figure elements and sets the coordinate system.
"""
fig = mplfigure.Figure(frameon=False)
self.dpi = fig.get_dpi()
# add a small 1e-2 to avoid precision lost due to matplotlib's truncation
# (https://github.com/matplotlib/matplotlib/issues/15363)
fig.set_size_inches(
(self.width * self.scale + 1e-2) / self.dpi,
(self.height * self.scale + 1e-2) / self.dpi,
)
self.canvas = FigureCanvasAgg(fig)
# self.canvas = mpl.backends.backend_cairo.FigureCanvasCairo(fig)
ax = fig.add_axes([0.0, 0.0, 1.0, 1.0])
ax.axis("off")
self.fig = fig
self.ax = ax
self.reset_image(img)
def reset_image(self, img):
"""
Args:
img: same as in __init__
"""
img = img.astype("uint8")
self.ax.imshow(img, extent=(0, self.width, self.height, 0), interpolation="nearest")
def save(self, filepath):
"""
Args:
filepath (str): a string that contains the absolute path, including the file name, where
the visualized image will be saved.
"""
self.fig.savefig(filepath)
def get_image(self):
"""
Returns:
ndarray:
the visualized image of shape (H, W, 3) (RGB) in uint8 type.
The shape is scaled w.r.t the input image using the given `scale` argument.
"""
canvas = self.canvas
s, (width, height) = canvas.print_to_buffer()
# buf = io.BytesIO() # works for cairo backend
# canvas.print_rgba(buf)
# width, height = self.width, self.height
# s = buf.getvalue()
buffer = np.frombuffer(s, dtype="uint8")
img_rgba = buffer.reshape(height, width, 4)
rgb, alpha = np.split(img_rgba, [3], axis=2)
return rgb.astype("uint8")
class Visualizer:
"""
Visualizer that draws data about detection/segmentation on images.
It contains methods like `draw_{text,box,circle,line,binary_mask,polygon}`
that draw primitive objects to images, as well as high-level wrappers like
`draw_{instance_predictions,sem_seg,panoptic_seg_predictions,dataset_dict}`
that draw composite data in some pre-defined style.
Note that the exact visualization style for the high-level wrappers are subject to change.
Style such as color, opacity, label contents, visibility of labels, or even the visibility
of objects themselves (e.g. when the object is too small) may change according
to different heuristics, as long as the results still look visually reasonable.
To obtain a consistent style, you can implement custom drawing functions with the
abovementioned primitive methods instead. If you need more customized visualization
styles, you can process the data yourself following their format documented in
tutorials (:doc:`/tutorials/models`, :doc:`/tutorials/datasets`). This class does not
intend to satisfy everyone's preference on drawing styles.
This visualizer focuses on high rendering quality rather than performance. It is not
designed to be used for real-time applications.
"""
# TODO implement a fast, rasterized version using OpenCV
def __init__(self, img_rgb, metadata=None, scale=1.0, instance_mode=ColorMode.IMAGE):
"""
Args:
img_rgb: a numpy array of shape (H, W, C), where H and W correspond to
the height and width of the image respectively. C is the number of
color channels. The image is required to be in RGB format since that
is a requirement of the Matplotlib library. The image is also expected
to be in the range [0, 255].
metadata (Metadata): dataset metadata (e.g. class names and colors)
instance_mode (ColorMode): defines one of the pre-defined style for drawing
instances on an image.
"""
self.img = np.asarray(img_rgb).clip(0, 255).astype(np.uint8)
if metadata is None:
metadata = MetadataCatalog.get("__nonexist__")
self.metadata = metadata
self.output = VisImage(self.img, scale=scale)
self.cpu_device = torch.device("cpu")
# too small texts are useless, therefore clamp to 9
self._default_font_size = max(
np.sqrt(self.output.height * self.output.width) // 90, 10 // scale
)
self._instance_mode = instance_mode
self.keypoint_threshold = _KEYPOINT_THRESHOLD
def draw_instance_predictions(self, predictions):
"""
Draw instance-level prediction results on an image.
Args:
predictions (Instances): the output of an instance detection/segmentation
model. Following fields will be used to draw:
"pred_boxes", "pred_classes", "scores", "pred_masks" (or "pred_masks_rle").
Returns:
output (VisImage): image object with visualizations.
"""
boxes = predictions.pred_boxes if predictions.has("pred_boxes") else None
scores = predictions.scores if predictions.has("scores") else None
classes = predictions.pred_classes.tolist() if predictions.has("pred_classes") else None
labels = _create_text_labels(classes, scores, self.metadata.get("thing_classes", None))
keypoints = predictions.pred_keypoints if predictions.has("pred_keypoints") else None
if predictions.has("pred_masks"):
masks = np.asarray(predictions.pred_masks)
masks = [GenericMask(x, self.output.height, self.output.width) for x in masks]
else:
masks = None
if self._instance_mode == ColorMode.SEGMENTATION and self.metadata.get("thing_colors"):
colors = [
self._jitter([x / 255 for x in self.metadata.thing_colors[c]]) for c in classes
]
alpha = 0.8
else:
colors = None
alpha = 0.5
if self._instance_mode == ColorMode.IMAGE_BW:
self.output.reset_image(
self._create_grayscale_image(
(predictions.pred_masks.any(dim=0) > 0).numpy()
if predictions.has("pred_masks")
else None
)
)
alpha = 0.3
self.overlay_instances(
masks=masks,
boxes=boxes,
labels=labels,
keypoints=keypoints,
assigned_colors=colors,
alpha=alpha,
)
return self.output
def draw_sem_seg(self, sem_seg, area_threshold=None, alpha=0.8):
"""
Draw semantic segmentation predictions/labels.
Args:
sem_seg (Tensor or ndarray): the segmentation of shape (H, W).
Each value is the integer label of the pixel.
area_threshold (int): segments with less than `area_threshold` are not drawn.
alpha (float): the larger it is, the more opaque the segmentations are.
Returns:
output (VisImage): image object with visualizations.
"""
if isinstance(sem_seg, torch.Tensor):
sem_seg = sem_seg.numpy()
labels, areas = np.unique(sem_seg, return_counts=True)
sorted_idxs = np.argsort(-areas).tolist()
labels = labels[sorted_idxs]
for label in filter(lambda l: l < len(self.metadata.stuff_classes), labels):
try:
mask_color = [x / 255 for x in self.metadata.stuff_colors[label]]
except (AttributeError, IndexError):
mask_color = None
binary_mask = (sem_seg == label).astype(np.uint8)
text = self.metadata.stuff_classes[label]
self.draw_binary_mask(
binary_mask,
color=mask_color,
edge_color=_OFF_WHITE,
text=text,
alpha=alpha,
area_threshold=area_threshold,
)
return self.output
def draw_panoptic_seg(self, panoptic_seg, segments_info, area_threshold=None, alpha=0.7):
"""
Draw panoptic prediction annotations or results.
Args:
panoptic_seg (Tensor): of shape (height, width) where the values are ids for each
segment.
segments_info (list[dict] or None): Describe each segment in `panoptic_seg`.
If it is a ``list[dict]``, each dict contains keys "id", "category_id".
If None, category id of each pixel is computed by
``pixel // metadata.label_divisor``.
area_threshold (int): stuff segments with less than `area_threshold` are not drawn.
Returns:
output (VisImage): image object with visualizations.
"""
pred = _PanopticPrediction(panoptic_seg, segments_info, self.metadata)
if self._instance_mode == ColorMode.IMAGE_BW:
self.output.reset_image(self._create_grayscale_image(pred.non_empty_mask()))
# draw mask for all semantic segments first i.e. "stuff"
for mask, sinfo in pred.semantic_masks():
category_idx = sinfo["category_id"]
try:
mask_color = [x / 255 for x in self.metadata.stuff_colors[category_idx]]
except AttributeError:
mask_color = None
text = self.metadata.stuff_classes[category_idx]
self.draw_binary_mask(
mask,
color=mask_color,
edge_color=_OFF_WHITE,
text=text,
alpha=alpha,
area_threshold=area_threshold,
)
# draw mask for all instances second
all_instances = list(pred.instance_masks())
if len(all_instances) == 0:
return self.output
masks, sinfo = list(zip(*all_instances))
category_ids = [x["category_id"] for x in sinfo]
try:
scores = [x["score"] for x in sinfo]
except KeyError:
scores = None
labels = _create_text_labels(
category_ids, scores, self.metadata.thing_classes, [x.get("iscrowd", 0) for x in sinfo]
)
try:
colors = [
self._jitter([x / 255 for x in self.metadata.thing_colors[c]]) for c in category_ids
]
except AttributeError:
colors = None
self.overlay_instances(masks=masks, labels=labels, assigned_colors=colors, alpha=alpha)
return self.output
draw_panoptic_seg_predictions = draw_panoptic_seg # backward compatibility
def draw_dataset_dict(self, dic):
"""
Draw annotations/segmentaions in Detectron2 Dataset format.
Args:
dic (dict): annotation/segmentation data of one image, in Detectron2 Dataset format.
Returns:
output (VisImage): image object with visualizations.
"""
annos = dic.get("annotations", None)
if annos:
if "segmentation" in annos[0]:
masks = [x["segmentation"] for x in annos]
else:
masks = None
if "keypoints" in annos[0]:
keypts = [x["keypoints"] for x in annos]
keypts = np.array(keypts).reshape(len(annos), -1, 3)
else:
keypts = None
boxes = [
BoxMode.convert(x["bbox"], x["bbox_mode"], BoxMode.XYXY_ABS)
if len(x["bbox"]) == 4
else x["bbox"]
for x in annos
]
colors = None
category_ids = [x["category_id"] for x in annos]
if self._instance_mode == ColorMode.SEGMENTATION and self.metadata.get("thing_colors"):
colors = [
self._jitter([x / 255 for x in self.metadata.thing_colors[c]])
for c in category_ids
]
names = self.metadata.get("thing_classes", None)
labels = _create_text_labels(
category_ids,
scores=None,
class_names=names,
is_crowd=[x.get("iscrowd", 0) for x in annos],
)
self.overlay_instances(
labels=labels, boxes=boxes, masks=masks, keypoints=keypts, assigned_colors=colors
)
sem_seg = dic.get("sem_seg", None)
if sem_seg is None and "sem_seg_file_name" in dic:
with PathManager.open(dic["sem_seg_file_name"], "rb") as f:
sem_seg = Image.open(f)
sem_seg = np.asarray(sem_seg, dtype="uint8")
if sem_seg is not None:
self.draw_sem_seg(sem_seg, area_threshold=0, alpha=0.5)
pan_seg = dic.get("pan_seg", None)
if pan_seg is None and "pan_seg_file_name" in dic:
with PathManager.open(dic["pan_seg_file_name"], "rb") as f:
pan_seg = Image.open(f)
pan_seg = np.asarray(pan_seg)
from panopticapi.utils import rgb2id
pan_seg = rgb2id(pan_seg)
if pan_seg is not None:
segments_info = dic["segments_info"]
pan_seg = torch.tensor(pan_seg)
self.draw_panoptic_seg(pan_seg, segments_info, area_threshold=0, alpha=0.5)
return self.output
def overlay_instances(
self,
*,
boxes=None,
labels=None,
masks=None,
keypoints=None,
assigned_colors=None,
alpha=0.5,
):
"""
Args:
boxes (Boxes, RotatedBoxes or ndarray): either a :class:`Boxes`,
or an Nx4 numpy array of XYXY_ABS format for the N objects in a single image,
or a :class:`RotatedBoxes`,
or an Nx5 numpy array of (x_center, y_center, width, height, angle_degrees) format
for the N objects in a single image,
labels (list[str]): the text to be displayed for each instance.
masks (masks-like object): Supported types are:
* :class:`detectron2.structures.PolygonMasks`,
:class:`detectron2.structures.BitMasks`.
* list[list[ndarray]]: contains the segmentation masks for all objects in one image.
The first level of the list corresponds to individual instances. The second
level to all the polygon that compose the instance, and the third level
to the polygon coordinates. The third level should have the format of
[x0, y0, x1, y1, ..., xn, yn] (n >= 3).
* list[ndarray]: each ndarray is a binary mask of shape (H, W).
* list[dict]: each dict is a COCO-style RLE.
keypoints (Keypoint or array like): an array-like object of shape (N, K, 3),
where the N is the number of instances and K is the number of keypoints.
The last dimension corresponds to (x, y, visibility or score).
assigned_colors (list[matplotlib.colors]): a list of colors, where each color
corresponds to each mask or box in the image. Refer to 'matplotlib.colors'
for full list of formats that the colors are accepted in.
Returns:
output (VisImage): image object with visualizations.
"""
num_instances = 0
if boxes is not None:
boxes = self._convert_boxes(boxes)
num_instances = len(boxes)
if masks is not None:
masks = self._convert_masks(masks)
if num_instances:
assert len(masks) == num_instances
else:
num_instances = len(masks)
if keypoints is not None:
if num_instances:
assert len(keypoints) == num_instances
else:
num_instances = len(keypoints)
keypoints = self._convert_keypoints(keypoints)
if labels is not None:
assert len(labels) == num_instances
if assigned_colors is None:
assigned_colors = [random_color(rgb=True, maximum=1) for _ in range(num_instances)]
if num_instances == 0:
return self.output
if boxes is not None and boxes.shape[1] == 5:
return self.overlay_rotated_instances(
boxes=boxes, labels=labels, assigned_colors=assigned_colors
)
# Display in largest to smallest order to reduce occlusion.
areas = None
if boxes is not None:
areas = np.prod(boxes[:, 2:] - boxes[:, :2], axis=1)
elif masks is not None:
areas = np.asarray([x.area() for x in masks])
if areas is not None:
sorted_idxs = np.argsort(-areas).tolist()
# Re-order overlapped instances in descending order.
boxes = boxes[sorted_idxs] if boxes is not None else None
labels = [labels[k] for k in sorted_idxs] if labels is not None else None
masks = [masks[idx] for idx in sorted_idxs] if masks is not None else None
assigned_colors = [assigned_colors[idx] for idx in sorted_idxs]
keypoints = keypoints[sorted_idxs] if keypoints is not None else None
for i in range(num_instances):
color = assigned_colors[i]
if boxes is not None:
self.draw_box(boxes[i], edge_color=color)
if masks is not None:
for segment in masks[i].polygons:
self.draw_polygon(segment.reshape(-1, 2), color, alpha=alpha)
if labels is not None:
# first get a box
if boxes is not None:
x0, y0, x1, y1 = boxes[i]
text_pos = (x0, y0) # if drawing boxes, put text on the box corner.
horiz_align = "left"
elif masks is not None:
# skip small mask without polygon
if len(masks[i].polygons) == 0:
continue
x0, y0, x1, y1 = masks[i].bbox()
# draw text in the center (defined by median) when box is not drawn
# median is less sensitive to outliers.
text_pos = np.median(masks[i].mask.nonzero(), axis=1)[::-1]
horiz_align = "center"
else:
continue # drawing the box confidence for keypoints isn't very useful.
# for small objects, draw text at the side to avoid occlusion
instance_area = (y1 - y0) * (x1 - x0)
if (
instance_area < _SMALL_OBJECT_AREA_THRESH * self.output.scale
or y1 - y0 < 40 * self.output.scale
):
if y1 >= self.output.height - 5:
text_pos = (x1, y0)
else:
text_pos = (x0, y1)
height_ratio = (y1 - y0) / np.sqrt(self.output.height * self.output.width)
lighter_color = self._change_color_brightness(color, brightness_factor=0.7)
font_size = (
np.clip((height_ratio - 0.02) / 0.08 + 1, 1.2, 2)
* 0.5
* self._default_font_size
)
self.draw_text(
labels[i],
text_pos,
color=lighter_color,
horizontal_alignment=horiz_align,
font_size=font_size,
)
# draw keypoints
if keypoints is not None:
for keypoints_per_instance in keypoints:
self.draw_and_connect_keypoints(keypoints_per_instance)
return self.output
def overlay_rotated_instances(self, boxes=None, labels=None, assigned_colors=None):
"""
Args:
boxes (ndarray): an Nx5 numpy array of
(x_center, y_center, width, height, angle_degrees) format
for the N objects in a single image.
labels (list[str]): the text to be displayed for each instance.
assigned_colors (list[matplotlib.colors]): a list of colors, where each color
corresponds to each mask or box in the image. Refer to 'matplotlib.colors'
for full list of formats that the colors are accepted in.
Returns:
output (VisImage): image object with visualizations.
"""
num_instances = len(boxes)
if assigned_colors is None:
assigned_colors = [random_color(rgb=True, maximum=1) for _ in range(num_instances)]
if num_instances == 0:
return self.output
# Display in largest to smallest order to reduce occlusion.
if boxes is not None:
areas = boxes[:, 2] * boxes[:, 3]
sorted_idxs = np.argsort(-areas).tolist()
# Re-order overlapped instances in descending order.
boxes = boxes[sorted_idxs]
labels = [labels[k] for k in sorted_idxs] if labels is not None else None
colors = [assigned_colors[idx] for idx in sorted_idxs]
for i in range(num_instances):
self.draw_rotated_box_with_label(
boxes[i], edge_color=colors[i], label=labels[i] if labels is not None else None
)
return self.output
def draw_and_connect_keypoints(self, keypoints):
"""
Draws keypoints of an instance and follows the rules for keypoint connections
to draw lines between appropriate keypoints. This follows color heuristics for
line color.
Args:
keypoints (Tensor): a tensor of shape (K, 3), where K is the number of keypoints
and the last dimension corresponds to (x, y, probability).
Returns:
output (VisImage): image object with visualizations.
"""
visible = {}
keypoint_names = self.metadata.get("keypoint_names")
for idx, keypoint in enumerate(keypoints):
# draw keypoint
x, y, prob = keypoint
if prob > self.keypoint_threshold:
self.draw_circle((x, y), color=_RED)
if keypoint_names:
keypoint_name = keypoint_names[idx]
visible[keypoint_name] = (x, y)
if self.metadata.get("keypoint_connection_rules"):
for kp0, kp1, color in self.metadata.keypoint_connection_rules:
if kp0 in visible and kp1 in visible:
x0, y0 = visible[kp0]
x1, y1 = visible[kp1]
color = tuple(x / 255.0 for x in color)
self.draw_line([x0, x1], [y0, y1], color=color)
# draw lines from nose to mid-shoulder and mid-shoulder to mid-hip
# Note that this strategy is specific to person keypoints.
# For other keypoints, it should just do nothing
try:
ls_x, ls_y = visible["left_shoulder"]
rs_x, rs_y = visible["right_shoulder"]
mid_shoulder_x, mid_shoulder_y = (ls_x + rs_x) / 2, (ls_y + rs_y) / 2
except KeyError:
pass
else:
# draw line from nose to mid-shoulder
nose_x, nose_y = visible.get("nose", (None, None))
if nose_x is not None:
self.draw_line([nose_x, mid_shoulder_x], [nose_y, mid_shoulder_y], color=_RED)
try:
# draw line from mid-shoulder to mid-hip
lh_x, lh_y = visible["left_hip"]
rh_x, rh_y = visible["right_hip"]
except KeyError:
pass
else:
mid_hip_x, mid_hip_y = (lh_x + rh_x) / 2, (lh_y + rh_y) / 2
self.draw_line([mid_hip_x, mid_shoulder_x], [mid_hip_y, mid_shoulder_y], color=_RED)
return self.output
"""
Primitive drawing functions:
"""
def draw_text(
self,
text,
position,
*,
font_size=None,
color="g",
horizontal_alignment="center",
rotation=0,
):
"""
Args:
text (str): class label
position (tuple): a tuple of the x and y coordinates to place text on image.
font_size (int, optional): font of the text. If not provided, a font size
proportional to the image width is calculated and used.
color: color of the text. Refer to `matplotlib.colors` for full list
of formats that are accepted.
horizontal_alignment (str): see `matplotlib.text.Text`
rotation: rotation angle in degrees CCW
Returns:
output (VisImage): image object with text drawn.
"""
if not font_size:
font_size = self._default_font_size
# since the text background is dark, we don't want the text to be dark
color = np.maximum(list(mplc.to_rgb(color)), 0.2)
color[np.argmax(color)] = max(0.8, np.max(color))
x, y = position
self.output.ax.text(
x,
y,
text,
size=font_size * self.output.scale,
family="sans-serif",
bbox={"facecolor": "black", "alpha": 0.8, "pad": 0.7, "edgecolor": "none"},
verticalalignment="top",
horizontalalignment=horizontal_alignment,
color=color,
zorder=10,
rotation=rotation,
)
return self.output
def draw_box(self, box_coord, alpha=0.5, edge_color="g", line_style="-"):
"""
Args:
box_coord (tuple): a tuple containing x0, y0, x1, y1 coordinates, where x0 and y0
are the coordinates of the image's top left corner. x1 and y1 are the
coordinates of the image's bottom right corner.
alpha (float): blending efficient. Smaller values lead to more transparent masks.
edge_color: color of the outline of the box. Refer to `matplotlib.colors`
for full list of formats that are accepted.
line_style (string): the string to use to create the outline of the boxes.
Returns:
output (VisImage): image object with box drawn.
"""
x0, y0, x1, y1 = box_coord
width = x1 - x0
height = y1 - y0
linewidth = max(self._default_font_size / 4, 1)
self.output.ax.add_patch(
mpl.patches.Rectangle(
(x0, y0),
width,
height,
fill=False,
edgecolor=edge_color,
linewidth=linewidth * self.output.scale,
alpha=alpha,
linestyle=line_style,
)
)
return self.output
def draw_rotated_box_with_label(
self, rotated_box, alpha=0.5, edge_color="g", line_style="-", label=None
):
"""
Draw a rotated box with label on its top-left corner.
