from typing import Iterable, Optional, Tuple import torch import tqdm from torch import nn from transformers import LlamaConfig from vllm.config import CacheConfig from vllm.distributed import get_tensor_model_parallel_rank from vllm.model_executor.layers.quantization.base_config import QuantizationConfig from vllm.model_executor.model_loader.weight_utils import default_weight_loader from sglang.srt.layers.logits_processor import LogitProcessorOutput from sglang.srt.managers.controller.model_runner import InputMetadata from sglang.srt.models.llama2 import LlamaModel class LlamaForClassification(nn.Module): def __init__( self, config: LlamaConfig, quant_config: Optional[QuantizationConfig] = None, cache_config: Optional[CacheConfig] = None, ) -> None: super().__init__() self.config = config self.quant_config = quant_config self.model = LlamaModel(config, quant_config=quant_config) self.classification_head = nn.Linear( config.hidden_size, config.classification_out_size ) self.eos_token_id = config.eos_token_id @torch.no_grad() def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, input_metadata: InputMetadata, input_embeds: torch.Tensor = None, ) -> torch.Tensor: hidden_states = self.model(input_ids, positions, input_metadata, input_embeds) is_eos_token = input_ids == self.eos_token_id hidden_states = hidden_states[is_eos_token] scores = self.classification_head(hidden_states) if scores.shape[0] != input_metadata.batch_size: print("Warning: the EOS tokens are missing in some sentences.") scores = torch.ones( (input_metadata.batch_size, self.config.classification_out_size) ).to(input_ids.device) return LogitProcessorOutput( next_token_logits=scores, next_token_logprobs=scores, normalized_prompt_logprobs=scores, prefill_token_logprobs=torch.ones_like(input_ids), prefill_top_logprobs=None, decode_top_logprobs=None, ) def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]): stacked_params_mapping = [ # (param_name, shard_name, shard_id) ("qkv_proj", "q_proj", "q"), ("qkv_proj", "k_proj", "k"), ("qkv_proj", "v_proj", "v"), ("gate_up_proj", "gate_proj", 0), ("gate_up_proj", "up_proj", 1), ] params_dict = dict(self.named_parameters()) if get_tensor_model_parallel_rank() == 0: weights = tqdm.tqdm(weights, total=int(len(params_dict) * 1.5)) for name, loaded_weight in weights: if "rotary_emb.inv_freq" in name or "projector" in name: continue if "rotary_emb.cos_cached" in name or "rotary_emb.sin_cached" in name: # Models trained using ColossalAI may include these tensors in # the checkpoint. Skip them. continue if "lm_head" in name: continue for param_name, weight_name, shard_id in stacked_params_mapping: if weight_name not in name: continue name = name.replace(weight_name, param_name) # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue if name.startswith("model.vision_tower") and name not in params_dict: continue param = params_dict[name] weight_loader = param.weight_loader weight_loader(param, loaded_weight, shard_id) break else: # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue if name.startswith("model.vision_tower") and name not in params_dict: continue param = params_dict[name] weight_loader = getattr(param, "weight_loader", default_weight_loader) weight_loader(param, loaded_weight) EntryClass = LlamaForClassification