Args:
rotated_box (tuple): a tuple containing (cnt_x, cnt_y, w, h, angle),
where cnt_x and cnt_y are the center coordinates of the box.
w and h are the width and height of the box. angle represents how
many degrees the box is rotated CCW with regard to the 0-degree box.
alpha (float): blending efficient. Smaller values lead to more transparent masks.
edge_color: color of the outline of the box. Refer to `matplotlib.colors`
for full list of formats that are accepted.
line_style (string): the string to use to create the outline of the boxes.
label (string): label for rotated box. It will not be rendered when set to None.
Returns:
output (VisImage): image object with box drawn.
"""
cnt_x, cnt_y, w, h, angle = rotated_box
area = w * h
# use thinner lines when the box is small
linewidth = self._default_font_size / (
6 if area < _SMALL_OBJECT_AREA_THRESH * self.output.scale else 3
)
theta = angle * math.pi / 180.0
c = math.cos(theta)
s = math.sin(theta)
rect = [(-w / 2, h / 2), (-w / 2, -h / 2), (w / 2, -h / 2), (w / 2, h / 2)]
# x: left->right ; y: top->down
rotated_rect = [(s * yy + c * xx + cnt_x, c * yy - s * xx + cnt_y) for (xx, yy) in rect]
for k in range(4):
j = (k + 1) % 4
self.draw_line(
[rotated_rect[k][0], rotated_rect[j][0]],
[rotated_rect[k][1], rotated_rect[j][1]],
color=edge_color,
linestyle="--" if k == 1 else line_style,
linewidth=linewidth,
)
if label is not None:
text_pos = rotated_rect[1] # topleft corner
height_ratio = h / np.sqrt(self.output.height * self.output.width)
label_color = self._change_color_brightness(edge_color, brightness_factor=0.7)
font_size = (
np.clip((height_ratio - 0.02) / 0.08 + 1, 1.2, 2) * 0.5 * self._default_font_size
)
self.draw_text(label, text_pos, color=label_color, font_size=font_size, rotation=angle)
return self.output
def draw_circle(self, circle_coord, color, radius=3):
"""
Args:
circle_coord (list(int) or tuple(int)): contains the x and y coordinates
of the center of the circle.
color: color of the polygon. Refer to `matplotlib.colors` for a full list of
formats that are accepted.
radius (int): radius of the circle.
Returns:
output (VisImage): image object with box drawn.
"""
x, y = circle_coord
self.output.ax.add_patch(
mpl.patches.Circle(circle_coord, radius=radius, fill=True, color=color)
)
return self.output
def draw_line(self, x_data, y_data, color, linestyle="-", linewidth=None):
"""
Args:
x_data (list[int]): a list containing x values of all the points being drawn.
Length of list should match the length of y_data.
y_data (list[int]): a list containing y values of all the points being drawn.
Length of list should match the length of x_data.
color: color of the line. Refer to `matplotlib.colors` for a full list of
formats that are accepted.
linestyle: style of the line. Refer to `matplotlib.lines.Line2D`
for a full list of formats that are accepted.
linewidth (float or None): width of the line. When it's None,
a default value will be computed and used.
Returns:
output (VisImage): image object with line drawn.
"""
if linewidth is None:
linewidth = self._default_font_size / 3
linewidth = max(linewidth, 1)
self.output.ax.add_line(
mpl.lines.Line2D(
x_data,
y_data,
linewidth=linewidth * self.output.scale,
color=color,
linestyle=linestyle,
)
)
return self.output
def draw_binary_mask(
self, binary_mask, color=None, *, edge_color=None, text=None, alpha=0.5, area_threshold=0
):
"""
Args:
binary_mask (ndarray): numpy array of shape (H, W), where H is the image height and
W is the image width. Each value in the array is either a 0 or 1 value of uint8
type.
color: color of the mask. Refer to `matplotlib.colors` for a full list of
formats that are accepted. If None, will pick a random color.
edge_color: color of the polygon edges. Refer to `matplotlib.colors` for a
full list of formats that are accepted.
text (str): if None, will be drawn in the object's center of mass.
alpha (float): blending efficient. Smaller values lead to more transparent masks.
area_threshold (float): a connected component small than this will not be shown.
Returns:
output (VisImage): image object with mask drawn.
"""
if color is None:
color = random_color(rgb=True, maximum=1)
color = mplc.to_rgb(color)
has_valid_segment = False
binary_mask = binary_mask.astype("uint8") # opencv needs uint8
mask = GenericMask(binary_mask, self.output.height, self.output.width)
shape2d = (binary_mask.shape[0], binary_mask.shape[1])
if not mask.has_holes:
# draw polygons for regular masks
for segment in mask.polygons:
area = mask_util.area(mask_util.frPyObjects([segment], shape2d[0], shape2d[1]))
if area < (area_threshold or 0):
continue
has_valid_segment = True
segment = segment.reshape(-1, 2)
self.draw_polygon(segment, color=color, edge_color=edge_color, alpha=alpha)
else:
# TODO: Use Path/PathPatch to draw vector graphics:
# https://stackoverflow.com/questions/8919719/how-to-plot-a-complex-polygon
rgba = np.zeros(shape2d + (4,), dtype="float32")
rgba[:, :, :3] = color
rgba[:, :, 3] = (mask.mask == 1).astype("float32") * alpha
has_valid_segment = True
self.output.ax.imshow(rgba, extent=(0, self.output.width, self.output.height, 0))
if text is not None and has_valid_segment:
# TODO sometimes drawn on wrong objects. the heuristics here can improve.
lighter_color = self._change_color_brightness(color, brightness_factor=0.7)
_num_cc, cc_labels, stats, centroids = cv2.connectedComponentsWithStats(binary_mask, 8)
largest_component_id = np.argmax(stats[1:, -1]) + 1
# draw text on the largest component, as well as other very large components.
for cid in range(1, _num_cc):
if cid == largest_component_id or stats[cid, -1] > _LARGE_MASK_AREA_THRESH:
# median is more stable than centroid
# center = centroids[largest_component_id]
center = np.median((cc_labels == cid).nonzero(), axis=1)[::-1]
self.draw_text(text, center, color=lighter_color)
return self.output
def draw_polygon(self, segment, color, edge_color=None, alpha=0.5):
"""
Args:
segment: numpy array of shape Nx2, containing all the points in the polygon.
color: color of the polygon. Refer to `matplotlib.colors` for a full list of
formats that are accepted.
edge_color: color of the polygon edges. Refer to `matplotlib.colors` for a
full list of formats that are accepted. If not provided, a darker shade
of the polygon color will be used instead.
alpha (float): blending efficient. Smaller values lead to more transparent masks.
Returns:
output (VisImage): image object with polygon drawn.
"""
if edge_color is None:
# make edge color darker than the polygon color
if alpha > 0.8:
edge_color = self._change_color_brightness(color, brightness_factor=-0.7)
else:
edge_color = color
edge_color = mplc.to_rgb(edge_color) + (1,)
polygon = mpl.patches.Polygon(
segment,
fill=True,
facecolor=mplc.to_rgb(color) + (alpha,),
edgecolor=edge_color,
linewidth=max(self._default_font_size // 15 * self.output.scale, 1),
)
self.output.ax.add_patch(polygon)
return self.output
"""
Internal methods:
"""
def _jitter(self, color):
"""
Randomly modifies given color to produce a slightly different color than the color given.
Args:
color (tuple[double]): a tuple of 3 elements, containing the RGB values of the color
picked. The values in the list are in the [0.0, 1.0] range.
Returns:
jittered_color (tuple[double]): a tuple of 3 elements, containing the RGB values of the
color after being jittered. The values in the list are in the [0.0, 1.0] range.
"""
color = mplc.to_rgb(color)
vec = np.random.rand(3)
# better to do it in another color space
vec = vec / np.linalg.norm(vec) * 0.5
res = np.clip(vec + color, 0, 1)
return tuple(res)
def _create_grayscale_image(self, mask=None):
"""
Create a grayscale version of the original image.
The colors in masked area, if given, will be kept.
"""
img_bw = self.img.astype("f4").mean(axis=2)
img_bw = np.stack([img_bw] * 3, axis=2)
if mask is not None:
img_bw[mask] = self.img[mask]
return img_bw
def _change_color_brightness(self, color, brightness_factor):
"""
Depending on the brightness_factor, gives a lighter or darker color i.e. a color with
less or more saturation than the original color.
Args:
color: color of the polygon. Refer to `matplotlib.colors` for a full list of
formats that are accepted.
brightness_factor (float): a value in [-1.0, 1.0] range. A lightness factor of
0 will correspond to no change, a factor in [-1.0, 0) range will result in
a darker color and a factor in (0, 1.0] range will result in a lighter color.
Returns:
modified_color (tuple[double]): a tuple containing the RGB values of the
modified color. Each value in the tuple is in the [0.0, 1.0] range.
"""
assert brightness_factor >= -1.0 and brightness_factor <= 1.0
color = mplc.to_rgb(color)
polygon_color = colorsys.rgb_to_hls(*mplc.to_rgb(color))
modified_lightness = polygon_color[1] + (brightness_factor * polygon_color[1])
modified_lightness = 0.0 if modified_lightness < 0.0 else modified_lightness
modified_lightness = 1.0 if modified_lightness > 1.0 else modified_lightness
modified_color = colorsys.hls_to_rgb(polygon_color[0], modified_lightness, polygon_color[2])
return modified_color
def _convert_boxes(self, boxes):
"""
Convert different format of boxes to an NxB array, where B = 4 or 5 is the box dimension.
"""
if isinstance(boxes, Boxes) or isinstance(boxes, RotatedBoxes):
return boxes.tensor.detach().numpy()
else:
return np.asarray(boxes)
def _convert_masks(self, masks_or_polygons):
"""
Convert different format of masks or polygons to a tuple of masks and polygons.
Returns:
list[GenericMask]:
"""
m = masks_or_polygons
if isinstance(m, PolygonMasks):
m = m.polygons
if isinstance(m, BitMasks):
m = m.tensor.numpy()
if isinstance(m, torch.Tensor):
m = m.numpy()
ret = []
for x in m:
if isinstance(x, GenericMask):
ret.append(x)
else:
ret.append(GenericMask(x, self.output.height, self.output.width))
return ret
def _convert_keypoints(self, keypoints):
if isinstance(keypoints, Keypoints):
keypoints = keypoints.tensor
keypoints = np.asarray(keypoints)
return keypoints
def get_output(self):
"""
Returns:
output (VisImage): the image output containing the visualizations added
to the image.
"""
return self.output
import re
def layout_rm_equation(layout_res):
rm_idxs = []
for idx, ele in enumerate(layout_res['layout_dets']):
if ele['category_id'] == 10:
rm_idxs.append(idx)
for idx in rm_idxs[::-1]:
del layout_res['layout_dets'][idx]
return layout_res
def get_croped_image(image_pil, bbox):
x_min, y_min, x_max, y_max = bbox
croped_img = image_pil.crop((x_min, y_min, x_max, y_max))
return croped_img
def latex_rm_whitespace(s: str):
"""Remove unnecessary whitespace from LaTeX code.
"""
text_reg = r'(\\(operatorname|mathrm|text|mathbf)\s?\*? {.*?})'
letter = '[a-zA-Z]'
noletter = '[\W_^\d]'
names = [x[0].replace(' ', '') for x in re.findall(text_reg, s)]
s = re.sub(text_reg, lambda match: str(names.pop(0)), s)
news = s
while True:
s = news
news = re.sub(r'(?!\\ )(%s)\s+?(%s)' % (noletter, noletter), r'\1\2', s)
news = re.sub(r'(?!\\ )(%s)\s+?(%s)' % (noletter, letter), r'\1\2', news)
news = re.sub(r'(%s)\s+?(%s)' % (letter, noletter), r'\1\2', news)
if news == s:
break
return s
\ No newline at end of file
import time
import copy
import base64
import cv2
import numpy as np
from io import BytesIO
from PIL import Image
from paddleocr import PaddleOCR
from paddleocr.ppocr.utils.logging import get_logger
from paddleocr.ppocr.utils.utility import check_and_read, alpha_to_color, binarize_img
from paddleocr.tools.infer.utility import draw_ocr_box_txt, get_rotate_crop_image, get_minarea_rect_crop
from magic_pdf.libs.boxbase import __is_overlaps_y_exceeds_threshold
from magic_pdf.pre_proc.ocr_dict_merge import merge_spans_to_line
logger = get_logger()
def img_decode(content: bytes):
np_arr = np.frombuffer(content, dtype=np.uint8)
return cv2.imdecode(np_arr, cv2.IMREAD_UNCHANGED)
def check_img(img):
if isinstance(img, bytes):
img = img_decode(img)
if isinstance(img, str):
image_file = img
img, flag_gif, flag_pdf = check_and_read(image_file)
if not flag_gif and not flag_pdf:
with open(image_file, 'rb') as f:
img_str = f.read()
img = img_decode(img_str)
if img is None:
try:
buf = BytesIO()
image = BytesIO(img_str)
im = Image.open(image)
rgb = im.convert('RGB')
rgb.save(buf, 'jpeg')
buf.seek(0)
image_bytes = buf.read()
data_base64 = str(base64.b64encode(image_bytes),
encoding="utf-8")
image_decode = base64.b64decode(data_base64)
img_array = np.frombuffer(image_decode, np.uint8)
img = cv2.imdecode(img_array, cv2.IMREAD_COLOR)
except:
logger.error("error in loading image:{}".format(image_file))
return None
if img is None:
logger.error("error in loading image:{}".format(image_file))
return None
if isinstance(img, np.ndarray) and len(img.shape) == 2:
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
return img
def sorted_boxes(dt_boxes):
"""
Sort text boxes in order from top to bottom, left to right
args:
dt_boxes(array):detected text boxes with shape [4, 2]
return:
sorted boxes(array) with shape [4, 2]
"""
num_boxes = dt_boxes.shape[0]
sorted_boxes = sorted(dt_boxes, key=lambda x: (x[0][1], x[0][0]))
_boxes = list(sorted_boxes)
for i in range(num_boxes - 1):
for j in range(i, -1, -1):
if abs(_boxes[j + 1][0][1] - _boxes[j][0][1]) < 10 and \
(_boxes[j + 1][0][0] < _boxes[j][0][0]):
tmp = _boxes[j]
_boxes[j] = _boxes[j + 1]
_boxes[j + 1] = tmp
else:
break
return _boxes
def bbox_to_points(bbox):
""" 将bbox格式转换为四个顶点的数组 """
x0, y0, x1, y1 = bbox
return np.array([[x0, y0], [x1, y0], [x1, y1], [x0, y1]]).astype('float32')
def points_to_bbox(points):
""" 将四个顶点的数组转换为bbox格式 """
x0, y0 = points[0]
x1, _ = points[1]
_, y1 = points[2]
return [x0, y0, x1, y1]
def merge_intervals(intervals):
# Sort the intervals based on the start value
intervals.sort(key=lambda x: x[0])
merged = []
for interval in intervals:
# If the list of merged intervals is empty or if the current
# interval does not overlap with the previous, simply append it.
if not merged or merged[-1][1] < interval[0]:
merged.append(interval)
else:
# Otherwise, there is overlap, so we merge the current and previous intervals.
merged[-1][1] = max(merged[-1][1], interval[1])
return merged
def remove_intervals(original, masks):
# Merge all mask intervals
merged_masks = merge_intervals(masks)
result = []
original_start, original_end = original
for mask in merged_masks:
mask_start, mask_end = mask
# If the mask starts after the original range, ignore it
if mask_start > original_end:
continue
# If the mask ends before the original range starts, ignore it
if mask_end < original_start:
continue
# Remove the masked part from the original range
if original_start < mask_start:
result.append([original_start, mask_start - 1])
original_start = max(mask_end + 1, original_start)
# Add the remaining part of the original range, if any
if original_start <= original_end:
result.append([original_start, original_end])
return result
def update_det_boxes(dt_boxes, mfd_res):
new_dt_boxes = []
for text_box in dt_boxes:
text_bbox = points_to_bbox(text_box)
masks_list = []
for mf_box in mfd_res:
mf_bbox = mf_box['bbox']
if __is_overlaps_y_exceeds_threshold(text_bbox, mf_bbox):
masks_list.append([mf_bbox[0], mf_bbox[2]])
text_x_range = [text_bbox[0], text_bbox[2]]
text_remove_mask_range = remove_intervals(text_x_range, masks_list)
temp_dt_box = []
for text_remove_mask in text_remove_mask_range:
temp_dt_box.append(bbox_to_points([text_remove_mask[0], text_bbox[1], text_remove_mask[1], text_bbox[3]]))
if len(temp_dt_box) > 0:
new_dt_boxes.extend(temp_dt_box)
return new_dt_boxes
def merge_overlapping_spans(spans):
"""
Merges overlapping spans on the same line.
:param spans: A list of span coordinates [(x1, y1, x2, y2), ...]
:return: A list of merged spans
"""
# Return an empty list if the input spans list is empty
if not spans:
return []
# Sort spans by their starting x-coordinate
spans.sort(key=lambda x: x[0])
# Initialize the list of merged spans
merged = []
for span in spans:
# Unpack span coordinates
x1, y1, x2, y2 = span
# If the merged list is empty or there's no horizontal overlap, add the span directly
if not merged or merged[-1][2] < x1:
merged.append(span)
else:
# If there is horizontal overlap, merge the current span with the previous one
last_span = merged.pop()
# Update the merged span's top-left corner to the smaller (x1, y1) and bottom-right to the larger (x2, y2)
x1 = min(last_span[0], x1)
y1 = min(last_span[1], y1)
x2 = max(last_span[2], x2)
y2 = max(last_span[3], y2)
# Add the merged span back to the list
merged.append((x1, y1, x2, y2))
# Return the list of merged spans
return merged
def merge_det_boxes(dt_boxes):
"""
Merge detection boxes.
This function takes a list of detected bounding boxes, each represented by four corner points.
The goal is to merge these bounding boxes into larger text regions.
Parameters:
dt_boxes (list): A list containing multiple text detection boxes, where each box is defined by four corner points.
Returns:
list: A list containing the merged text regions, where each region is represented by four corner points.
"""
# Convert the detection boxes into a dictionary format with bounding boxes and type
dt_boxes_dict_list = []
for text_box in dt_boxes:
text_bbox = points_to_bbox(text_box)
text_box_dict = {
'bbox': text_bbox,
'type': 'text',
}
dt_boxes_dict_list.append(text_box_dict)
# Merge adjacent text regions into lines
lines = merge_spans_to_line(dt_boxes_dict_list)
# Initialize a new list for storing the merged text regions
new_dt_boxes = []
for line in lines:
line_bbox_list = []
for span in line:
line_bbox_list.append(span['bbox'])
# Merge overlapping text regions within the same line
merged_spans = merge_overlapping_spans(line_bbox_list)
# Convert the merged text regions back to point format and add them to the new detection box list
for span in merged_spans:
new_dt_boxes.append(bbox_to_points(span))
return new_dt_boxes
class ModifiedPaddleOCR(PaddleOCR):
def ocr(self, img, det=True, rec=True, cls=True, bin=False, inv=False, mfd_res=None, alpha_color=(255, 255, 255)):
"""
OCR with PaddleOCR
args:
img: img for OCR, support ndarray, img_path and list or ndarray
det: use text detection or not. If False, only rec will be exec. Default is True
rec: use text recognition or not. If False, only det will be exec. Default is True
cls: use angle classifier or not. Default is True. If True, the text with rotation of 180 degrees can be recognized. If no text is rotated by 180 degrees, use cls=False to get better performance. Text with rotation of 90 or 270 degrees can be recognized even if cls=False.
bin: binarize image to black and white. Default is False.
inv: invert image colors. Default is False.
alpha_color: set RGB color Tuple for transparent parts replacement. Default is pure white.
"""
assert isinstance(img, (np.ndarray, list, str, bytes))
if isinstance(img, list) and det == True:
logger.error('When input a list of images, det must be false')
exit(0)
if cls == True and self.use_angle_cls == False:
pass
# logger.warning(
# 'Since the angle classifier is not initialized, it will not be used during the forward process'
# )
img = check_img(img)
# for infer pdf file
if isinstance(img, list):
if self.page_num > len(img) or self.page_num == 0:
self.page_num = len(img)
imgs = img[:self.page_num]
else:
imgs = [img]
def preprocess_image(_image):
_image = alpha_to_color(_image, alpha_color)
if inv:
_image = cv2.bitwise_not(_image)
if bin:
_image = binarize_img(_image)
return _image
if det and rec:
ocr_res = []
for idx, img in enumerate(imgs):
img = preprocess_image(img)
dt_boxes, rec_res, _ = self.__call__(img, cls, mfd_res=mfd_res)
if not dt_boxes and not rec_res:
ocr_res.append(None)
continue
tmp_res = [[box.tolist(), res]
for box, res in zip(dt_boxes, rec_res)]
ocr_res.append(tmp_res)
return ocr_res
elif det and not rec:
ocr_res = []
for idx, img in enumerate(imgs):
img = preprocess_image(img)
dt_boxes, elapse = self.text_detector(img)
if not dt_boxes:
ocr_res.append(None)
continue
tmp_res = [box.tolist() for box in dt_boxes]
ocr_res.append(tmp_res)
return ocr_res
else:
ocr_res = []
cls_res = []
for idx, img in enumerate(imgs):
if not isinstance(img, list):
img = preprocess_image(img)
img = [img]
if self.use_angle_cls and cls:
img, cls_res_tmp, elapse = self.text_classifier(img)
if not rec:
cls_res.append(cls_res_tmp)
rec_res, elapse = self.text_recognizer(img)
ocr_res.append(rec_res)
if not rec:
return cls_res
return ocr_res
def __call__(self, img, cls=True, mfd_res=None):
time_dict = {'det': 0, 'rec': 0, 'cls': 0, 'all': 0}
if img is None:
logger.debug("no valid image provided")
return None, None, time_dict
start = time.time()
ori_im = img.copy()
dt_boxes, elapse = self.text_detector(img)
time_dict['det'] = elapse
if dt_boxes is None:
logger.debug("no dt_boxes found, elapsed : {}".format(elapse))
end = time.time()
time_dict['all'] = end - start
return None, None, time_dict
else:
logger.debug("dt_boxes num : {}, elapsed : {}".format(
len(dt_boxes), elapse))
img_crop_list = []
dt_boxes = sorted_boxes(dt_boxes)
dt_boxes = merge_det_boxes(dt_boxes)
if mfd_res:
bef = time.time()
dt_boxes = update_det_boxes(dt_boxes, mfd_res)
aft = time.time()
logger.debug("split text box by formula, new dt_boxes num : {}, elapsed : {}".format(
len(dt_boxes), aft - bef))
for bno in range(len(dt_boxes)):
tmp_box = copy.deepcopy(dt_boxes[bno])
if self.args.det_box_type == "quad":
img_crop = get_rotate_crop_image(ori_im, tmp_box)
else:
img_crop = get_minarea_rect_crop(ori_im, tmp_box)
img_crop_list.append(img_crop)
if self.use_angle_cls and cls:
img_crop_list, angle_list, elapse = self.text_classifier(
img_crop_list)
time_dict['cls'] = elapse
logger.debug("cls num : {}, elapsed : {}".format(
len(img_crop_list), elapse))
rec_res, elapse = self.text_recognizer(img_crop_list)
time_dict['rec'] = elapse
logger.debug("rec_res num : {}, elapsed : {}".format(
len(rec_res), elapse))
if self.args.save_crop_res:
self.draw_crop_rec_res(self.args.crop_res_save_dir, img_crop_list,
rec_res)
filter_boxes, filter_rec_res = [], []
for box, rec_result in zip(dt_boxes, rec_res):
text, score = rec_result
if score >= self.drop_score:
filter_boxes.append(box)
filter_rec_res.append(rec_result)
end = time.time()
time_dict['all'] = end - start
return filter_boxes, filter_rec_res, time_dict
\ No newline at end of file
from struct_eqtable.model import StructTable
from pypandoc import convert_text
class StructTableModel:
def __init__(self, model_path, max_new_tokens=2048, max_time=400, device = 'cpu'):
# init
self.model_path = model_path
self.max_new_tokens = max_new_tokens # maximum output tokens length
self.max_time = max_time # timeout for processing in seconds
if device == 'cuda':
self.model = StructTable(self.model_path, self.max_new_tokens, self.max_time).cuda()
else:
self.model = StructTable(self.model_path, self.max_new_tokens, self.max_time)
def image2latex(self, image) -> str:
table_latex = self.model.forward(image)
return table_latex
def image2html(self, image) -> str:
table_latex = self.image2latex(image)
table_html = convert_text(table_latex, 'html', format='latex')
return table_html
from paddleocr.ppstructure.table.predict_table import TableSystem
from paddleocr.ppstructure.utility import init_args
from magic_pdf.libs.Constants import *
import os
from PIL import Image
import numpy as np
class ppTableModel(object):
"""
This class is responsible for converting image of table into HTML format using a pre-trained model.
Attributes:
- table_sys: An instance of TableSystem initialized with parsed arguments.
Methods:
- __init__(config): Initializes the model with configuration parameters.
- img2html(image): Converts a PIL Image or NumPy array to HTML string.
- parse_args(**kwargs): Parses configuration arguments.
"""
def __init__(self, config):
"""
Parameters:
- config (dict): Configuration dictionary containing model_dir and device.
"""
args = self.parse_args(**config)
self.table_sys = TableSystem(args)
def img2html(self, image):
"""
Parameters:
- image (PIL.Image or np.ndarray): The image of the table to be converted.
Return:
- HTML (str): A string representing the HTML structure with content of the table.
"""
if isinstance(image, Image.Image):
image = np.array(image)
pred_res, _ = self.table_sys(image)
pred_html = pred_res["html"]
res = '<td><table border="1">' + pred_html.replace("<html><body><table>", "").replace("</table></body></html>",
"") + "</table></td>\n"
return res
def parse_args(self, **kwargs):
parser = init_args()
model_dir = kwargs.get("model_dir")
table_model_dir = os.path.join(model_dir, TABLE_MASTER_DIR)
table_char_dict_path = os.path.join(model_dir, TABLE_MASTER_DICT)
det_model_dir = os.path.join(model_dir, DETECT_MODEL_DIR)
rec_model_dir = os.path.join(model_dir, REC_MODEL_DIR)
rec_char_dict_path = os.path.join(model_dir, REC_CHAR_DICT)
device = kwargs.get("device", "cpu")
use_gpu = True if device == "cuda" else False
config = {
"use_gpu": use_gpu,
"table_max_len": kwargs.get("table_max_len", TABLE_MAX_LEN),
"table_algorithm": TABLE_MASTER,
"table_model_dir": table_model_dir,
"table_char_dict_path": table_char_dict_path,
"det_model_dir": det_model_dir,
"rec_model_dir": rec_model_dir,
"rec_char_dict_path": rec_char_dict_path,
}
parser.set_defaults(**config)
return parser.parse_args([])
import random
from loguru import logger
try:
from paddleocr import PPStructure
except ImportError:
logger.error('paddleocr not installed, please install by "pip install magic-pdf[lite]"')
exit(1)
def region_to_bbox(region):
x0 = region[0][0]
y0 = region[0][1]
x1 = region[2][0]
y1 = region[2][1]
return [x0, y0, x1, y1]
class CustomPaddleModel:
def __init__(self, ocr: bool = False, show_log: bool = False):
self.model = PPStructure(table=False, ocr=ocr, show_log=show_log)
def __call__(self, img,index,end_page_id):
try:
import cv2
except ImportError:
logger.error("opencv-python not installed, please install by pip.")
exit(1)
# 将RGB图片转换为BGR格式适配paddle
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
result = self.model(img)
spans = []
for line in result:
line.pop("img")
"""
为paddle输出适配type no.
title: 0 # 标题
text: 1 # 文本
header: 2 # abandon
footer: 2 # abandon
reference: 1 # 文本 or abandon
equation: 8 # 行间公式 block
equation: 14 # 行间公式 text
figure: 3 # 图片
figure_caption: 4 # 图片描述
table: 5 # 表格
table_caption: 6 # 表格描述
"""
if line["type"] == "title":
line["category_id"] = 0
elif line["type"] in ["text", "reference"]:
line["category_id"] = 1
elif line["type"] == "figure":
line["category_id"] = 3
elif line["type"] == "figure_caption":
line["category_id"] = 4
elif line["type"] == "table":
line["category_id"] = 5
elif line["type"] == "table_caption":
line["category_id"] = 6
elif line["type"] == "equation":
line["category_id"] = 8
elif line["type"] in ["header", "footer"]:
line["category_id"] = 2
else:
logger.warning(f"unknown type: {line['type']}")
# 兼容不输出score的paddleocr版本
if line.get("score") is None:
line["score"] = 0.5 + random.random() * 0.5
res = line.pop("res", None)
if res is not None and len(res) > 0:
for span in res:
new_span = {
"category_id": 15,
"bbox": region_to_bbox(span["text_region"]),
"score": span["confidence"],
"text": span["text"],
}
spans.append(new_span)
if len(spans) > 0:
result.extend(spans)
return result
import os
import unicodedata
from magic_pdf.para.commons import *
if sys.version_info[0] >= 3:
sys.stdout.reconfigure(encoding="utf-8") # type: ignore
class BlockContinuationProcessor:
"""
This class is used to process the blocks to detect block continuations.
"""
def __init__(self) -> None:
pass
def __is_similar_font_type(self, font_type1, font_type2, prefix_length_ratio=0.3):
"""
This function checks if the two font types are similar.
Definition of similar font types: the two font types have a common prefix,
and the length of the common prefix is at least a certain ratio of the length of the shorter font type.
Parameters
----------
font_type1 : str
font type 1
font_type2 : str
font type 2
prefix_length_ratio : float
minimum ratio of the common prefix length to the length of the shorter font type
Returns
-------
bool
True if the two font types are similar, False otherwise.
"""
if isinstance(font_type1, list):
font_type1 = font_type1[0] if font_type1 else ""
if isinstance(font_type2, list):
font_type2 = font_type2[0] if font_type2 else ""
if font_type1 == font_type2:
return True
# Find the length of the common prefix
common_prefix_length = len(os.path.commonprefix([font_type1, font_type2]))
# Calculate the minimum prefix length based on the ratio
min_prefix_length = int(min(len(font_type1), len(font_type2)) * prefix_length_ratio)
return common_prefix_length >= min_prefix_length
def __is_same_block_font(self, block1, block2):
"""
This function compares the font of block1 and block2
Parameters
----------
block1 : dict
block1
block2 : dict
block2
Returns
-------
is_same : bool
True if block1 and block2 have the same font, else False
"""
block_1_font_type = safe_get(block1, "block_font_type", "")
block_1_font_size = safe_get(block1, "block_font_size", 0)
block_1_avg_char_width = safe_get(block1, "avg_char_width", 0)
block_2_font_type = safe_get(block2, "block_font_type", "")
block_2_font_size = safe_get(block2, "block_font_size", 0)
block_2_avg_char_width = safe_get(block2, "avg_char_width", 0)
if isinstance(block_1_font_size, list):
block_1_font_size = block_1_font_size[0] if block_1_font_size else 0
if isinstance(block_2_font_size, list):
block_2_font_size = block_2_font_size[0] if block_2_font_size else 0
block_1_text = safe_get(block1, "text", "")
block_2_text = safe_get(block2, "text", "")
if block_1_avg_char_width == 0 or block_2_avg_char_width == 0:
return False
if not block_1_text or not block_2_text:
return False
else:
text_len_ratio = len(block_2_text) / len(block_1_text)
if text_len_ratio < 0.2:
avg_char_width_condition = (
abs(block_1_avg_char_width - block_2_avg_char_width) / min(block_1_avg_char_width, block_2_avg_char_width)
< 0.5
)
else:
avg_char_width_condition = (
abs(block_1_avg_char_width - block_2_avg_char_width) / min(block_1_avg_char_width, block_2_avg_char_width)
< 0.2
)
block_font_size_condtion = abs(block_1_font_size - block_2_font_size) < 1
return (
self.__is_similar_font_type(block_1_font_type, block_2_font_type)
and avg_char_width_condition
and block_font_size_condtion
)
def _is_alphabet_char(self, char):
if (char >= "\u0041" and char <= "\u005a") or (char >= "\u0061" and char <= "\u007a"):
return True
else:
return False
def _is_chinese_char(self, char):
if char >= "\u4e00" and char <= "\u9fa5":
return True
else:
return False
def _is_other_letter_char(self, char):
try:
cat = unicodedata.category(char)
if cat == "Lu" or cat == "Ll":
return not self._is_alphabet_char(char) and not self._is_chinese_char(char)
except TypeError:
print("The input to the function must be a single character.")
return False
def _is_year(self, s: str):
try:
number = int(s)
return 1900 <= number <= 2099
except ValueError:
return False
def __is_para_font_consistent(self, para_1, para_2):
"""
This function compares the font of para1 and para2
Parameters
----------
para1 : dict
para1
para2 : dict
para2
Returns
-------
is_same : bool
True if para1 and para2 have the same font, else False
"""
if para_1 is None or para_2 is None:
return False
para_1_font_type = safe_get(para_1, "para_font_type", "")
para_1_font_size = safe_get(para_1, "para_font_size", 0)
para_1_font_color = safe_get(para_1, "para_font_color", "")
para_2_font_type = safe_get(para_2, "para_font_type", "")
para_2_font_size = safe_get(para_2, "para_font_size", 0)
para_2_font_color = safe_get(para_2, "para_font_color", "")
if isinstance(para_1_font_type, list): # get the most common font type
para_1_font_type = max(set(para_1_font_type), key=para_1_font_type.count)
if isinstance(para_2_font_type, list):
para_2_font_type = max(set(para_2_font_type), key=para_2_font_type.count)
if isinstance(para_1_font_size, list): # compute average font type
para_1_font_size = sum(para_1_font_size) / len(para_1_font_size)
if isinstance(para_2_font_size, list): # compute average font type
para_2_font_size = sum(para_2_font_size) / len(para_2_font_size)
return (
self.__is_similar_font_type(para_1_font_type, para_2_font_type)
and abs(para_1_font_size - para_2_font_size) < 1.5
# and para_font_color1 == para_font_color2
)
def _is_para_puncs_consistent(self, para_1, para_2):
"""
This function determines whether para1 and para2 are originally from the same paragraph by checking the puncs of para1(former) and para2(latter)
Parameters
----------
para1 : dict
para1
para2 : dict
para2
Returns
-------
is_same : bool
True if para1 and para2 are from the same paragraph by using the puncs, else False
"""
para_1_text = safe_get(para_1, "para_text", "").strip()
para_2_text = safe_get(para_2, "para_text", "").strip()
para_1_bboxes = safe_get(para_1, "para_bbox", [])
para_1_font_sizes = safe_get(para_1, "para_font_size", 0)
para_2_bboxes = safe_get(para_2, "para_bbox", [])
para_2_font_sizes = safe_get(para_2, "para_font_size", 0)
# print_yellow(" Features of determine puncs_consistent:")
# print(f" para_1_text: {para_1_text}")
# print(f" para_2_text: {para_2_text}")
# print(f" para_1_bboxes: {para_1_bboxes}")
# print(f" para_2_bboxes: {para_2_bboxes}")
# print(f" para_1_font_sizes: {para_1_font_sizes}")
# print(f" para_2_font_sizes: {para_2_font_sizes}")
if is_nested_list(para_1_bboxes):
x0_1, y0_1, x1_1, y1_1 = para_1_bboxes[-1]
else:
x0_1, y0_1, x1_1, y1_1 = para_1_bboxes
if is_nested_list(para_2_bboxes):
x0_2, y0_2, x1_2, y1_2 = para_2_bboxes[0]
para_2_font_sizes = para_2_font_sizes[0] # type: ignore
else:
x0_2, y0_2, x1_2, y1_2 = para_2_bboxes
right_align_threshold = 0.5 * (para_1_font_sizes + para_2_font_sizes) * 0.8
are_two_paras_right_aligned = abs(x1_1 - x1_2) < right_align_threshold
left_indent_threshold = 0.5 * (para_1_font_sizes + para_2_font_sizes) * 0.8
is_para1_left_indent_than_papa2 = x0_1 - x0_2 > left_indent_threshold
is_para2_left_indent_than_papa1 = x0_2 - x0_1 > left_indent_threshold
# Check if either para_text1 or para_text2 is empty
if not para_1_text or not para_2_text:
return False
# Define the end puncs for a sentence to end and hyphen
end_puncs = [".", "?", "!", "。", "?", "!", "…"]
hyphen = ["-", "—"]
# Check if para_text1 ends with either hyphen or non-end punctuation or spaces
para_1_end_with_hyphen = para_1_text and para_1_text[-1] in hyphen
para_1_end_with_end_punc = para_1_text and para_1_text[-1] in end_puncs
para_1_end_with_space = para_1_text and para_1_text[-1] == " "
para_1_not_end_with_end_punc = para_1_text and para_1_text[-1] not in end_puncs
# print_yellow(f" para_1_end_with_hyphen: {para_1_end_with_hyphen}")
# print_yellow(f" para_1_end_with_end_punc: {para_1_end_with_end_punc}")
# print_yellow(f" para_1_not_end_with_end_punc: {para_1_not_end_with_end_punc}")
# print_yellow(f" para_1_end_with_space: {para_1_end_with_space}")
if para_1_end_with_hyphen: # If para_text1 ends with hyphen
# print_red(f"para_1 is end with hyphen.")
para_2_is_consistent = para_2_text and (
para_2_text[0] in hyphen
or (self._is_alphabet_char(para_2_text[0]) and para_2_text[0].islower())
or (self._is_chinese_char(para_2_text[0]))
or (self._is_other_letter_char(para_2_text[0]))
)
if para_2_is_consistent:
# print(f"para_2 is consistent.\n")
return True
else:
# print(f"para_2 is not consistent.\n")
pass
elif para_1_end_with_end_punc: # If para_text1 ends with ending punctuations
# print_red(f"para_1 is end with end_punc.")
para_2_is_consistent = (
para_2_text
and (
para_2_text[0] == " "
or (self._is_alphabet_char(para_2_text[0]) and para_2_text[0].isupper())
or (self._is_chinese_char(para_2_text[0]))
or (self._is_other_letter_char(para_2_text[0]))
)
and not is_para2_left_indent_than_papa1
)
if para_2_is_consistent:
# print(f"para_2 is consistent.\n")
return True
else:
# print(f"para_2 is not consistent.\n")
pass
elif para_1_not_end_with_end_punc: # If para_text1 is not end with ending punctuations
# print_red(f"para_1 is NOT end with end_punc.")
para_2_is_consistent = para_2_text and (
para_2_text[0] == " "
or (self._is_alphabet_char(para_2_text[0]) and para_2_text[0].islower())
or (self._is_alphabet_char(para_2_text[0]))
or (self._is_year(para_2_text[0:4]))
or (are_two_paras_right_aligned or is_para1_left_indent_than_papa2)
or (self._is_chinese_char(para_2_text[0]))
or (self._is_other_letter_char(para_2_text[0]))
)
if para_2_is_consistent:
# print(f"para_2 is consistent.\n")
return True
else:
# print(f"para_2 is not consistent.\n")
pass
elif para_1_end_with_space: # If para_text1 ends with space
# print_red(f"para_1 is end with space.")
para_2_is_consistent = para_2_text and (
para_2_text[0] == " "
or (self._is_alphabet_char(para_2_text[0]) and para_2_text[0].islower())
or (self._is_chinese_char(para_2_text[0]))
or (self._is_other_letter_char(para_2_text[0]))
)
if para_2_is_consistent:
# print(f"para_2 is consistent.\n")
return True
else:
pass
# print(f"para_2 is not consistent.\n")
return False
def _is_block_consistent(self, block1, block2):
"""
This function determines whether block1 and block2 are originally from the same block
Parameters
----------
block1 : dict
block1s
block2 : dict
block2
Returns
-------
is_same : bool
True if block1 and block2 are from the same block, else False
"""
return self.__is_same_block_font(block1, block2)
def _is_para_continued(self, para1, para2):
"""
This function determines whether para1 and para2 are originally from the same paragraph
Parameters
----------
para1 : dict
para1
para2 : dict
para2
Returns
-------
is_same : bool
True if para1 and para2 are from the same paragraph, else False
"""
is_para_font_consistent = self.__is_para_font_consistent(para1, para2)
is_para_puncs_consistent = self._is_para_puncs_consistent(para1, para2)
return is_para_font_consistent and is_para_puncs_consistent
def _are_boundaries_of_block_consistent(self, block1, block2):
"""
This function checks if the boundaries of block1 and block2 are consistent
Parameters
----------
block1 : dict
block1
block2 : dict
block2
Returns
-------
is_consistent : bool
True if the boundaries of block1 and block2 are consistent, else False
"""
last_line_of_block1 = block1["lines"][-1]
first_line_of_block2 = block2["lines"][0]
spans_of_last_line_of_block1 = last_line_of_block1["spans"]
spans_of_first_line_of_block2 = first_line_of_block2["spans"]
font_type_of_last_line_of_block1 = spans_of_last_line_of_block1[0]["font"].lower()
font_size_of_last_line_of_block1 = spans_of_last_line_of_block1[0]["size"]
font_color_of_last_line_of_block1 = spans_of_last_line_of_block1[0]["color"]
font_flags_of_last_line_of_block1 = spans_of_last_line_of_block1[0]["flags"]
font_type_of_first_line_of_block2 = spans_of_first_line_of_block2[0]["font"].lower()
font_size_of_first_line_of_block2 = spans_of_first_line_of_block2[0]["size"]
font_color_of_first_line_of_block2 = spans_of_first_line_of_block2[0]["color"]
font_flags_of_first_line_of_block2 = spans_of_first_line_of_block2[0]["flags"]
return (
self.__is_similar_font_type(font_type_of_last_line_of_block1, font_type_of_first_line_of_block2)
and abs(font_size_of_last_line_of_block1 - font_size_of_first_line_of_block2) < 1
# and font_color_of_last_line_of_block1 == font_color_of_first_line_of_block2
and font_flags_of_last_line_of_block1 == font_flags_of_first_line_of_block2
)
def _get_last_paragraph(self, block):
"""
Retrieves the last paragraph from a block.
Parameters
----------
block : dict
The block from which to retrieve the paragraph.
Returns
-------
dict
The last paragraph of the block.
"""
if block["paras"]:
last_para_key = list(block["paras"].keys())[-1]
return block["paras"][last_para_key]
else:
return None
def _get_first_paragraph(self, block):
"""
Retrieves the first paragraph from a block.
Parameters
----------
block : dict
The block from which to retrieve the paragraph.
Returns
-------
dict
The first paragraph of the block.
"""
if block["paras"]:
first_para_key = list(block["paras"].keys())[0]
return block["paras"][first_para_key]
else:
return None
def should_merge_next_para(self, curr_para, next_para):
if self._is_para_continued(curr_para, next_para):
return True
else:
return False
def batch_tag_paras(self, pdf_dict):
the_last_page_id = len(pdf_dict) - 1
for curr_page_idx, (curr_page_id, curr_page_content) in enumerate(pdf_dict.items()):
if curr_page_id.startswith("page_") and curr_page_content.get("para_blocks", []):
para_blocks_of_curr_page = curr_page_content["para_blocks"]
next_page_idx = curr_page_idx + 1
next_page_id = f"page_{next_page_idx}"
next_page_content = pdf_dict.get(next_page_id, {})
for i, current_block in enumerate(para_blocks_of_curr_page):
for para_id, curr_para in current_block["paras"].items():
curr_para["curr_para_location"] = [
curr_page_idx,
current_block["block_id"],
int(para_id.split("_")[-1]),
]
curr_para["next_para_location"] = None # 默认设置为None
curr_para["merge_next_para"] = False # 默认设置为False
next_block = para_blocks_of_curr_page[i + 1] if i < len(para_blocks_of_curr_page) - 1 else None
if next_block:
curr_block_last_para_key = list(current_block["paras"].keys())[-1]
curr_blk_last_para = current_block["paras"][curr_block_last_para_key]
next_block_first_para_key = list(next_block["paras"].keys())[0]
next_blk_first_para = next_block["paras"][next_block_first_para_key]
if self.should_merge_next_para(curr_blk_last_para, next_blk_first_para):
curr_blk_last_para["next_para_location"] = [
curr_page_idx,
next_block["block_id"],
int(next_block_first_para_key.split("_")[-1]),
]
curr_blk_last_para["merge_next_para"] = True
else:
# Handle the case where the next block is in a different page
curr_block_last_para_key = list(current_block["paras"].keys())[-1]
curr_blk_last_para = current_block["paras"][curr_block_last_para_key]
while not next_page_content.get("para_blocks", []) and next_page_idx <= the_last_page_id:
next_page_idx += 1
next_page_id = f"page_{next_page_idx}"
next_page_content = pdf_dict.get(next_page_id, {})
if next_page_content.get("para_blocks", []):
next_blk_first_para_key = list(next_page_content["para_blocks"][0]["paras"].keys())[0]
next_blk_first_para = next_page_content["para_blocks"][0]["paras"][next_blk_first_para_key]
if self.should_merge_next_para(curr_blk_last_para, next_blk_first_para):
curr_blk_last_para["next_para_location"] = [
next_page_idx,
next_page_content["para_blocks"][0]["block_id"],
int(next_blk_first_para_key.split("_")[-1]),
]
curr_blk_last_para["merge_next_para"] = True
return pdf_dict
def find_block_by_id(self, para_blocks, block_id):
for block in para_blocks:
if block.get("block_id") == block_id:
return block
return None
def batch_merge_paras(self, pdf_dict):
for page_id, page_content in pdf_dict.items():
if page_id.startswith("page_") and page_content.get("para_blocks", []):
para_blocks_of_page = page_content["para_blocks"]
for i in range(len(para_blocks_of_page)):
current_block = para_blocks_of_page[i]
paras = current_block["paras"]
for para_id, curr_para in list(paras.items()):
# 跳过标题段落
if curr_para.get("is_para_title"):
continue
while curr_para.get("merge_next_para"):
next_para_location = curr_para.get("next_para_location")
if not next_para_location:
break
next_page_idx, next_block_id, next_para_id = next_para_location
next_page_id = f"page_{next_page_idx}"
next_page_content = pdf_dict.get(next_page_id)
if not next_page_content:
break
next_block = self.find_block_by_id(next_page_content.get("para_blocks", []), next_block_id)
if not next_block:
break
next_para = next_block["paras"].get(f"para_{next_para_id}")
if not next_para or next_para.get("is_para_title"):
break
# 合并段落文本
curr_para_text = curr_para.get("para_text", "")
next_para_text = next_para.get("para_text", "")
curr_para["para_text"] = curr_para_text + " " + next_para_text
# 更新 next_para_location
curr_para["next_para_location"] = next_para.get("next_para_location")
# 将下一个段落文本置为空,表示已被合并
next_para["para_text"] = ""
# 更新 merge_next_para 标记
curr_para["merge_next_para"] = next_para.get("merge_next_para", False)
return pdf_dict
from magic_pdf.para.commons import *
if sys.version_info[0] >= 3:
sys.stdout.reconfigure(encoding="utf-8") # type: ignore
class BlockTerminationProcessor:
def __init__(self) -> None:
pass
def _is_consistent_lines(
self,
curr_line,
prev_line,
next_line,
consistent_direction, # 0 for prev, 1 for next, 2 for both
):
"""
This function checks if the line is consistent with its neighbors
Parameters
----------
curr_line : dict
current line
prev_line : dict
previous line
next_line : dict
next line
consistent_direction : int
0 for prev, 1 for next, 2 for both
Returns
-------
bool
True if the line is consistent with its neighbors, False otherwise.
"""
curr_line_font_size = curr_line["spans"][0]["size"]
curr_line_font_type = curr_line["spans"][0]["font"].lower()
if consistent_direction == 0:
if prev_line:
prev_line_font_size = prev_line["spans"][0]["size"]
prev_line_font_type = prev_line["spans"][0]["font"].lower()
return curr_line_font_size == prev_line_font_size and curr_line_font_type == prev_line_font_type
else:
return False
elif consistent_direction == 1:
if next_line:
next_line_font_size = next_line["spans"][0]["size"]
next_line_font_type = next_line["spans"][0]["font"].lower()
return curr_line_font_size == next_line_font_size and curr_line_font_type == next_line_font_type
else:
return False
elif consistent_direction == 2:
if prev_line and next_line:
prev_line_font_size = prev_line["spans"][0]["size"]
prev_line_font_type = prev_line["spans"][0]["font"].lower()
next_line_font_size = next_line["spans"][0]["size"]
next_line_font_type = next_line["spans"][0]["font"].lower()
return (curr_line_font_size == prev_line_font_size and curr_line_font_type == prev_line_font_type) and (
curr_line_font_size == next_line_font_size and curr_line_font_type == next_line_font_type
)
else:
return False
else:
return False
def _is_regular_line(self, curr_line_bbox, prev_line_bbox, next_line_bbox, avg_char_width, X0, X1, avg_line_height):
"""
This function checks if the line is a regular line
Parameters
----------
curr_line_bbox : list
bbox of the current line
prev_line_bbox : list
bbox of the previous line
next_line_bbox : list
bbox of the next line
avg_char_width : float
average of char widths
X0 : float
median of x0 values, which represents the left average boundary of the page
X1 : float
median of x1 values, which represents the right average boundary of the page
avg_line_height : float
average of line heights
Returns
-------
bool
True if the line is a regular line, False otherwise.
"""
horizontal_ratio = 0.5
vertical_ratio = 0.5
horizontal_thres = horizontal_ratio * avg_char_width
vertical_thres = vertical_ratio * avg_line_height
x0, y0, x1, y1 = curr_line_bbox
x0_near_X0 = abs(x0 - X0) < horizontal_thres
x1_near_X1 = abs(x1 - X1) < horizontal_thres
prev_line_is_end_of_para = prev_line_bbox and (abs(prev_line_bbox[2] - X1) > avg_char_width)
sufficient_spacing_above = False
if prev_line_bbox:
vertical_spacing_above = y1 - prev_line_bbox[3]
sufficient_spacing_above = vertical_spacing_above > vertical_thres
sufficient_spacing_below = False
if next_line_bbox:
vertical_spacing_below = next_line_bbox[1] - y0
sufficient_spacing_below = vertical_spacing_below > vertical_thres
return (
(sufficient_spacing_above or sufficient_spacing_below)
or (not x0_near_X0 and not x1_near_X1)
or prev_line_is_end_of_para
)
def _is_possible_start_of_para(self, curr_line, prev_line, next_line, X0, X1, avg_char_width, avg_font_size):
"""
This function checks if the line is a possible start of a paragraph
Parameters
----------
curr_line : dict
current line
prev_line : dict
previous line
next_line : dict
next line
X0 : float
median of x0 values, which represents the left average boundary of the page
X1 : float
median of x1 values, which represents the right average boundary of the page
avg_char_width : float
average of char widths
avg_line_height : float
average of line heights
Returns
-------
bool
True if the line is a possible start of a paragraph, False otherwise.
"""
start_confidence = 0.5 # Initial confidence of the line being a start of a paragraph
decision_path = [] # Record the decision path
curr_line_bbox = curr_line["bbox"]
prev_line_bbox = prev_line["bbox"] if prev_line else None
next_line_bbox = next_line["bbox"] if next_line else None
indent_ratio = 1
vertical_ratio = 1.5
vertical_thres = vertical_ratio * avg_font_size
left_horizontal_ratio = 0.5
left_horizontal_thres = left_horizontal_ratio * avg_char_width
right_horizontal_ratio = 2.5
right_horizontal_thres = right_horizontal_ratio * avg_char_width
x0, y0, x1, y1 = curr_line_bbox
indent_condition = x0 > X0 + indent_ratio * avg_char_width
if indent_condition:
start_confidence += 0.2
decision_path.append("indent_condition_met")
x0_near_X0 = abs(x0 - X0) < left_horizontal_thres
if x0_near_X0:
start_confidence += 0.1
decision_path.append("x0_near_X0")
x1_near_X1 = abs(x1 - X1) < right_horizontal_thres
if x1_near_X1:
start_confidence += 0.1
decision_path.append("x1_near_X1")
if prev_line is None:
prev_line_is_end_of_para = True
start_confidence += 0.2
decision_path.append("no_prev_line")
else:
prev_line_is_end_of_para, _, _ = self._is_possible_end_of_para(prev_line, next_line, X0, X1, avg_char_width)
if prev_line_is_end_of_para:
start_confidence += 0.1
decision_path.append("prev_line_is_end_of_para")
sufficient_spacing_above = False
if prev_line_bbox:
vertical_spacing_above = y1 - prev_line_bbox[3]
sufficient_spacing_above = vertical_spacing_above > vertical_thres
if sufficient_spacing_above:
start_confidence += 0.2
decision_path.append("sufficient_spacing_above")
sufficient_spacing_below = False
if next_line_bbox:
vertical_spacing_below = next_line_bbox[1] - y0
sufficient_spacing_below = vertical_spacing_below > vertical_thres
if sufficient_spacing_below:
start_confidence += 0.2
decision_path.append("sufficient_spacing_below")
is_regular_line = self._is_regular_line(
curr_line_bbox, prev_line_bbox, next_line_bbox, avg_char_width, X0, X1, avg_font_size
)
if is_regular_line:
start_confidence += 0.1
decision_path.append("is_regular_line")
is_start_of_para = (
(sufficient_spacing_above or sufficient_spacing_below)
or (indent_condition)
or (not indent_condition and x0_near_X0 and x1_near_X1 and not is_regular_line)
or prev_line_is_end_of_para
)
return (is_start_of_para, start_confidence, decision_path)
def _is_possible_end_of_para(self, curr_line, next_line, X0, X1, avg_char_width):
"""
This function checks if the line is a possible end of a paragraph
Parameters
----------
curr_line : dict
current line
next_line : dict
next line
X0 : float
median of x0 values, which represents the left average boundary of the page
X1 : float
median of x1 values, which represents the right average boundary of the page
avg_char_width : float
average of char widths
Returns
-------
bool
True if the line is a possible end of a paragraph, False otherwise.
"""
end_confidence = 0.5 # Initial confidence of the line being a end of a paragraph
decision_path = [] # Record the decision path
curr_line_bbox = curr_line["bbox"]
next_line_bbox = next_line["bbox"] if next_line else None
left_horizontal_ratio = 0.5
right_horizontal_ratio = 0.5
x0, _, x1, y1 = curr_line_bbox
next_x0, next_y0, _, _ = next_line_bbox if next_line_bbox else (0, 0, 0, 0)
x0_near_X0 = abs(x0 - X0) < left_horizontal_ratio * avg_char_width
if x0_near_X0:
end_confidence += 0.1
decision_path.append("x0_near_X0")
x1_smaller_than_X1 = x1 < X1 - right_horizontal_ratio * avg_char_width
if x1_smaller_than_X1:
end_confidence += 0.1
decision_path.append("x1_smaller_than_X1")
next_line_is_start_of_para = (
next_line_bbox
and (next_x0 > X0 + left_horizontal_ratio * avg_char_width)
and (not is_line_left_aligned_from_neighbors(curr_line_bbox, None, next_line_bbox, avg_char_width, direction=1))
)
if next_line_is_start_of_para:
end_confidence += 0.2
decision_path.append("next_line_is_start_of_para")
is_line_left_aligned_from_neighbors_bool = is_line_left_aligned_from_neighbors(
curr_line_bbox, None, next_line_bbox, avg_char_width
)
if is_line_left_aligned_from_neighbors_bool:
end_confidence += 0.1
decision_path.append("line_is_left_aligned_from_neighbors")
is_line_right_aligned_from_neighbors_bool = is_line_right_aligned_from_neighbors(
curr_line_bbox, None, next_line_bbox, avg_char_width
)
if not is_line_right_aligned_from_neighbors_bool:
end_confidence += 0.1
decision_path.append("line_is_not_right_aligned_from_neighbors")
is_end_of_para = end_with_punctuation(curr_line["text"]) and (
(x0_near_X0 and x1_smaller_than_X1)
or (is_line_left_aligned_from_neighbors_bool and not is_line_right_aligned_from_neighbors_bool)
)
return (is_end_of_para, end_confidence, decision_path)
def _cut_paras_per_block(
self,
block,
):
"""
Processes a raw block from PyMuPDF and returns the processed block.
Parameters
----------
raw_block : dict
A raw block from pymupdf.
Returns
-------
processed_block : dict
"""
def _construct_para(lines, is_block_title, para_title_level):
"""
Construct a paragraph from given lines.
"""
font_sizes = [span["size"] for line in lines for span in line["spans"]]
avg_font_size = sum(font_sizes) / len(font_sizes) if font_sizes else 0
font_colors = [span["color"] for line in lines for span in line["spans"]]
most_common_font_color = max(set(font_colors), key=font_colors.count) if font_colors else None
# font_types = [span["font"] for line in lines for span in line["spans"]]
# most_common_font_type = max(set(font_types), key=font_types.count) if font_types else None
font_type_lengths = {}
for line in lines:
for span in line["spans"]:
font_type = span["font"]
bbox_width = span["bbox"][2] - span["bbox"][0]
if font_type in font_type_lengths:
font_type_lengths[font_type] += bbox_width
else:
font_type_lengths[font_type] = bbox_width
# get the font type with the longest bbox width
most_common_font_type = max(font_type_lengths, key=font_type_lengths.get) if font_type_lengths else None # type: ignore
para_bbox = calculate_para_bbox(lines)
para_text = " ".join(line["text"] for line in lines)
return {
"para_bbox": para_bbox,
"para_text": para_text,
"para_font_type": most_common_font_type,
"para_font_size": avg_font_size,
"para_font_color": most_common_font_color,
"is_para_title": is_block_title,
"para_title_level": para_title_level,
}
block_bbox = block["bbox"]
block_text = block["text"]
block_lines = block["lines"]
X0 = safe_get(block, "X0", 0)
X1 = safe_get(block, "X1", 0)
avg_char_width = safe_get(block, "avg_char_width", 0)
avg_char_height = safe_get(block, "avg_char_height", 0)
avg_font_size = safe_get(block, "avg_font_size", 0)
is_block_title = safe_get(block, "is_block_title", False)
para_title_level = safe_get(block, "block_title_level", 0)
# Segment into paragraphs
para_ranges = []
in_paragraph = False
start_idx_of_para = None
# Create the processed paragraphs
processed_paras = {}
para_bboxes = []
end_idx_of_para = 0
for line_index, line in enumerate(block_lines):
curr_line = line
prev_line = block_lines[line_index - 1] if line_index > 0 else None
next_line = block_lines[line_index + 1] if line_index < len(block_lines) - 1 else None
"""
Start processing paragraphs.
"""
# Check if the line is the start of a paragraph
is_start_of_para, start_confidence, decision_path = self._is_possible_start_of_para(
curr_line, prev_line, next_line, X0, X1, avg_char_width, avg_font_size
)
if not in_paragraph and is_start_of_para:
in_paragraph = True
start_idx_of_para = line_index
# print_green(">>> Start of a paragraph")
# print(" curr_line_text: ", curr_line["text"])
# print(" start_confidence: ", start_confidence)
# print(" decision_path: ", decision_path)
# Check if the line is the end of a paragraph
is_end_of_para, end_confidence, decision_path = self._is_possible_end_of_para(
curr_line, next_line, X0, X1, avg_char_width
)
if in_paragraph and (is_end_of_para or not next_line):
para_ranges.append((start_idx_of_para, line_index))
start_idx_of_para = None
in_paragraph = False
# print_red(">>> End of a paragraph")
# print(" curr_line_text: ", curr_line["text"])
# print(" end_confidence: ", end_confidence)
# print(" decision_path: ", decision_path)
# Add the last paragraph if it is not added
if in_paragraph and start_idx_of_para is not None:
para_ranges.append((start_idx_of_para, len(block_lines) - 1))
# Process the matched paragraphs
for para_index, (start_idx, end_idx) in enumerate(para_ranges):
matched_lines = block_lines[start_idx : end_idx + 1]
para_properties = _construct_para(matched_lines, is_block_title, para_title_level)
para_key = f"para_{len(processed_paras)}"
processed_paras[para_key] = para_properties
para_bboxes.append(para_properties["para_bbox"])
end_idx_of_para = end_idx + 1
# Deal with the remaining lines
if end_idx_of_para < len(block_lines):
unmatched_lines = block_lines[end_idx_of_para:]
unmatched_properties = _construct_para(unmatched_lines, is_block_title, para_title_level)
unmatched_key = f"para_{len(processed_paras)}"
processed_paras[unmatched_key] = unmatched_properties
para_bboxes.append(unmatched_properties["para_bbox"])
block["paras"] = processed_paras
return block
def batch_process_blocks(self, pdf_dict):
"""
Parses the blocks of all pages.
Parameters
----------
pdf_dict : dict
PDF dictionary.
filter_blocks : list
List of bounding boxes to filter.
Returns
-------
result_dict : dict
Result dictionary.
"""
num_paras = 0
for page_id, page in pdf_dict.items():
if page_id.startswith("page_"):
para_blocks = []
if "para_blocks" in page.keys():
input_blocks = page["para_blocks"]
for input_block in input_blocks:
new_block = self._cut_paras_per_block(input_block)
para_blocks.append(new_block)
num_paras += len(new_block["paras"])
page["para_blocks"] = para_blocks
pdf_dict["statistics"]["num_paras"] = num_paras
return pdf_dict
import sys
from magic_pdf.libs.commons import fitz
from termcolor import cprint
if sys.version_info[0] >= 3:
sys.stdout.reconfigure(encoding="utf-8") # type: ignore
def open_pdf(pdf_path):
try:
pdf_document = fitz.open(pdf_path) # type: ignore
return pdf_document
except Exception as e:
print(f"无法打开PDF文件:{pdf_path}。原因是:{e}")
raise e
def print_green_on_red(text):
cprint(text, "green", "on_red", attrs=["bold"], end="\n\n")
def print_green(text):
print()
cprint(text, "green", attrs=["bold"], end="\n\n")
def print_red(text):
print()
cprint(text, "red", attrs=["bold"], end="\n\n")
def print_yellow(text):
print()
cprint(text, "yellow", attrs=["bold"], end="\n\n")
def safe_get(dict_obj, key, default):
val = dict_obj.get(key)
if val is None:
return default
else:
return val
def is_bbox_overlap(bbox1, bbox2):
"""
This function checks if bbox1 and bbox2 overlap or not
Parameters
----------
bbox1 : list
bbox1
bbox2 : list
bbox2
Returns
-------
bool
True if bbox1 and bbox2 overlap, else False
"""
x0_1, y0_1, x1_1, y1_1 = bbox1
x0_2, y0_2, x1_2, y1_2 = bbox2
if x0_1 > x1_2 or x0_2 > x1_1:
return False
if y0_1 > y1_2 or y0_2 > y1_1:
return False
return True
def is_in_bbox(bbox1, bbox2):
"""
This function checks if bbox1 is in bbox2
Parameters
----------
bbox1 : list
bbox1
bbox2 : list
bbox2
Returns
-------
bool
True if bbox1 is in bbox2, else False
"""
x0_1, y0_1, x1_1, y1_1 = bbox1
x0_2, y0_2, x1_2, y1_2 = bbox2
if x0_1 >= x0_2 and y0_1 >= y0_2 and x1_1 <= x1_2 and y1_1 <= y1_2:
return True
else:
return False
def calculate_para_bbox(lines):
"""
This function calculates the minimum bbox of the paragraph
Parameters
----------
lines : list
lines
Returns
-------
para_bbox : list
bbox of the paragraph
"""
x0 = min(line["bbox"][0] for line in lines)
y0 = min(line["bbox"][1] for line in lines)
x1 = max(line["bbox"][2] for line in lines)
y1 = max(line["bbox"][3] for line in lines)
return [x0, y0, x1, y1]
def is_line_right_aligned_from_neighbors(curr_line_bbox, prev_line_bbox, next_line_bbox, avg_char_width, direction=2):
"""
This function checks if the line is right aligned from its neighbors
Parameters
----------
curr_line_bbox : list
bbox of the current line
prev_line_bbox : list
bbox of the previous line
next_line_bbox : list
bbox of the next line
avg_char_width : float
average of char widths
direction : int
0 for prev, 1 for next, 2 for both
Returns
-------
bool
True if the line is right aligned from its neighbors, False otherwise.
"""
horizontal_ratio = 0.5
horizontal_thres = horizontal_ratio * avg_char_width
_, _, x1, _ = curr_line_bbox
_, _, prev_x1, _ = prev_line_bbox if prev_line_bbox else (0, 0, 0, 0)
_, _, next_x1, _ = next_line_bbox if next_line_bbox else (0, 0, 0, 0)
if direction == 0:
return abs(x1 - prev_x1) < horizontal_thres
elif direction == 1:
return abs(x1 - next_x1) < horizontal_thres
elif direction == 2:
return abs(x1 - prev_x1) < horizontal_thres and abs(x1 - next_x1) < horizontal_thres
else:
return False
def is_line_left_aligned_from_neighbors(curr_line_bbox, prev_line_bbox, next_line_bbox, avg_char_width, direction=2):
"""
This function checks if the line is left aligned from its neighbors
Parameters
----------
curr_line_bbox : list
bbox of the current line
prev_line_bbox : list
bbox of the previous line
next_line_bbox : list
bbox of the next line
avg_char_width : float
average of char widths
direction : int
0 for prev, 1 for next, 2 for both
Returns
-------
bool
True if the line is left aligned from its neighbors, False otherwise.
"""
horizontal_ratio = 0.5
horizontal_thres = horizontal_ratio * avg_char_width
x0, _, _, _ = curr_line_bbox
prev_x0, _, _, _ = prev_line_bbox if prev_line_bbox else (0, 0, 0, 0)
next_x0, _, _, _ = next_line_bbox if next_line_bbox else (0, 0, 0, 0)
if direction == 0:
return abs(x0 - prev_x0) < horizontal_thres
elif direction == 1:
return abs(x0 - next_x0) < horizontal_thres
elif direction == 2:
return abs(x0 - prev_x0) < horizontal_thres and abs(x0 - next_x0) < horizontal_thres
else:
return False
def end_with_punctuation(line_text):
"""
This function checks if the line ends with punctuation marks
"""
english_end_puncs = [".", "?", "!"]
chinese_end_puncs = ["。", "?", "!"]
end_puncs = english_end_puncs + chinese_end_puncs
last_non_space_char = None
for ch in line_text[::-1]:
if not ch.isspace():
last_non_space_char = ch
break
if last_non_space_char is None:
return False
return last_non_space_char in end_puncs
def is_nested_list(lst):
if isinstance(lst, list):
return any(isinstance(sub, list) for sub in lst)
return False
import math
from collections import defaultdict
from magic_pdf.para.commons import *
if sys.version_info[0] >= 3:
sys.stdout.reconfigure(encoding="utf-8") # type: ignore
class HeaderFooterProcessor:
def __init__(self) -> None:
pass
def get_most_common_bboxes(self, bboxes, page_height, position="top", threshold=0.25, num_bboxes=3, min_frequency=2):
"""
This function gets the most common bboxes from the bboxes
Parameters
----------
bboxes : list
bboxes
page_height : float
height of the page
position : str, optional
"top" or "bottom", by default "top"
threshold : float, optional
threshold, by default 0.25
num_bboxes : int, optional
number of bboxes to return, by default 3
min_frequency : int, optional
minimum frequency of the bbox, by default 2
Returns
-------
common_bboxes : list
common bboxes
"""
# Filter bbox by position
if position == "top":
filtered_bboxes = [bbox for bbox in bboxes if bbox[1] < page_height * threshold]
else:
filtered_bboxes = [bbox for bbox in bboxes if bbox[3] > page_height * (1 - threshold)]
# Find the most common bbox
bbox_count = defaultdict(int)
for bbox in filtered_bboxes:
bbox_count[tuple(bbox)] += 1
# Get the most frequently occurring bbox, but only consider it when the frequency exceeds min_frequency
common_bboxes = [
bbox for bbox, count in sorted(bbox_count.items(), key=lambda item: item[1], reverse=True) if count >= min_frequency
][:num_bboxes]
return common_bboxes
def detect_footer_header(self, result_dict, similarity_threshold=0.5):
"""
This function detects the header and footer of the document.
Parameters
----------
result_dict : dict
result dictionary
Returns
-------
result_dict : dict
result dictionary
"""
def compare_bbox_with_list(bbox, bbox_list, tolerance=1):
return any(all(abs(a - b) < tolerance for a, b in zip(bbox, common_bbox)) for common_bbox in bbox_list)
def is_single_line_block(block):
# Determine based on the width and height of the block
block_width = block["X1"] - block["X0"]
block_height = block["bbox"][3] - block["bbox"][1]
# If the height of the block is close to the average character height and the width is large, it is considered a single line
return block_height <= block["avg_char_height"] * 3 and block_width > block["avg_char_width"] * 3
# Traverse all blocks in the document
single_preproc_blocks = 0
total_blocks = 0
single_preproc_blocks = 0
for page_id, blocks in result_dict.items():
if page_id.startswith("page_"):
for block_key, block in blocks.items():
if block_key.startswith("block_"):
total_blocks += 1
if is_single_line_block(block):
single_preproc_blocks += 1
# If there are no blocks, skip the header and footer detection
if total_blocks == 0:
print("No blocks found. Skipping header/footer detection.")
return result_dict
# If most of the blocks are single-line, skip the header and footer detection
if single_preproc_blocks / total_blocks > 0.5: # 50% of the blocks are single-line
return result_dict
# Collect the bounding boxes of all blocks
all_bboxes = []
all_texts = []
for page_id, blocks in result_dict.items():
if page_id.startswith("page_"):
for block_key, block in blocks.items():
if block_key.startswith("block_"):
all_bboxes.append(block["bbox"])
# Get the height of the page
page_height = max(bbox[3] for bbox in all_bboxes)
# Get the most common bbox lists for headers and footers
common_header_bboxes = self.get_most_common_bboxes(all_bboxes, page_height, position="top") if all_bboxes else []
common_footer_bboxes = self.get_most_common_bboxes(all_bboxes, page_height, position="bottom") if all_bboxes else []
# Detect and mark headers and footers
for page_id, blocks in result_dict.items():
if page_id.startswith("page_"):
for block_key, block in blocks.items():
if block_key.startswith("block_"):
bbox = block["bbox"]
text = block["text"]
is_header = compare_bbox_with_list(bbox, common_header_bboxes)
is_footer = compare_bbox_with_list(bbox, common_footer_bboxes)
block["is_header"] = int(is_header)
block["is_footer"] = int(is_footer)
return result_dict
class NonHorizontalTextProcessor:
def __init__(self) -> None:
pass
def detect_non_horizontal_texts(self, result_dict):
"""
This function detects watermarks and vertical margin notes in the document.
Watermarks are identified by finding blocks with the same coordinates and frequently occurring identical texts across multiple pages.
If these conditions are met, the blocks are highly likely to be watermarks, as opposed to headers or footers, which can change from page to page.
If the direction of these blocks is not horizontal, they are definitely considered to be watermarks.
Vertical margin notes are identified by finding blocks with the same coordinates and frequently occurring identical texts across multiple pages.
If these conditions are met, the blocks are highly likely to be vertical margin notes, which typically appear on the left and right sides of the page.
If the direction of these blocks is vertical, they are definitely considered to be vertical margin notes.
Parameters
----------
result_dict : dict
The result dictionary.
Returns
-------
result_dict : dict
The updated result dictionary.
"""
# Dictionary to store information about potential watermarks
potential_watermarks = {}
potential_margin_notes = {}
for page_id, page_content in result_dict.items():
if page_id.startswith("page_"):
for block_id, block_data in page_content.items():
if block_id.startswith("block_"):
if "dir" in block_data:
coordinates_text = (block_data["bbox"], block_data["text"]) # Tuple of coordinates and text
angle = math.atan2(block_data["dir"][1], block_data["dir"][0])
angle = abs(math.degrees(angle))
if angle > 5 and angle < 85: # Check if direction is watermarks
if coordinates_text in potential_watermarks:
potential_watermarks[coordinates_text] += 1
else:
potential_watermarks[coordinates_text] = 1
if angle > 85 and angle < 105: # Check if direction is vertical
if coordinates_text in potential_margin_notes:
potential_margin_notes[coordinates_text] += 1 # Increment count
else:
potential_margin_notes[coordinates_text] = 1 # Initialize count
# Identify watermarks by finding entries with counts higher than a threshold (e.g., appearing on more than half of the pages)
watermark_threshold = len(result_dict) // 2
watermarks = {k: v for k, v in potential_watermarks.items() if v > watermark_threshold}
# Identify margin notes by finding entries with counts higher than a threshold (e.g., appearing on more than half of the pages)
margin_note_threshold = len(result_dict) // 2
margin_notes = {k: v for k, v in potential_margin_notes.items() if v > margin_note_threshold}
# Add watermark information to the result dictionary
for page_id, blocks in result_dict.items():
if page_id.startswith("page_"):
for block_id, block_data in blocks.items():
coordinates_text = (block_data["bbox"], block_data["text"])
if coordinates_text in watermarks:
block_data["is_watermark"] = 1
else:
block_data["is_watermark"] = 0
if coordinates_text in margin_notes:
block_data["is_vertical_margin_note"] = 1
else:
block_data["is_vertical_margin_note"] = 0
return result_dict
class NoiseRemover:
def __init__(self) -> None:
pass
def skip_data_noises(self, result_dict):
"""
This function skips the data noises, including overlap blocks, header, footer, watermark, vertical margin note, title
"""
filtered_result_dict = {}
for page_id, blocks in result_dict.items():
if page_id.startswith("page_"):
filtered_blocks = {}
for block_id, block in blocks.items():
if block_id.startswith("block_"):
if any(
block.get(key, 0)
for key in [
"is_overlap",
"is_header",
"is_footer",
"is_watermark",
"is_vertical_margin_note",
"is_block_title",
]
):
continue
filtered_blocks[block_id] = block
if filtered_blocks:
filtered_result_dict[page_id] = filtered_blocks
return filtered_result_dict
from magic_pdf.libs.commons import fitz
from magic_pdf.para.commons import *
if sys.version_info[0] >= 3:
sys.stdout.reconfigure(encoding="utf-8") # type: ignore
class DrawAnnos:
"""
This class draws annotations on the pdf file
----------------------------------------
Color Code
----------------------------------------
Red: (1, 0, 0)
Green: (0, 1, 0)
Blue: (0, 0, 1)
Yellow: (1, 1, 0) - mix of red and green
Cyan: (0, 1, 1) - mix of green and blue
Magenta: (1, 0, 1) - mix of red and blue
White: (1, 1, 1) - red, green and blue full intensity
Black: (0, 0, 0) - no color component whatsoever
Gray: (0.5, 0.5, 0.5) - equal and medium intensity of red, green and blue color components
Orange: (1, 0.65, 0) - maximum intensity of red, medium intensity of green, no blue component
"""
def __init__(self) -> None:
pass
def __is_nested_list(self, lst):
"""
This function returns True if the given list is a nested list of any degree.
"""
if isinstance(lst, list):
return any(self.__is_nested_list(i) for i in lst) or any(isinstance(i, list) for i in lst)
return False
def __valid_rect(self, bbox):
# Ensure that the rectangle is not empty or invalid
if isinstance(bbox[0], list):
return False # It's a nested list, hence it can't be valid rect
else:
return bbox[0] < bbox[2] and bbox[1] < bbox[3]
def __draw_nested_boxes(self, page, nested_bbox, color=(0, 1, 1)):
"""
This function draws the nested boxes
Parameters
----------
page : fitz.Page
page
nested_bbox : list
nested bbox
color : tuple
color, by default (0, 1, 1) # draw with cyan color for combined paragraph
"""
if self.__is_nested_list(nested_bbox): # If it's a nested list
for bbox in nested_bbox:
self.__draw_nested_boxes(page, bbox, color) # Recursively call the function
elif self.__valid_rect(nested_bbox): # If valid rectangle
para_rect = fitz.Rect(nested_bbox)
para_anno = page.add_rect_annot(para_rect)
para_anno.set_colors(stroke=color) # draw with cyan color for combined paragraph
para_anno.set_border(width=1)
para_anno.update()
def draw_annos(self, input_pdf_path, pdf_dic, output_pdf_path):
pdf_doc = open_pdf(input_pdf_path)
if pdf_dic is None:
pdf_dic = {}
if output_pdf_path is None:
output_pdf_path = input_pdf_path.replace(".pdf", "_anno.pdf")
for page_id, page in enumerate(pdf_doc): # type: ignore
page_key = f"page_{page_id}"
for ele_key, ele_data in pdf_dic[page_key].items():
if ele_key == "para_blocks":
para_blocks = ele_data
for para_block in para_blocks:
if "paras" in para_block.keys():
paras = para_block["paras"]
for para_key, para_content in paras.items():
para_bbox = para_content["para_bbox"]
# print(f"para_bbox: {para_bbox}")
# print(f"is a nested list: {self.__is_nested_list(para_bbox)}")
if self.__is_nested_list(para_bbox) and len(para_bbox) > 1:
color = (0, 1, 1)
self.__draw_nested_boxes(
page, para_bbox, color
) # draw with cyan color for combined paragraph
else:
if self.__valid_rect(para_bbox):
para_rect = fitz.Rect(para_bbox)
para_anno = page.add_rect_annot(para_rect)
para_anno.set_colors(stroke=(0, 1, 0)) # draw with green color for normal paragraph
para_anno.set_border(width=0.5)
para_anno.update()
is_para_title = para_content["is_para_title"]
if is_para_title:
if self.__is_nested_list(para_content["para_bbox"]) and len(para_content["para_bbox"]) > 1:
color = (0, 0, 1)
self.__draw_nested_boxes(
page, para_content["para_bbox"], color
) # draw with cyan color for combined title
else:
if self.__valid_rect(para_content["para_bbox"]):
para_rect = fitz.Rect(para_content["para_bbox"])
if self.__valid_rect(para_content["para_bbox"]):
para_anno = page.add_rect_annot(para_rect)
para_anno.set_colors(stroke=(0, 0, 1)) # draw with blue color for normal title
para_anno.set_border(width=0.5)
para_anno.update()
pdf_doc.save(output_pdf_path)
pdf_doc.close()
class DenseSingleLineBlockException(Exception):
"""
This class defines the exception type for dense single line-block.
"""
def __init__(self, message="DenseSingleLineBlockException"):
self.message = message
super().__init__(self.message)
def __str__(self):
return f"{self.message}"
def __repr__(self):
return f"{self.message}"
class TitleDetectionException(Exception):
"""
This class defines the exception type for title detection.
"""
def __init__(self, message="TitleDetectionException"):
self.message = message
super().__init__(self.message)
def __str__(self):
return f"{self.message}"
def __repr__(self):
return f"{self.message}"
class TitleLevelException(Exception):
"""
This class defines the exception type for title level.
"""
def __init__(self, message="TitleLevelException"):
self.message = message
super().__init__(self.message)
def __str__(self):
return f"{self.message}"
def __repr__(self):
return f"{self.message}"
class ParaSplitException(Exception):
"""
This class defines the exception type for paragraph splitting.
"""
def __init__(self, message="ParaSplitException"):
self.message = message
super().__init__(self.message)
def __str__(self):
return f"{self.message}"
def __repr__(self):
return f"{self.message}"
class ParaMergeException(Exception):
"""
This class defines the exception type for paragraph merging.
"""
def __init__(self, message="ParaMergeException"):
self.message = message
super().__init__(self.message)
def __str__(self):
return f"{self.message}"
def __repr__(self):
return f"{self.message}"
class DiscardByException:
"""
This class discards pdf files by exception
"""
def __init__(self) -> None:
pass
def discard_by_single_line_block(self, pdf_dic, exception: DenseSingleLineBlockException):
"""
This function discards pdf files by single line block exception
Parameters
----------
pdf_dic : dict
pdf dictionary
exception : str
exception message
Returns
-------
error_message : str
"""
exception_page_nums = 0
page_num = 0
for page_id, page in pdf_dic.items():
if page_id.startswith("page_"):
page_num += 1
if "preproc_blocks" in page.keys():
preproc_blocks = page["preproc_blocks"]
all_single_line_blocks = []
for block in preproc_blocks:
if len(block["lines"]) == 1:
all_single_line_blocks.append(block)
if len(preproc_blocks) > 0 and len(all_single_line_blocks) / len(preproc_blocks) > 0.9:
exception_page_nums += 1
if page_num == 0:
return None
if exception_page_nums / page_num > 0.1: # Low ratio means basically, whenever this is the case, it is discarded
return exception.message
return None
def discard_by_title_detection(self, pdf_dic, exception: TitleDetectionException):
"""
This function discards pdf files by title detection exception
Parameters
----------
pdf_dic : dict
pdf dictionary
exception : str
exception message
Returns
-------
error_message : str
"""
# return exception.message
return None
def discard_by_title_level(self, pdf_dic, exception: TitleLevelException):
"""
This function discards pdf files by title level exception
Parameters
----------
pdf_dic : dict
pdf dictionary
exception : str
exception message
Returns
-------
error_message : str
"""
# return exception.message
return None
def discard_by_split_para(self, pdf_dic, exception: ParaSplitException):
"""
This function discards pdf files by split para exception
Parameters
----------
pdf_dic : dict
pdf dictionary
exception : str
exception message
Returns
-------
error_message : str
"""
# return exception.message
return None
def discard_by_merge_para(self, pdf_dic, exception: ParaMergeException):
"""
This function discards pdf files by merge para exception
Parameters
----------
pdf_dic : dict
pdf dictionary
exception : str
exception message
Returns
-------
error_message : str
"""
# return exception.message
return None
import math
from magic_pdf.para.commons import *
if sys.version_info[0] >= 3:
sys.stdout.reconfigure(encoding="utf-8") # type: ignore
class LayoutFilterProcessor:
def __init__(self) -> None:
pass
def batch_process_blocks(self, pdf_dict):
for page_id, blocks in pdf_dict.items():
if page_id.startswith("page_"):
if "layout_bboxes" in blocks.keys() and "para_blocks" in blocks.keys():
layout_bbox_objs = blocks["layout_bboxes"]
if layout_bbox_objs is None:
continue
layout_bboxes = [bbox_obj["layout_bbox"] for bbox_obj in layout_bbox_objs]
# Use math.ceil function to enlarge each value of x0, y0, x1, y1 of each layout_bbox
layout_bboxes = [
[math.ceil(x0), math.ceil(y0), math.ceil(x1), math.ceil(y1)] for x0, y0, x1, y1 in layout_bboxes
]
para_blocks = blocks["para_blocks"]
if para_blocks is None:
continue
for lb_bbox in layout_bboxes:
for i, para_block in enumerate(para_blocks):
para_bbox = para_block["bbox"]
para_blocks[i]["in_layout"] = 0
if is_in_bbox(para_bbox, lb_bbox):
para_blocks[i]["in_layout"] = 1
blocks["para_blocks"] = para_blocks
return pdf_dict
import os
import json
from magic_pdf.para.commons import *
from magic_pdf.para.raw_processor import RawBlockProcessor
from magic_pdf.para.layout_match_processor import LayoutFilterProcessor
from magic_pdf.para.stats import BlockStatisticsCalculator
from magic_pdf.para.stats import DocStatisticsCalculator
from magic_pdf.para.title_processor import TitleProcessor
from magic_pdf.para.block_termination_processor import BlockTerminationProcessor
from magic_pdf.para.block_continuation_processor import BlockContinuationProcessor
from magic_pdf.para.draw import DrawAnnos
from magic_pdf.para.exceptions import (
DenseSingleLineBlockException,
TitleDetectionException,
TitleLevelException,
ParaSplitException,
ParaMergeException,
DiscardByException,
)
if sys.version_info[0] >= 3:
sys.stdout.reconfigure(encoding="utf-8") # type: ignore
class ParaProcessPipeline:
def __init__(self) -> None:
pass
def para_process_pipeline(self, pdf_info_dict, para_debug_mode=None, input_pdf_path=None, output_pdf_path=None):
"""
This function processes the paragraphs, including:
1. Read raw input json file into pdf_dic
2. Detect and replace equations
3. Combine spans into a natural line
4. Check if the paragraphs are inside bboxes passed from "layout_bboxes" key
5. Compute statistics for each block
6. Detect titles in the document
7. Detect paragraphs inside each block
8. Divide the level of the titles
9. Detect and combine paragraphs from different blocks into one paragraph
10. Check whether the final results after checking headings, dividing paragraphs within blocks, and merging paragraphs between blocks are plausible and reasonable.
11. Draw annotations on the pdf file
Parameters
----------
pdf_dic_json_fpath : str
path to the pdf dictionary json file.
Notice: data noises, including overlap blocks, header, footer, watermark, vertical margin note have been removed already.
input_pdf_doc : str
path to the input pdf file
output_pdf_path : str
path to the output pdf file
Returns
-------
pdf_dict : dict
result dictionary
"""
error_info = None
output_json_file = ""
output_dir = ""
if input_pdf_path is not None:
input_pdf_path = os.path.abspath(input_pdf_path)
# print_green_on_red(f">>>>>>>>>>>>>>>>>>> Process the paragraphs of {input_pdf_path}")
if output_pdf_path is not None:
output_dir = os.path.dirname(output_pdf_path)
output_json_file = f"{output_dir}/pdf_dic.json"
def __save_pdf_dic(pdf_dic, output_pdf_path, stage="0", para_debug_mode=para_debug_mode):
"""
Save the pdf_dic to a json file
"""
output_pdf_file_name = os.path.basename(output_pdf_path)
# output_dir = os.path.dirname(output_pdf_path)
output_dir = "\\tmp\\pdf_parse"
output_pdf_file_name = output_pdf_file_name.replace(".pdf", f"_stage_{stage}.json")
pdf_dic_json_fpath = os.path.join(output_dir, output_pdf_file_name)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
if para_debug_mode == "full":
with open(pdf_dic_json_fpath, "w", encoding="utf-8") as f:
json.dump(pdf_dic, f, indent=2, ensure_ascii=False)
# Validate the output already exists
if not os.path.exists(pdf_dic_json_fpath):
print_red(f"Failed to save the pdf_dic to {pdf_dic_json_fpath}")
return None
else:
print_green(f"Succeed to save the pdf_dic to {pdf_dic_json_fpath}")
return pdf_dic_json_fpath
"""
Preprocess the lines of block
"""
# Find and replace the interline and inline equations, should be better done before the paragraph processing
# Create "para_blocks" for each page.
# equationProcessor = EquationsProcessor()
# pdf_dic = equationProcessor.batch_process_blocks(pdf_info_dict)
# Combine spans into a natural line
rawBlockProcessor = RawBlockProcessor()
pdf_dic = rawBlockProcessor.batch_process_blocks(pdf_info_dict)
# print(f"pdf_dic['page_0']['para_blocks'][0]: {pdf_dic['page_0']['para_blocks'][0]}", end="\n\n")
# Check if the paragraphs are inside bboxes passed from "layout_bboxes" key
layoutFilter = LayoutFilterProcessor()
pdf_dic = layoutFilter.batch_process_blocks(pdf_dic)
# Compute statistics for each block
blockStatisticsCalculator = BlockStatisticsCalculator()
pdf_dic = blockStatisticsCalculator.batch_process_blocks(pdf_dic)
# print(f"pdf_dic['page_0']['para_blocks'][0]: {pdf_dic['page_0']['para_blocks'][0]}", end="\n\n")
# Compute statistics for all blocks(namely this pdf document)
docStatisticsCalculator = DocStatisticsCalculator()
pdf_dic = docStatisticsCalculator.calc_stats_of_doc(pdf_dic)
# print(f"pdf_dic['statistics']: {pdf_dic['statistics']}", end="\n\n")
# Dump the first three stages of pdf_dic to a json file
if para_debug_mode == "full":
pdf_dic_json_fpath = __save_pdf_dic(pdf_dic, output_pdf_path, stage="0", para_debug_mode=para_debug_mode)
"""
Detect titles in the document
"""
doc_statistics = pdf_dic["statistics"]
titleProcessor = TitleProcessor(doc_statistics)
pdf_dic = titleProcessor.batch_process_blocks_detect_titles(pdf_dic)
if para_debug_mode == "full":
pdf_dic_json_fpath = __save_pdf_dic(pdf_dic, output_pdf_path, stage="1", para_debug_mode=para_debug_mode)
"""
Detect and divide the level of the titles
"""
titleProcessor = TitleProcessor()
pdf_dic = titleProcessor.batch_process_blocks_recog_title_level(pdf_dic)
if para_debug_mode == "full":
pdf_dic_json_fpath = __save_pdf_dic(pdf_dic, output_pdf_path, stage="2", para_debug_mode=para_debug_mode)
"""
Detect and split paragraphs inside each block
"""
blockInnerParasProcessor = BlockTerminationProcessor()
pdf_dic = blockInnerParasProcessor.batch_process_blocks(pdf_dic)
if para_debug_mode == "full":
pdf_dic_json_fpath = __save_pdf_dic(pdf_dic, output_pdf_path, stage="3", para_debug_mode=para_debug_mode)
# pdf_dic_json_fpath = __save_pdf_dic(pdf_dic, output_pdf_path, stage="3", para_debug_mode="full")
# print_green(f"pdf_dic_json_fpath: {pdf_dic_json_fpath}")
"""
Detect and combine paragraphs from different blocks into one paragraph
"""
blockContinuationProcessor = BlockContinuationProcessor()
pdf_dic = blockContinuationProcessor.batch_tag_paras(pdf_dic)
pdf_dic = blockContinuationProcessor.batch_merge_paras(pdf_dic)
if para_debug_mode == "full":
pdf_dic_json_fpath = __save_pdf_dic(pdf_dic, output_pdf_path, stage="4", para_debug_mode=para_debug_mode)
# pdf_dic_json_fpath = __save_pdf_dic(pdf_dic, output_pdf_path, stage="4", para_debug_mode="full")
# print_green(f"pdf_dic_json_fpath: {pdf_dic_json_fpath}")
"""
Discard pdf files by checking exceptions and return the error info to the caller
"""
discardByException = DiscardByException()
is_discard_by_single_line_block = discardByException.discard_by_single_line_block(
pdf_dic, exception=DenseSingleLineBlockException()
)
is_discard_by_title_detection = discardByException.discard_by_title_detection(
pdf_dic, exception=TitleDetectionException()
)
is_discard_by_title_level = discardByException.discard_by_title_level(pdf_dic, exception=TitleLevelException())
is_discard_by_split_para = discardByException.discard_by_split_para(pdf_dic, exception=ParaSplitException())
is_discard_by_merge_para = discardByException.discard_by_merge_para(pdf_dic, exception=ParaMergeException())
"""
if any(
info is not None
for info in [
is_discard_by_single_line_block,
is_discard_by_title_detection,
is_discard_by_title_level,
is_discard_by_split_para,
is_discard_by_merge_para,
]
):
error_info = next(
(
info
for info in [
is_discard_by_single_line_block,
is_discard_by_title_detection,
is_discard_by_title_level,
is_discard_by_split_para,
is_discard_by_merge_para,
]
if info is not None
),
None,
)
return pdf_dic, error_info
if any(
info is not None
for info in [
is_discard_by_single_line_block,
is_discard_by_title_detection,
is_discard_by_title_level,
is_discard_by_split_para,
is_discard_by_merge_para,
]
):
error_info = next(
(
info
for info in [
is_discard_by_single_line_block,
is_discard_by_title_detection,
is_discard_by_title_level,
is_discard_by_split_para,
is_discard_by_merge_para,
]
if info is not None
),
None,
)
return pdf_dic, error_info
"""
"""
Dump the final pdf_dic to a json file
"""
if para_debug_mode is not None:
with open(output_json_file, "w", encoding="utf-8") as f:
json.dump(pdf_info_dict, f, ensure_ascii=False, indent=4)
"""
Draw the annotations
"""
if is_discard_by_single_line_block is not None:
error_info = is_discard_by_single_line_block
elif is_discard_by_title_detection is not None:
error_info = is_discard_by_title_detection
elif is_discard_by_title_level is not None:
error_info = is_discard_by_title_level
elif is_discard_by_split_para is not None:
error_info = is_discard_by_split_para
elif is_discard_by_merge_para is not None:
error_info = is_discard_by_merge_para
if error_info is not None:
return pdf_dic, error_info
"""
Dump the final pdf_dic to a json file
"""
if para_debug_mode is not None:
with open(output_json_file, "w", encoding="utf-8") as f:
json.dump(pdf_info_dict, f, ensure_ascii=False, indent=4)
"""
Draw the annotations
"""
if para_debug_mode is not None:
drawAnnos = DrawAnnos()
drawAnnos.draw_annos(input_pdf_path, pdf_dic, output_pdf_path)
"""
Remove the intermediate files which are generated in the process of paragraph processing if debug_mode is simple
"""
if para_debug_mode is not None:
for fpath in os.listdir(output_dir):
if fpath.endswith(".json") and "stage" in fpath:
os.remove(os.path.join(output_dir, fpath))
return pdf_dic, error_info
from sklearn.cluster import DBSCAN
import numpy as np
from loguru import logger
from magic_pdf.libs.boxbase import _is_in_or_part_overlap_with_area_ratio as is_in_layout
from magic_pdf.libs.ocr_content_type import ContentType
LINE_STOP_FLAG = ['.', '!', '?', '。', '!', '?',":", ":", ")", ")", ";"]
INLINE_EQUATION = ContentType.InlineEquation
INTERLINE_EQUATION = ContentType.InterlineEquation
TEXT = ContentType.Text
def __get_span_text(span):
c = span.get('content', '')
if len(c)==0:
c = span.get('image_path', '')
return c
def __detect_list_lines(lines, new_layout_bboxes, lang):
"""
探测是否包含了列表,并且把列表的行分开.
这样的段落特点是,顶格字母大写/数字,紧跟着几行缩进的。缩进的行首字母含小写的。
"""
def find_repeating_patterns(lst):
indices = []
ones_indices = []
i = 0
while i < len(lst) - 1: # 确保余下元素至少有2个
if lst[i] == 1 and lst[i+1] in [2, 3]: # 额外检查以防止连续出现的1
start = i
ones_in_this_interval = [i]
i += 1
while i < len(lst) and lst[i] in [2, 3]:
i += 1
# 验证下一个序列是否符合条件
if i < len(lst) - 1 and lst[i] == 1 and lst[i+1] in [2, 3] and lst[i-1] in [2, 3]:
while i < len(lst) and lst[i] in [1, 2, 3]:
if lst[i] == 1:
ones_in_this_interval.append(i)
i += 1
indices.append((start, i - 1))
ones_indices.append(ones_in_this_interval)
else:
i += 1
else:
i += 1
return indices, ones_indices
"""===================="""
def split_indices(slen, index_array):
result = []
last_end = 0
for start, end in sorted(index_array):
if start > last_end:
# 前一个区间结束到下一个区间开始之间的部分标记为"text"
result.append(('text', last_end, start - 1))
# 区间内标记为"list"
result.append(('list', start, end))
last_end = end + 1
if last_end < slen:
# 如果最后一个区间结束后还有剩余的字符串,将其标记为"text"
result.append(('text', last_end, slen - 1))
return result
"""===================="""
if lang!='en':
return lines, None
else:
total_lines = len(lines)
line_fea_encode = []
"""
对每一行进行特征编码,编码规则如下:
1. 如果行顶格,且大写字母开头或者数字开头,编码为1
2. 如果顶格,其他非大写开头编码为4
3. 如果非顶格,首字符大写,编码为2
4. 如果非顶格,首字符非大写编码为3
"""
for l in lines:
first_char = __get_span_text(l['spans'][0])[0]
layout_left = __find_layout_bbox_by_line(l['bbox'], new_layout_bboxes)[0]
if l['bbox'][0] == layout_left:
if first_char.isupper() or first_char.isdigit():
line_fea_encode.append(1)
else:
line_fea_encode.append(4)
else:
if first_char.isupper():
line_fea_encode.append(2)
else:
line_fea_encode.append(3)
# 然后根据编码进行分段, 选出来 1,2,3连续出现至少2次的行,认为是列表。
list_indice, list_start_idx = find_repeating_patterns(line_fea_encode)
# if len(list_indice)>0:
# logger.info(f"发现了列表,列表行数:{list_indice}, {list_start_idx}")
# TODO check一下这个特列表里缩进的行左侧是不是对齐的。
segments = []
for start, end in list_indice:
for i in range(start, end+1):
if i>0:
if line_fea_encode[i] == 4:
# logger.info(f"列表行的第{i}行不是顶格的")
break
# else:
# logger.info(f"列表行的第{start}到第{end}行是列表")
return split_indices(total_lines, list_indice), list_start_idx
def __valign_lines(blocks, layout_bboxes):
"""
在一个layoutbox内对齐行的左侧和右侧。
扫描行的左侧和右侧,如果x0, x1差距不超过一个阈值,就强行对齐到所处layout的左右两侧(和layout有一段距离)。
3是个经验值,TODO,计算得来,可以设置为1.5个正文字符。
"""
min_distance = 3
min_sample = 2
new_layout_bboxes = []
for layout_box in layout_bboxes:
blocks_in_layoutbox = [b for b in blocks if is_in_layout(b['bbox'], layout_box['layout_bbox'])]
if len(blocks_in_layoutbox)==0:
continue
x0_lst = np.array([[line['bbox'][0], 0] for block in blocks_in_layoutbox for line in block['lines']])
x1_lst = np.array([[line['bbox'][2], 0] for block in blocks_in_layoutbox for line in block['lines']])
x0_clusters = DBSCAN(eps=min_distance, min_samples=min_sample).fit(x0_lst)
x1_clusters = DBSCAN(eps=min_distance, min_samples=min_sample).fit(x1_lst)
x0_uniq_label = np.unique(x0_clusters.labels_)
x1_uniq_label = np.unique(x1_clusters.labels_)
x0_2_new_val = {} # 存储旧值对应的新值映射
x1_2_new_val = {}
for label in x0_uniq_label:
if label==-1:
continue
x0_index_of_label = np.where(x0_clusters.labels_==label)
x0_raw_val = x0_lst[x0_index_of_label][:,0]
x0_new_val = np.min(x0_lst[x0_index_of_label][:,0])
x0_2_new_val.update({idx: x0_new_val for idx in x0_raw_val})
for label in x1_uniq_label:
if label==-1:
continue
x1_index_of_label = np.where(x1_clusters.labels_==label)
x1_raw_val = x1_lst[x1_index_of_label][:,0]
x1_new_val = np.max(x1_lst[x1_index_of_label][:,0])
x1_2_new_val.update({idx: x1_new_val for idx in x1_raw_val})
for block in blocks_in_layoutbox:
for line in block['lines']:
x0, x1 = line['bbox'][0], line['bbox'][2]
if x0 in x0_2_new_val:
line['bbox'][0] = int(x0_2_new_val[x0])
if x1 in x1_2_new_val:
line['bbox'][2] = int(x1_2_new_val[x1])
# 其余对不齐的保持不动
# 由于修改了block里的line长度,现在需要重新计算block的bbox
for block in blocks_in_layoutbox:
block['bbox'] = [min([line['bbox'][0] for line in block['lines']]),
min([line['bbox'][1] for line in block['lines']]),
max([line['bbox'][2] for line in block['lines']]),
max([line['bbox'][3] for line in block['lines']])]
"""新计算layout的bbox,因为block的bbox变了。"""
layout_x0 = min([block['bbox'][0] for block in blocks_in_layoutbox])
layout_y0 = min([block['bbox'][1] for block in blocks_in_layoutbox])
layout_x1 = max([block['bbox'][2] for block in blocks_in_layoutbox])
layout_y1 = max([block['bbox'][3] for block in blocks_in_layoutbox])
new_layout_bboxes.append([layout_x0, layout_y0, layout_x1, layout_y1])
return new_layout_bboxes
def __align_text_in_layout(blocks, layout_bboxes):
"""
由于ocr出来的line,有时候会在前后有一段空白,这个时候需要对文本进行对齐,超出的部分被layout左右侧截断。
"""
for layout in layout_bboxes:
lb = layout['layout_bbox']
blocks_in_layoutbox = [b for b in blocks if is_in_layout(b['bbox'], lb)]
if len(blocks_in_layoutbox)==0:
continue
for block in blocks_in_layoutbox:
for line in block['lines']:
x0, x1 = line['bbox'][0], line['bbox'][2]
if x0 < lb[0]:
line['bbox'][0] = lb[0]
if x1 > lb[2]:
line['bbox'][2] = lb[2]
def __common_pre_proc(blocks, layout_bboxes):
"""
不分语言的,对文本进行预处理
"""
#__add_line_period(blocks, layout_bboxes)
__align_text_in_layout(blocks, layout_bboxes)
aligned_layout_bboxes = __valign_lines(blocks, layout_bboxes)
return aligned_layout_bboxes
def __pre_proc_zh_blocks(blocks, layout_bboxes):
"""
对中文文本进行分段预处理
"""
pass
def __pre_proc_en_blocks(blocks, layout_bboxes):
"""
对英文文本进行分段预处理
"""
pass
def __group_line_by_layout(blocks, layout_bboxes, lang="en"):
"""
每个layout内的行进行聚合
"""
# 因为只是一个block一行目前, 一个block就是一个段落
lines_group = []
for lyout in layout_bboxes:
lines = [line for block in blocks if is_in_layout(block['bbox'], lyout['layout_bbox']) for line in block['lines']]
lines_group.append(lines)
return lines_group
def __split_para_in_layoutbox(lines_group, new_layout_bbox, lang="en", char_avg_len=10):
"""
lines_group 进行行分段——layout内部进行分段。lines_group内每个元素是一个Layoutbox内的所有行。
1. 先计算每个group的左右边界。
2. 然后根据行末尾特征进行分段。
末尾特征:以句号等结束符结尾。并且距离右侧边界有一定距离。
且下一行开头不留空白。
"""
list_info = [] # 这个layout最后是不是列表,记录每一个layout里是不是列表开头,列表结尾
layout_paras = []
right_tail_distance = 1.5 * char_avg_len
for lines in lines_group:
paras = []
total_lines = len(lines)
if total_lines==0:
continue # 0行无需处理
if total_lines==1: # 1行无法分段。
layout_paras.append([lines])
list_info.append([False, False])
continue
"""在进入到真正的分段之前,要对文字块从统计维度进行对齐方式的探测,
对齐方式分为以下:
1. 左对齐的文本块(特点是左侧顶格,或者左侧不顶格但是右侧顶格的行数大于非顶格的行数,顶格的首字母有大写也有小写)
1) 右侧对齐的行,单独成一段
2) 中间对齐的行,按照字体/行高聚合成一段
2. 左对齐的列表块(其特点是左侧顶格的行数小于等于非顶格的行数,非定格首字母会有小写,顶格90%是大写。并且左侧顶格行数大于1,大于1是为了这种模式连续出现才能称之为列表)
这样的文本块,顶格的为一个段落开头,紧随其后非顶格的行属于这个段落。
"""
text_segments, list_start_line = __detect_list_lines(lines, new_layout_bbox, lang)
"""根据list_range,把lines分成几个部分
"""
layout_right = __find_layout_bbox_by_line(lines[0]['bbox'], new_layout_bbox)[2]
layout_left = __find_layout_bbox_by_line(lines[0]['bbox'], new_layout_bbox)[0]
para = [] # 元素是line
layout_list_info = [False, False] # 这个layout最后是不是列表,记录每一个layout里是不是列表开头,列表结尾
for content_type, start, end in text_segments:
if content_type == 'list':
for i, line in enumerate(lines[start:end+1]):
line_x0 = line['bbox'][0]
if line_x0 == layout_left: # 列表开头
if len(para)>0:
paras.append(para)
para = []
para.append(line)
else:
para.append(line)
if len(para)>0:
paras.append(para)
para = []
if start==0:
layout_list_info[0] = True
if end==total_lines-1:
layout_list_info[1] = True
else: # 是普通文本
for i, line in enumerate(lines[start:end+1]):
# 如果i有下一行,那么就要根据下一行位置综合判断是否要分段。如果i之后没有行,那么只需要判断i行自己的结尾特征。
cur_line_type = line['spans'][-1]['type']
next_line = lines[i+1] if i<total_lines-1 else None
if cur_line_type in [TEXT, INLINE_EQUATION]:
if line['bbox'][2] < layout_right - right_tail_distance:
para.append(line)
paras.append(para)
para = []
elif line['bbox'][2] >= layout_right - right_tail_distance and next_line and next_line['bbox'][0] == layout_left: # 现在这行到了行尾沾满,下一行存在且顶格。
para.append(line)
else:
para.append(line)
paras.append(para)
para = []
else: # 其他,图片、表格、行间公式,各自占一段
if len(para)>0: # 先把之前的段落加入到结果中
paras.append(para)
para = []
paras.append([line]) # 再把当前行加入到结果中。当前行为行间公式、图、表等。
para = []
if len(para)>0:
paras.append(para)
para = []
list_info.append(layout_list_info)
layout_paras.append(paras)
paras = []
return layout_paras, list_info
def __connect_list_inter_layout(layout_paras, new_layout_bbox, layout_list_info, page_num, lang):
"""
如果上个layout的最后一个段落是列表,下一个layout的第一个段落也是列表,那么将他们连接起来。 TODO 因为没有区分列表和段落,所以这个方法暂时不实现。
根据layout_list_info判断是不是列表。,下个layout的第一个段如果不是列表,那么看他们是否有几行都有相同的缩进。
"""
if len(layout_paras)==0 or len(layout_list_info)==0: # 0的时候最后的return 会出错
return layout_paras, [False, False]
for i in range(1, len(layout_paras)):
pre_layout_list_info = layout_list_info[i-1]
next_layout_list_info = layout_list_info[i]
pre_last_para = layout_paras[i-1][-1]
next_paras = layout_paras[i]
next_first_para = next_paras[0]
if pre_layout_list_info[1] and not next_layout_list_info[0]: # 前一个是列表结尾,后一个是非列表开头,此时检测是否有相同的缩进
# logger.info(f"连接page {page_num} 内的list")
# 向layout_paras[i] 寻找开头具有相同缩进的连续的行
may_list_lines = []
for j in range(len(next_paras)):
line = next_paras[j]
if len(line)==1: # 只可能是一行,多行情况再需要分析了
if line[0]['bbox'][0] > __find_layout_bbox_by_line(line[0]['bbox'], new_layout_bbox)[0]:
may_list_lines.append(line[0])
else:
break
else:
break
# 如果这些行的缩进是相等的,那么连到上一个layout的最后一个段落上。
if len(may_list_lines)>0 and len(set([x['bbox'][0] for x in may_list_lines]))==1:
pre_last_para.extend(may_list_lines)
layout_paras[i] = layout_paras[i][len(may_list_lines):]
return layout_paras, [layout_list_info[0][0], layout_list_info[-1][1]] # 同时还返回了这个页面级别的开头、结尾是不是列表的信息
def __connect_list_inter_page(pre_page_paras, next_page_paras, pre_page_layout_bbox, next_page_layout_bbox, pre_page_list_info, next_page_list_info, page_num, lang):
"""
如果上个layout的最后一个段落是列表,下一个layout的第一个段落也是列表,那么将他们连接起来。 TODO 因为没有区分列表和段落,所以这个方法暂时不实现。
根据layout_list_info判断是不是列表。,下个layout的第一个段如果不是列表,那么看他们是否有几行都有相同的缩进。
"""
if len(pre_page_paras)==0 or len(next_page_paras)==0: # 0的时候最后的return 会出错
return False
if pre_page_list_info[1] and not next_page_list_info[0]: # 前一个是列表结尾,后一个是非列表开头,此时检测是否有相同的缩进
# logger.info(f"连接page {page_num} 内的list")
# 向layout_paras[i] 寻找开头具有相同缩进的连续的行
may_list_lines = []
for j in range(len(next_page_paras[0])):
line = next_page_paras[0][j]
if len(line)==1: # 只可能是一行,多行情况再需要分析了
if line[0]['bbox'][0] > __find_layout_bbox_by_line(line[0]['bbox'], next_page_layout_bbox)[0]:
may_list_lines.append(line[0])
else:
break
else:
break
# 如果这些行的缩进是相等的,那么连到上一个layout的最后一个段落上。
if len(may_list_lines)>0 and len(set([x['bbox'][0] for x in may_list_lines]))==1:
pre_page_paras[-1].append(may_list_lines)
next_page_paras[0] = next_page_paras[0][len(may_list_lines):]
return True
return False
def __find_layout_bbox_by_line(line_bbox, layout_bboxes):
"""
根据line找到所在的layout
"""
for layout in layout_bboxes:
if is_in_layout(line_bbox, layout):
return layout
return None
def __connect_para_inter_layoutbox(layout_paras, new_layout_bbox, lang):
"""
layout之间进行分段。
主要是计算前一个layOut的最后一行和后一个layout的第一行是否可以连接。
连接的条件需要同时满足:
1. 上一个layout的最后一行沾满整个行。并且没有结尾符号。
2. 下一行开头不留空白。
"""
connected_layout_paras = []
if len(layout_paras)==0:
return connected_layout_paras
connected_layout_paras.append(layout_paras[0])
for i in range(1, len(layout_paras)):
try:
if len(layout_paras[i])==0 or len(layout_paras[i-1])==0: # TODO 考虑连接问题,
continue
pre_last_line = layout_paras[i-1][-1][-1]
next_first_line = layout_paras[i][0][0]
except Exception as e:
# logger.error(f"page layout {i} has no line")
continue
pre_last_line_text = ''.join([__get_span_text(span) for span in pre_last_line['spans']])
pre_last_line_type = pre_last_line['spans'][-1]['type']
next_first_line_text = ''.join([__get_span_text(span) for span in next_first_line['spans']])
next_first_line_type = next_first_line['spans'][0]['type']
if pre_last_line_type not in [TEXT, INLINE_EQUATION] or next_first_line_type not in [TEXT, INLINE_EQUATION]:
connected_layout_paras.append(layout_paras[i])
continue
pre_x2_max = __find_layout_bbox_by_line(pre_last_line['bbox'], new_layout_bbox)[2]
next_x0_min = __find_layout_bbox_by_line(next_first_line['bbox'], new_layout_bbox)[0]
pre_last_line_text = pre_last_line_text.strip()
next_first_line_text = next_first_line_text.strip()
if pre_last_line['bbox'][2] == pre_x2_max and pre_last_line_text[-1] not in LINE_STOP_FLAG and next_first_line['bbox'][0]==next_x0_min: # 前面一行沾满了整个行,并且没有结尾符号.下一行没有空白开头。
"""连接段落条件成立,将前一个layout的段落和后一个layout的段落连接。"""
connected_layout_paras[-1][-1].extend(layout_paras[i][0])
layout_paras[i].pop(0) # 删除后一个layout的第一个段落, 因为他已经被合并到前一个layout的最后一个段落了。
if len(layout_paras[i])==0:
layout_paras.pop(i)
else:
connected_layout_paras.append(layout_paras[i])
else:
"""连接段落条件不成立,将前一个layout的段落加入到结果中。"""
connected_layout_paras.append(layout_paras[i])
return connected_layout_paras
def __connect_para_inter_page(pre_page_paras, next_page_paras, pre_page_layout_bbox, next_page_layout_bbox, page_num, lang):
"""
连接起来相邻两个页面的段落——前一个页面最后一个段落和后一个页面的第一个段落。
是否可以连接的条件:
1. 前一个页面的最后一个段落最后一行沾满整个行。并且没有结尾符号。
2. 后一个页面的第一个段落第一行没有空白开头。
"""
# 有的页面可能压根没有文字
if len(pre_page_paras)==0 or len(next_page_paras)==0 or len(pre_page_paras[0])==0 or len(next_page_paras[0])==0: # TODO [[]]为什么出现在pre_page_paras里?
return False
pre_last_para = pre_page_paras[-1][-1]
next_first_para = next_page_paras[0][0]
pre_last_line = pre_last_para[-1]
next_first_line = next_first_para[0]
pre_last_line_text = ''.join([__get_span_text(span) for span in pre_last_line['spans']])
pre_last_line_type = pre_last_line['spans'][-1]['type']
next_first_line_text = ''.join([__get_span_text(span) for span in next_first_line['spans']])
next_first_line_type = next_first_line['spans'][0]['type']
if pre_last_line_type not in [TEXT, INLINE_EQUATION] or next_first_line_type not in [TEXT, INLINE_EQUATION]: # TODO,真的要做好,要考虑跨table, image, 行间的情况
# 不是文本,不连接
return False
pre_x2_max = __find_layout_bbox_by_line(pre_last_line['bbox'], pre_page_layout_bbox)[2]
next_x0_min = __find_layout_bbox_by_line(next_first_line['bbox'], next_page_layout_bbox)[0]
pre_last_line_text = pre_last_line_text.strip()
next_first_line_text = next_first_line_text.strip()
if pre_last_line['bbox'][2] == pre_x2_max and pre_last_line_text[-1] not in LINE_STOP_FLAG and next_first_line['bbox'][0]==next_x0_min: # 前面一行沾满了整个行,并且没有结尾符号.下一行没有空白开头。
"""连接段落条件成立,将前一个layout的段落和后一个layout的段落连接。"""
pre_last_para.extend(next_first_para)
next_page_paras[0].pop(0) # 删除后一个页面的第一个段落, 因为他已经被合并到前一个页面的最后一个段落了。
return True
else:
return False
def find_consecutive_true_regions(input_array):
start_index = None # 连续True区域的起始索引
regions = [] # 用于保存所有连续True区域的起始和结束索引
for i in range(len(input_array)):
# 如果我们找到了一个True值,并且当前并没有在连续True区域中
if input_array[i] and start_index is None:
start_index = i # 记录连续True区域的起始索引
# 如果我们找到了一个False值,并且当前在连续True区域中
elif not input_array[i] and start_index is not None:
# 如果连续True区域长度大于1,那么将其添加到结果列表中
if i - start_index > 1:
regions.append((start_index, i-1))
start_index = None # 重置起始索引
# 如果最后一个元素是True,那么需要将最后一个连续True区域加入到结果列表中
if start_index is not None and len(input_array) - start_index > 1:
regions.append((start_index, len(input_array)-1))
return regions
def __connect_middle_align_text(page_paras, new_layout_bbox, page_num, lang, debug_mode):
"""
找出来中间对齐的连续单行文本,如果连续行高度相同,那么合并为一个段落。
一个line居中的条件是:
1. 水平中心点跨越layout的中心点。
2. 左右两侧都有空白
"""
for layout_i, layout_para in enumerate(page_paras):
layout_box = new_layout_bbox[layout_i]
single_line_paras_tag = []
for i in range(len(layout_para)):
single_line_paras_tag.append(len(layout_para[i])==1 and layout_para[i][0]['spans'][0]['type']==TEXT)
"""找出来连续的单行文本,如果连续行高度相同,那么合并为一个段落。"""
consecutive_single_line_indices = find_consecutive_true_regions(single_line_paras_tag)
if len(consecutive_single_line_indices)>0:
index_offset = 0
"""检查这些行是否是高度相同的,居中的"""
for start, end in consecutive_single_line_indices:
start += index_offset
end += index_offset
line_hi = np.array([line[0]['bbox'][3]-line[0]['bbox'][1] for line in layout_para[start:end+1]])
first_line_text = ''.join([__get_span_text(span) for span in layout_para[start][0]['spans']])
if "Table" in first_line_text or "Figure" in first_line_text:
pass
if debug_mode:
# logger.debug(line_hi.std())
if line_hi.std()<2:
"""行高度相同,那么判断是否居中"""
all_left_x0 = [line[0]['bbox'][0] for line in layout_para[start:end+1]]
all_right_x1 = [line[0]['bbox'][2] for line in layout_para[start:end+1]]
layout_center = (layout_box[0] + layout_box[2]) / 2
if all([x0 < layout_center < x1 for x0, x1 in zip(all_left_x0, all_right_x1)]) \
and not all([x0==layout_box[0] for x0 in all_left_x0]) \
and not all([x1==layout_box[2] for x1 in all_right_x1]):
merge_para = [l[0] for l in layout_para[start:end+1]]
para_text = ''.join([__get_span_text(span) for line in merge_para for span in line['spans']])
# if debug_mode:
# logger.debug(para_text)
layout_para[start:end+1] = [merge_para]
index_offset -= end-start
return
def __merge_signle_list_text(page_paras, new_layout_bbox, page_num, lang):
"""
找出来连续的单行文本,如果首行顶格,接下来的几个单行段落缩进对齐,那么合并为一个段落。
"""
pass
def __do_split_page(blocks, layout_bboxes, new_layout_bbox, page_num, lang):
"""
根据line和layout情况进行分段
先实现一个根据行末尾特征分段的简单方法。
"""
"""
算法思路:
1. 扫描layout里每一行,找出来行尾距离layout有边界有一定距离的行。
2. 从上述行中找到末尾是句号等可作为断行标志的行。
3. 参照上述行尾特征进行分段。
4. 图、表,目前独占一行,不考虑分段。
"""
if page_num==343:
pass
lines_group = __group_line_by_layout(blocks, layout_bboxes, lang) # block内分段
layout_paras, layout_list_info = __split_para_in_layoutbox(lines_group, new_layout_bbox, lang) # layout内分段
layout_paras2, page_list_info = __connect_list_inter_layout(layout_paras, new_layout_bbox, layout_list_info, page_num, lang) # layout之间连接列表段落
connected_layout_paras = __connect_para_inter_layoutbox(layout_paras2, new_layout_bbox, lang) # layout间链接段落
return connected_layout_paras, page_list_info
def para_split(pdf_info_dict, debug_mode, lang="en"):
"""
根据line和layout情况进行分段
"""
new_layout_of_pages = [] # 数组的数组,每个元素是一个页面的layoutS
all_page_list_info = [] # 保存每个页面开头和结尾是否是列表
for page_num, page in pdf_info_dict.items():
blocks = page['preproc_blocks']
layout_bboxes = page['layout_bboxes']
new_layout_bbox = __common_pre_proc(blocks, layout_bboxes)
new_layout_of_pages.append(new_layout_bbox)
splited_blocks, page_list_info = __do_split_page(blocks, layout_bboxes, new_layout_bbox, page_num, lang)
all_page_list_info.append(page_list_info)
page['para_blocks'] = splited_blocks
"""连接页面与页面之间的可能合并的段落"""
pdf_infos = list(pdf_info_dict.values())
for page_num, page in enumerate(pdf_info_dict.values()):
if page_num==0:
continue
pre_page_paras = pdf_infos[page_num-1]['para_blocks']
next_page_paras = pdf_infos[page_num]['para_blocks']
pre_page_layout_bbox = new_layout_of_pages[page_num-1]
next_page_layout_bbox = new_layout_of_pages[page_num]
is_conn = __connect_para_inter_page(pre_page_paras, next_page_paras, pre_page_layout_bbox, next_page_layout_bbox, page_num, lang)
# if debug_mode:
# if is_conn:
# logger.info(f"连接了第{page_num-1}页和第{page_num}页的段落")
#
is_list_conn = __connect_list_inter_page(pre_page_paras, next_page_paras, pre_page_layout_bbox, next_page_layout_bbox, all_page_list_info[page_num-1], all_page_list_info[page_num], page_num, lang)
# if debug_mode:
# if is_list_conn:
# logger.info(f"连接了第{page_num-1}页和第{page_num}页的列表段落")
"""接下来可能会漏掉一些特别的一些可以合并的内容,对他们进行段落连接
1. 正文中有时出现一个行顶格,接下来几行缩进的情况。
2. 居中的一些连续单行,如果高度相同,那么可能是一个段落。
"""
for page_num, page in enumerate(pdf_info_dict.values()):
page_paras = page['para_blocks']
new_layout_bbox = new_layout_of_pages[page_num]
__connect_middle_align_text(page_paras, new_layout_bbox, page_num, lang, debug_mode=debug_mode)
__merge_signle_list_text(page_paras, new_layout_bbox, page_num, lang)
import copy
from sklearn.cluster import DBSCAN
import numpy as np
from loguru import logger
import re
from magic_pdf.libs.boxbase import _is_in_or_part_overlap_with_area_ratio as is_in_layout
from magic_pdf.libs.ocr_content_type import ContentType, BlockType
from magic_pdf.model.magic_model import MagicModel
from magic_pdf.libs.Constants import *
LINE_STOP_FLAG = ['.', '!', '?', '。', '!', '?', ":", ":", ")", ")", ";"]
INLINE_EQUATION = ContentType.InlineEquation
INTERLINE_EQUATION = ContentType.InterlineEquation
TEXT = ContentType.Text
debug_able = False
def __get_span_text(span):
c = span.get('content', '')
if len(c) == 0:
c = span.get('image_path', '')
return c
def __detect_list_lines(lines, new_layout_bboxes, lang):
global debug_able
"""
探测是否包含了列表,并且把列表的行分开.
这样的段落特点是,顶格字母大写/数字,紧跟着几行缩进的。缩进的行首字母含小写的。
"""
def find_repeating_patterns2(lst):
indices = []
ones_indices = []
i = 0
while i < len(lst): # Loop through the entire list
if lst[i] == 1: # If we encounter a '1', we might be at the start of a pattern
start = i
ones_in_this_interval = [i]
i += 1
# Traverse elements that are 1, 2 or 3, until we encounter something else
while i < len(lst) and lst[i] in [1, 2, 3]:
if lst[i] == 1:
ones_in_this_interval.append(i)
i += 1
if len(ones_in_this_interval) > 1 or (
start < len(lst) - 1 and ones_in_this_interval and lst[start + 1] in [2, 3]):
indices.append((start, i - 1))
ones_indices.append(ones_in_this_interval)
else:
i += 1
return indices, ones_indices
def find_repeating_patterns(lst):
indices = []
ones_indices = []
i = 0
while i < len(lst) - 1: # 确保余下元素至少有2个
if lst[i] == 1 and lst[i + 1] in [2, 3]: # 额外检查以防止连续出现的1
start = i
ones_in_this_interval = [i]
i += 1
while i < len(lst) and lst[i] in [2, 3]:
i += 1
# 验证下一个序列是否符合条件
if i < len(lst) - 1 and lst[i] == 1 and lst[i + 1] in [2, 3] and lst[i - 1] in [2, 3]:
while i < len(lst) and lst[i] in [1, 2, 3]:
if lst[i] == 1:
ones_in_this_interval.append(i)
i += 1
indices.append((start, i - 1))
ones_indices.append(ones_in_this_interval)
else:
i += 1
else:
i += 1
return indices, ones_indices
"""===================="""
def split_indices(slen, index_array):
result = []
last_end = 0
for start, end in sorted(index_array):
if start > last_end:
# 前一个区间结束到下一个区间开始之间的部分标记为"text"
result.append(('text', last_end, start - 1))
# 区间内标记为"list"
result.append(('list', start, end))
last_end = end + 1
if last_end < slen:
# 如果最后一个区间结束后还有剩余的字符串,将其标记为"text"
result.append(('text', last_end, slen - 1))
return result
"""===================="""
if lang != 'en':
return lines, None
total_lines = len(lines)
line_fea_encode = []
"""
对每一行进行特征编码,编码规则如下:
1. 如果行顶格,且大写字母开头或者数字开头,编码为1
2. 如果顶格,其他非大写开头编码为4
3. 如果非顶格,首字符大写,编码为2
4. 如果非顶格,首字符非大写编码为3
"""
if len(lines) > 0:
x_map_tag_dict, min_x_tag = cluster_line_x(lines)
for l in lines:
span_text = __get_span_text(l['spans'][0])
if not span_text:
line_fea_encode.append(0)
continue
first_char = span_text[0]
layout = __find_layout_bbox_by_line(l['bbox'], new_layout_bboxes)
if not layout:
line_fea_encode.append(0)
else:
#
if x_map_tag_dict[round(l['bbox'][0])] == min_x_tag:
# if first_char.isupper() or first_char.isdigit() or not first_char.isalnum():
if not first_char.isalnum() or if_match_reference_list(span_text):
line_fea_encode.append(1)
else:
line_fea_encode.append(4)
else:
if first_char.isupper():
line_fea_encode.append(2)
else:
line_fea_encode.append(3)
# 然后根据编码进行分段, 选出来 1,2,3连续出现至少2次的行,认为是列表。
list_indice, list_start_idx = find_repeating_patterns2(line_fea_encode)
# if len(list_indice) > 0:
# if debug_able:
# logger.info(f"发现了列表,列表行数:{list_indice}, {list_start_idx}")
# TODO check一下这个特列表里缩进的行左侧是不是对齐的。
segments = []
for start, end in list_indice:
for i in range(start, end + 1):
if i > 0:
if line_fea_encode[i] == 4:
# if debug_able:
# logger.info(f"列表行的第{i}行不是顶格的")
break
# else:
# if debug_able:
# logger.info(f"列表行的第{start}到第{end}行是列表")
return split_indices(total_lines, list_indice), list_start_idx
def cluster_line_x(lines: list) -> dict:
"""
对一个block内所有lines的bbox的x0聚类
"""
min_distance = 5
min_sample = 1
x0_lst = np.array([[round(line['bbox'][0]), 0] for line in lines])
x0_clusters = DBSCAN(eps=min_distance, min_samples=min_sample).fit(x0_lst)
x0_uniq_label = np.unique(x0_clusters.labels_)
# x1_lst = np.array([[line['bbox'][2], 0] for line in lines])
x0_2_new_val = {} # 存储旧值对应的新值映射
min_x0 = round(lines[0]["bbox"][0])
for label in x0_uniq_label:
if label == -1:
continue
x0_index_of_label = np.where(x0_clusters.labels_ == label)
x0_raw_val = x0_lst[x0_index_of_label][:, 0]
x0_new_val = np.min(x0_lst[x0_index_of_label][:, 0])
x0_2_new_val.update({round(raw_val): round(x0_new_val) for raw_val in x0_raw_val})
if x0_new_val < min_x0:
min_x0 = x0_new_val
return x0_2_new_val, min_x0
def if_match_reference_list(text: str) -> bool:
pattern = re.compile(r'^\d+\..*')
if pattern.match(text):
return True
else:
return False
def __valign_lines(blocks, layout_bboxes):
"""
在一个layoutbox内对齐行的左侧和右侧。
扫描行的左侧和右侧,如果x0, x1差距不超过一个阈值,就强行对齐到所处layout的左右两侧(和layout有一段距离)。
3是个经验值,TODO,计算得来,可以设置为1.5个正文字符。
"""
min_distance = 3
min_sample = 2
new_layout_bboxes = []
# add bbox_fs for para split calculation
for block in blocks:
block["bbox_fs"] = copy.deepcopy(block["bbox"])
for layout_box in layout_bboxes:
blocks_in_layoutbox = [b for b in blocks if
b["type"] == BlockType.Text and is_in_layout(b['bbox'], layout_box['layout_bbox'])]
if len(blocks_in_layoutbox) == 0 or len(blocks_in_layoutbox[0]["lines"]) == 0:
new_layout_bboxes.append(layout_box['layout_bbox'])
continue
x0_lst = np.array([[line['bbox'][0], 0] for block in blocks_in_layoutbox for line in block['lines']])
x1_lst = np.array([[line['bbox'][2], 0] for block in blocks_in_layoutbox for line in block['lines']])
x0_clusters = DBSCAN(eps=min_distance, min_samples=min_sample).fit(x0_lst)
x1_clusters = DBSCAN(eps=min_distance, min_samples=min_sample).fit(x1_lst)
x0_uniq_label = np.unique(x0_clusters.labels_)
x1_uniq_label = np.unique(x1_clusters.labels_)
x0_2_new_val = {} # 存储旧值对应的新值映射
x1_2_new_val = {}
for label in x0_uniq_label:
if label == -1:
continue
x0_index_of_label = np.where(x0_clusters.labels_ == label)
x0_raw_val = x0_lst[x0_index_of_label][:, 0]
x0_new_val = np.min(x0_lst[x0_index_of_label][:, 0])
x0_2_new_val.update({idx: x0_new_val for idx in x0_raw_val})
for label in x1_uniq_label:
if label == -1:
continue
x1_index_of_label = np.where(x1_clusters.labels_ == label)
x1_raw_val = x1_lst[x1_index_of_label][:, 0]
x1_new_val = np.max(x1_lst[x1_index_of_label][:, 0])
x1_2_new_val.update({idx: x1_new_val for idx in x1_raw_val})
for block in blocks_in_layoutbox:
for line in block['lines']:
x0, x1 = line['bbox'][0], line['bbox'][2]
if x0 in x0_2_new_val:
line['bbox'][0] = int(x0_2_new_val[x0])
if x1 in x1_2_new_val:
line['bbox'][2] = int(x1_2_new_val[x1])
# 其余对不齐的保持不动
# 由于修改了block里的line长度,现在需要重新计算block的bbox
for block in blocks_in_layoutbox:
if len(block["lines"]) > 0:
block['bbox_fs'] = [min([line['bbox'][0] for line in block['lines']]),
min([line['bbox'][1] for line in block['lines']]),
max([line['bbox'][2] for line in block['lines']]),
max([line['bbox'][3] for line in block['lines']])]
"""新计算layout的bbox,因为block的bbox变了。"""
layout_x0 = min([block['bbox_fs'][0] for block in blocks_in_layoutbox])
layout_y0 = min([block['bbox_fs'][1] for block in blocks_in_layoutbox])
layout_x1 = max([block['bbox_fs'][2] for block in blocks_in_layoutbox])
layout_y1 = max([block['bbox_fs'][3] for block in blocks_in_layoutbox])
new_layout_bboxes.append([layout_x0, layout_y0, layout_x1, layout_y1])
return new_layout_bboxes
def __align_text_in_layout(blocks, layout_bboxes):
"""
由于ocr出来的line,有时候会在前后有一段空白,这个时候需要对文本进行对齐,超出的部分被layout左右侧截断。
"""
for layout in layout_bboxes:
lb = layout['layout_bbox']
blocks_in_layoutbox = [block for block in blocks if
block["type"] == BlockType.Text and is_in_layout(block['bbox'], lb)]
if len(blocks_in_layoutbox) == 0:
continue
for block in blocks_in_layoutbox:
for line in block.get("lines", []):
x0, x1 = line['bbox'][0], line['bbox'][2]
if x0 < lb[0]:
line['bbox'][0] = lb[0]
if x1 > lb[2]:
line['bbox'][2] = lb[2]
def __common_pre_proc(blocks, layout_bboxes):
"""
不分语言的,对文本进行预处理
"""
# __add_line_period(blocks, layout_bboxes)
__align_text_in_layout(blocks, layout_bboxes)
aligned_layout_bboxes = __valign_lines(blocks, layout_bboxes)
return aligned_layout_bboxes
def __pre_proc_zh_blocks(blocks, layout_bboxes):
"""
对中文文本进行分段预处理
"""
pass
def __pre_proc_en_blocks(blocks, layout_bboxes):
"""
对英文文本进行分段预处理
"""
pass
def __group_line_by_layout(blocks, layout_bboxes):
"""
每个layout内的行进行聚合
"""
# 因为只是一个block一行目前, 一个block就是一个段落
blocks_group = []
for lyout in layout_bboxes:
blocks_in_layout = [block for block in blocks if is_in_layout(block.get('bbox_fs', None), lyout['layout_bbox'])]
blocks_group.append(blocks_in_layout)
return blocks_group
def __split_para_in_layoutbox(blocks_group, new_layout_bbox, lang="en"):
"""
lines_group 进行行分段——layout内部进行分段。lines_group内每个元素是一个Layoutbox内的所有行。
1. 先计算每个group的左右边界。
2. 然后根据行末尾特征进行分段。
末尾特征:以句号等结束符结尾。并且距离右侧边界有一定距离。
且下一行开头不留空白。
"""
list_info = [] # 这个layout最后是不是列表,记录每一个layout里是不是列表开头,列表结尾
for blocks in blocks_group:
is_start_list = None
is_end_list = None
if len(blocks) == 0:
list_info.append([False, False])
continue
if blocks[0]["type"] != BlockType.Text and blocks[-1]["type"] != BlockType.Text:
list_info.append([False, False])
continue
if blocks[0]["type"] != BlockType.Text:
is_start_list = False
if blocks[-1]["type"] != BlockType.Text:
is_end_list = False
lines = [line for block in blocks if
block["type"] == BlockType.Text for line in
block['lines']]
total_lines = len(lines)
if total_lines == 1 or total_lines == 0:
list_info.append([False, False])
continue
"""在进入到真正的分段之前,要对文字块从统计维度进行对齐方式的探测,
对齐方式分为以下:
1. 左对齐的文本块(特点是左侧顶格,或者左侧不顶格但是右侧顶格的行数大于非顶格的行数,顶格的首字母有大写也有小写)
1) 右侧对齐的行,单独成一段
2) 中间对齐的行,按照字体/行高聚合成一段
2. 左对齐的列表块(其特点是左侧顶格的行数小于等于非顶格的行数,非定格首字母会有小写,顶格90%是大写。并且左侧顶格行数大于1,大于1是为了这种模式连续出现才能称之为列表)
这样的文本块,顶格的为一个段落开头,紧随其后非顶格的行属于这个段落。
"""
text_segments, list_start_line = __detect_list_lines(lines, new_layout_bbox, lang)
"""根据list_range,把lines分成几个部分
"""
for list_start in list_start_line:
if len(list_start) > 1:
for i in range(0, len(list_start)):
index = list_start[i] - 1
if index >= 0:
if "content" in lines[index]["spans"][-1] and lines[index]["spans"][-1].get('type', '') not in [
ContentType.InlineEquation, ContentType.InterlineEquation]:
lines[index]["spans"][-1]["content"] += '\n\n'
layout_list_info = [False, False] # 这个layout最后是不是列表,记录每一个layout里是不是列表开头,列表结尾
for content_type, start, end in text_segments:
if content_type == 'list':
if start == 0 and is_start_list is None:
layout_list_info[0] = True
if end == total_lines - 1 and is_end_list is None:
layout_list_info[1] = True
list_info.append(layout_list_info)
return list_info
def __split_para_lines(lines: list, text_blocks: list) -> list:
text_paras = []
other_paras = []
text_lines = []
for line in lines:
spans_types = [span["type"] for span in line]
if ContentType.Table in spans_types:
other_paras.append([line])
continue
if ContentType.Image in spans_types:
other_paras.append([line])
continue
if ContentType.InterlineEquation in spans_types:
other_paras.append([line])
continue
text_lines.append(line)
for block in text_blocks:
block_bbox = block["bbox"]
para = []
for line in text_lines:
bbox = line["bbox"]
if is_in_layout(bbox, block_bbox):
para.append(line)
if len(para) > 0:
text_paras.append(para)
paras = other_paras.extend(text_paras)
paras_sorted = sorted(paras, key=lambda x: x[0]["bbox"][1])
return paras_sorted
def __connect_list_inter_layout(blocks_group, new_layout_bbox, layout_list_info, page_num, lang):
global debug_able
"""
如果上个layout的最后一个段落是列表,下一个layout的第一个段落也是列表,那么将他们连接起来。 TODO 因为没有区分列表和段落,所以这个方法暂时不实现。
根据layout_list_info判断是不是列表。,下个layout的第一个段如果不是列表,那么看他们是否有几行都有相同的缩进。
"""
if len(blocks_group) == 0 or len(blocks_group) == 0: # 0的时候最后的return 会出错
return blocks_group, [False, False]
for i in range(1, len(blocks_group)):
if len(blocks_group[i]) == 0 or len(blocks_group[i - 1]) == 0:
continue
pre_layout_list_info = layout_list_info[i - 1]
next_layout_list_info = layout_list_info[i]
pre_last_para = blocks_group[i - 1][-1].get("lines", [])
next_paras = blocks_group[i]
next_first_para = next_paras[0]
if pre_layout_list_info[1] and not next_layout_list_info[0] and next_first_para[
"type"] == BlockType.Text: # 前一个是列表结尾,后一个是非列表开头,此时检测是否有相同的缩进
# if debug_able:
# logger.info(f"连接page {page_num} 内的list")
# 向layout_paras[i] 寻找开头具有相同缩进的连续的行
may_list_lines = []
lines = next_first_para.get("lines", [])
for line in lines:
if line['bbox'][0] > __find_layout_bbox_by_line(line['bbox'], new_layout_bbox)[0]:
may_list_lines.append(line)
else:
break
# 如果这些行的缩进是相等的,那么连到上一个layout的最后一个段落上。
if len(may_list_lines) > 0 and len(set([x['bbox'][0] for x in may_list_lines])) == 1:
pre_last_para.extend(may_list_lines)
next_first_para["lines"] = next_first_para["lines"][len(may_list_lines):]
return blocks_group, [layout_list_info[0][0], layout_list_info[-1][1]] # 同时还返回了这个页面级别的开头、结尾是不是列表的信息
def __connect_list_inter_page(pre_page_paras, next_page_paras, pre_page_layout_bbox, next_page_layout_bbox,
pre_page_list_info, next_page_list_info, page_num, lang):
"""
如果上个layout的最后一个段落是列表,下一个layout的第一个段落也是列表,那么将他们连接起来。 TODO 因为没有区分列表和段落,所以这个方法暂时不实现。
根据layout_list_info判断是不是列表。,下个layout的第一个段如果不是列表,那么看他们是否有几行都有相同的缩进。
"""
if len(pre_page_paras) == 0 or len(next_page_paras) == 0: # 0的时候最后的return 会出错
return False
if len(pre_page_paras[-1]) == 0 or len(next_page_paras[0]) == 0:
return False
if pre_page_paras[-1][-1]["type"] != BlockType.Text or next_page_paras[0][0]["type"] != BlockType.Text:
return False
if pre_page_list_info[1] and not next_page_list_info[0]: # 前一个是列表结尾,后一个是非列表开头,此时检测是否有相同的缩进
# if debug_able:
# logger.info(f"连接page {page_num} 内的list")
# 向layout_paras[i] 寻找开头具有相同缩进的连续的行
may_list_lines = []
next_page_first_para = next_page_paras[0][0]
if next_page_first_para["type"] == BlockType.Text:
lines = next_page_first_para["lines"]
for line in lines:
if line['bbox'][0] > __find_layout_bbox_by_line(line['bbox'], next_page_layout_bbox)[0]:
may_list_lines.append(line)
else:
break
# 如果这些行的缩进是相等的,那么连到上一个layout的最后一个段落上。
if len(may_list_lines) > 0 and len(set([x['bbox'][0] for x in may_list_lines])) == 1:
# pre_page_paras[-1].append(may_list_lines)
# 下一页合并到上一页最后一段,打一个cross_page的标签
for line in may_list_lines:
for span in line["spans"]:
span[CROSS_PAGE] = True
pre_page_paras[-1][-1]["lines"].extend(may_list_lines)
next_page_first_para["lines"] = next_page_first_para["lines"][len(may_list_lines):]
return True
return False
def __find_layout_bbox_by_line(line_bbox, layout_bboxes):
"""
根据line找到所在的layout
"""
for layout in layout_bboxes:
if is_in_layout(line_bbox, layout):
return layout
return None
def __connect_para_inter_layoutbox(blocks_group, new_layout_bbox):
"""
layout之间进行分段。
主要是计算前一个layOut的最后一行和后一个layout的第一行是否可以连接。
连接的条件需要同时满足:
1. 上一个layout的最后一行沾满整个行。并且没有结尾符号。
2. 下一行开头不留空白。
"""
connected_layout_blocks = []
if len(blocks_group) == 0:
return connected_layout_blocks
connected_layout_blocks.append(blocks_group[0])
for i in range(1, len(blocks_group)):
try:
if len(blocks_group[i]) == 0:
continue
if len(blocks_group[i - 1]) == 0: # TODO 考虑连接问题,
connected_layout_blocks.append(blocks_group[i])
continue
# text类型的段才需要考虑layout间的合并
if blocks_group[i - 1][-1]["type"] != BlockType.Text or blocks_group[i][0]["type"] != BlockType.Text:
connected_layout_blocks.append(blocks_group[i])
continue
if len(blocks_group[i - 1][-1]["lines"]) == 0 or len(blocks_group[i][0]["lines"]) == 0:
connected_layout_blocks.append(blocks_group[i])
continue
pre_last_line = blocks_group[i - 1][-1]["lines"][-1]
next_first_line = blocks_group[i][0]["lines"][0]
except Exception as e:
logger.error(f"page layout {i} has no line")
continue
pre_last_line_text = ''.join([__get_span_text(span) for span in pre_last_line['spans']])
pre_last_line_type = pre_last_line['spans'][-1]['type']
next_first_line_text = ''.join([__get_span_text(span) for span in next_first_line['spans']])
next_first_line_type = next_first_line['spans'][0]['type']
if pre_last_line_type not in [TEXT, INLINE_EQUATION] or next_first_line_type not in [TEXT, INLINE_EQUATION]:
connected_layout_blocks.append(blocks_group[i])
continue
pre_layout = __find_layout_bbox_by_line(pre_last_line['bbox'], new_layout_bbox)
next_layout = __find_layout_bbox_by_line(next_first_line['bbox'], new_layout_bbox)
pre_x2_max = pre_layout[2] if pre_layout else -1
next_x0_min = next_layout[0] if next_layout else -1
pre_last_line_text = pre_last_line_text.strip()
next_first_line_text = next_first_line_text.strip()
if pre_last_line['bbox'][2] == pre_x2_max and pre_last_line_text and pre_last_line_text[
-1] not in LINE_STOP_FLAG and \
next_first_line['bbox'][0] == next_x0_min: # 前面一行沾满了整个行,并且没有结尾符号.下一行没有空白开头。
"""连接段落条件成立,将前一个layout的段落和后一个layout的段落连接。"""
connected_layout_blocks[-1][-1]["lines"].extend(blocks_group[i][0]["lines"])
blocks_group[i][0]["lines"] = [] # 删除后一个layout第一个段落中的lines,因为他已经被合并到前一个layout的最后一个段落了
blocks_group[i][0][LINES_DELETED] = True
# if len(layout_paras[i]) == 0:
# layout_paras.pop(i)
# else:
# connected_layout_paras.append(layout_paras[i])
connected_layout_blocks.append(blocks_group[i])
else:
"""连接段落条件不成立,将前一个layout的段落加入到结果中。"""
connected_layout_blocks.append(blocks_group[i])
return connected_layout_blocks
def __connect_para_inter_page(pre_page_paras, next_page_paras, pre_page_layout_bbox, next_page_layout_bbox, page_num,
lang):
"""
连接起来相邻两个页面的段落——前一个页面最后一个段落和后一个页面的第一个段落。
是否可以连接的条件:
1. 前一个页面的最后一个段落最后一行沾满整个行。并且没有结尾符号。
2. 后一个页面的第一个段落第一行没有空白开头。
"""
# 有的页面可能压根没有文字
if len(pre_page_paras) == 0 or len(next_page_paras) == 0 or len(pre_page_paras[0]) == 0 or len(
next_page_paras[0]) == 0: # TODO [[]]为什么出现在pre_page_paras里?
return False
pre_last_block = pre_page_paras[-1][-1]
next_first_block = next_page_paras[0][0]
if pre_last_block["type"] != BlockType.Text or next_first_block["type"] != BlockType.Text:
return False
if len(pre_last_block["lines"]) == 0 or len(next_first_block["lines"]) == 0:
return False
pre_last_para = pre_last_block["lines"]
next_first_para = next_first_block["lines"]
pre_last_line = pre_last_para[-1]
next_first_line = next_first_para[0]
pre_last_line_text = ''.join([__get_span_text(span) for span in pre_last_line['spans']])
pre_last_line_type = pre_last_line['spans'][-1]['type']
next_first_line_text = ''.join([__get_span_text(span) for span in next_first_line['spans']])
next_first_line_type = next_first_line['spans'][0]['type']
if pre_last_line_type not in [TEXT, INLINE_EQUATION] or next_first_line_type not in [TEXT,
INLINE_EQUATION]: # TODO,真的要做好,要考虑跨table, image, 行间的情况
# 不是文本,不连接
return False
pre_x2_max_bbox = __find_layout_bbox_by_line(pre_last_line['bbox'], pre_page_layout_bbox)
if not pre_x2_max_bbox:
return False
next_x0_min_bbox = __find_layout_bbox_by_line(next_first_line['bbox'], next_page_layout_bbox)
if not next_x0_min_bbox:
return False
pre_x2_max = pre_x2_max_bbox[2]
next_x0_min = next_x0_min_bbox[0]
pre_last_line_text = pre_last_line_text.strip()
next_first_line_text = next_first_line_text.strip()
if pre_last_line['bbox'][2] == pre_x2_max and pre_last_line_text[-1] not in LINE_STOP_FLAG and \
next_first_line['bbox'][0] == next_x0_min: # 前面一行沾满了整个行,并且没有结尾符号.下一行没有空白开头。
"""连接段落条件成立,将前一个layout的段落和后一个layout的段落连接。"""
# 下一页合并到上一页最后一段,打一个cross_page的标签
for line in next_first_para:
for span in line["spans"]:
span[CROSS_PAGE] = True
pre_last_para.extend(next_first_para)
# next_page_paras[0].pop(0) # 删除后一个页面的第一个段落, 因为他已经被合并到前一个页面的最后一个段落了。
next_page_paras[0][0]["lines"] = []
next_page_paras[0][0][LINES_DELETED] = True
return True
else:
return False
def find_consecutive_true_regions(input_array):
start_index = None # 连续True区域的起始索引
regions = [] # 用于保存所有连续True区域的起始和结束索引
for i in range(len(input_array)):
# 如果我们找到了一个True值,并且当前并没有在连续True区域中
if input_array[i] and start_index is None:
start_index = i # 记录连续True区域的起始索引
# 如果我们找到了一个False值,并且当前在连续True区域中
elif not input_array[i] and start_index is not None:
# 如果连续True区域长度大于1,那么将其添加到结果列表中
if i - start_index > 1:
regions.append((start_index, i - 1))
start_index = None # 重置起始索引
# 如果最后一个元素是True,那么需要将最后一个连续True区域加入到结果列表中
if start_index is not None and len(input_array) - start_index > 1:
regions.append((start_index, len(input_array) - 1))
return regions
def __connect_middle_align_text(page_paras, new_layout_bbox, page_num, lang):
global debug_able
"""
找出来中间对齐的连续单行文本,如果连续行高度相同,那么合并为一个段落。
一个line居中的条件是:
1. 水平中心点跨越layout的中心点。
2. 左右两侧都有空白
"""
for layout_i, layout_para in enumerate(page_paras):
layout_box = new_layout_bbox[layout_i]
single_line_paras_tag = []
for i in range(len(layout_para)):
# single_line_paras_tag.append(len(layout_para[i]) == 1 and layout_para[i][0]['spans'][0]['type'] == TEXT)
single_line_paras_tag.append(layout_para[i]['type'] == BlockType.Text and len(layout_para[i]["lines"]) == 1)
"""找出来连续的单行文本,如果连续行高度相同,那么合并为一个段落。"""
consecutive_single_line_indices = find_consecutive_true_regions(single_line_paras_tag)
if len(consecutive_single_line_indices) > 0:
"""检查这些行是否是高度相同的,居中的"""
for start, end in consecutive_single_line_indices:
# start += index_offset
# end += index_offset
line_hi = np.array([block["lines"][0]['bbox'][3] - block["lines"][0]['bbox'][1] for block in
layout_para[start:end + 1]])
first_line_text = ''.join([__get_span_text(span) for span in layout_para[start]["lines"][0]['spans']])
if "Table" in first_line_text or "Figure" in first_line_text:
pass
# if debug_able:
# logger.info(line_hi.std())
if line_hi.std() < 2:
"""行高度相同,那么判断是否居中"""
all_left_x0 = [block["lines"][0]['bbox'][0] for block in layout_para[start:end + 1]]
all_right_x1 = [block["lines"][0]['bbox'][2] for block in layout_para[start:end + 1]]
layout_center = (layout_box[0] + layout_box[2]) / 2
if all([x0 < layout_center < x1 for x0, x1 in zip(all_left_x0, all_right_x1)]) \
and not all([x0 == layout_box[0] for x0 in all_left_x0]) \
and not all([x1 == layout_box[2] for x1 in all_right_x1]):
merge_para = [block["lines"][0] for block in layout_para[start:end + 1]]
para_text = ''.join([__get_span_text(span) for line in merge_para for span in line['spans']])
# if debug_able:
# logger.info(para_text)
layout_para[start]["lines"] = merge_para
for i_para in range(start + 1, end + 1):
layout_para[i_para]["lines"] = []
layout_para[i_para][LINES_DELETED] = True
# layout_para[start:end + 1] = [merge_para]
# index_offset -= end - start
return
def __merge_signle_list_text(page_paras, new_layout_bbox, page_num, lang):
"""
找出来连续的单行文本,如果首行顶格,接下来的几个单行段落缩进对齐,那么合并为一个段落。
"""
pass
def __do_split_page(blocks, layout_bboxes, new_layout_bbox, page_num, lang):
"""
根据line和layout情况进行分段
先实现一个根据行末尾特征分段的简单方法。
"""
"""
算法思路:
1. 扫描layout里每一行,找出来行尾距离layout有边界有一定距离的行。
2. 从上述行中找到末尾是句号等可作为断行标志的行。
3. 参照上述行尾特征进行分段。
4. 图、表,目前独占一行,不考虑分段。
"""
blocks_group = __group_line_by_layout(blocks, layout_bboxes) # block内分段
layout_list_info = __split_para_in_layoutbox(blocks_group, new_layout_bbox, lang) # layout内分段
blocks_group, page_list_info = __connect_list_inter_layout(blocks_group, new_layout_bbox, layout_list_info,
page_num, lang) # layout之间连接列表段落
connected_layout_blocks = __connect_para_inter_layoutbox(blocks_group, new_layout_bbox) # layout间链接段落
return connected_layout_blocks, page_list_info
def para_split(pdf_info_dict, debug_mode, lang="en"):
global debug_able
debug_able = debug_mode
new_layout_of_pages = [] # 数组的数组,每个元素是一个页面的layoutS
all_page_list_info = [] # 保存每个页面开头和结尾是否是列表
for page_num, page in pdf_info_dict.items():
blocks = copy.deepcopy(page['preproc_blocks'])
layout_bboxes = page['layout_bboxes']
new_layout_bbox = __common_pre_proc(blocks, layout_bboxes)
new_layout_of_pages.append(new_layout_bbox)
splited_blocks, page_list_info = __do_split_page(blocks, layout_bboxes, new_layout_bbox, page_num, lang)
all_page_list_info.append(page_list_info)
page['para_blocks'] = splited_blocks
# logger.info(f'page_list_info:\n{page_list_info}')
# logger.info(f'splited_blocks:\n{splited_blocks}')
"""连接页面与页面之间的可能合并的段落"""
pdf_infos = list(pdf_info_dict.values())
for page_num, page in enumerate(pdf_info_dict.values()):
if page_num == 0:
continue
pre_page_paras = pdf_infos[page_num - 1]['para_blocks']
next_page_paras = pdf_infos[page_num]['para_blocks']
pre_page_layout_bbox = new_layout_of_pages[page_num - 1]
next_page_layout_bbox = new_layout_of_pages[page_num]
is_conn = __connect_para_inter_page(pre_page_paras, next_page_paras, pre_page_layout_bbox,
next_page_layout_bbox, page_num, lang)
# if debug_able:
# if is_conn:
# logger.info(f"连接了第{page_num - 1}页和第{page_num}页的段落")
is_list_conn = __connect_list_inter_page(pre_page_paras, next_page_paras, pre_page_layout_bbox,
next_page_layout_bbox, all_page_list_info[page_num - 1],
all_page_list_info[page_num], page_num, lang)
# if debug_able:
# if is_list_conn:
# logger.info(f"连接了第{page_num - 1}页和第{page_num}页的列表段落")
"""接下来可能会漏掉一些特别的一些可以合并的内容,对他们进行段落连接
1. 正文中有时出现一个行顶格,接下来几行缩进的情况。
2. 居中的一些连续单行,如果高度相同,那么可能是一个段落。
"""
for page_num, page in enumerate(pdf_info_dict.values()):
page_paras = page['para_blocks']
new_layout_bbox = new_layout_of_pages[page_num]
__connect_middle_align_text(page_paras, new_layout_bbox, page_num, lang)
__merge_signle_list_text(page_paras, new_layout_bbox, page_num, lang)
# layout展平
for page_num, page in enumerate(pdf_info_dict.values()):
page_paras = page['para_blocks']
page_blocks = [block for layout in page_paras for block in layout]
page["para_blocks"] = page_blocks
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment