# Copyright 2023-2024 SGLang Team # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # Adapted from # https://github.com/vllm-project/vllm/blob/c7f2cf2b7f67bce5842fedfdba508440fe257375/vllm/model_executor/models/llama.py#L1 """Inference-only LLaMA model compatible with HuggingFace weights.""" import logging from typing import Any, Dict, Iterable, Optional, Tuple import torch from torch import nn from transformers import LlamaConfig from sglang.srt.distributed import ( get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size, ) from sglang.srt.layers.activation import SiluAndMul from sglang.srt.layers.layernorm import RMSNorm from sglang.srt.layers.linear import ( MergedColumnParallelLinear, QKVParallelLinear, RowParallelLinear, ) from sglang.srt.layers.logits_processor import LogitsProcessor, LogitsProcessorOutput from sglang.srt.layers.pooler import Pooler, PoolingType from sglang.srt.layers.quantization.base_config import QuantizationConfig from sglang.srt.layers.radix_attention import RadixAttention from sglang.srt.layers.rotary_embedding import get_rope from sglang.srt.layers.vocab_parallel_embedding import ( ParallelLMHead, VocabParallelEmbedding, ) from sglang.srt.model_executor.forward_batch_info import ForwardBatch from sglang.srt.model_loader.weight_utils import ( default_weight_loader, kv_cache_scales_loader, maybe_remap_kv_scale_name, ) from sglang.srt.utils import make_layers from sglang.utils import get_exception_traceback logger = logging.getLogger(__name__) class LlamaMLP(nn.Module): def __init__( self, hidden_size: int, intermediate_size: int, hidden_act: str, quant_config: Optional[QuantizationConfig] = None, prefix: str = "", ) -> None: super().__init__() self.gate_up_proj = MergedColumnParallelLinear( hidden_size, [intermediate_size] * 2, bias=False, quant_config=quant_config, prefix=f"{prefix}.gate_up_proj", ) self.down_proj = RowParallelLinear( intermediate_size, hidden_size, bias=False, quant_config=quant_config, prefix=f"{prefix}.down_proj", ) if hidden_act != "silu": raise ValueError( f"Unsupported activation: {hidden_act}. " "Only silu is supported for now." ) self.act_fn = SiluAndMul() def forward(self, x): gate_up, _ = self.gate_up_proj(x) x = self.act_fn(gate_up) x, _ = self.down_proj(x) return x class LlamaAttention(nn.Module): def __init__( self, config: LlamaConfig, hidden_size: int, num_heads: int, num_kv_heads: int, layer_id: int = 0, rope_theta: float = 10000, rope_scaling: Optional[Dict[str, Any]] = None, rope_is_neox_style: bool = True, max_position_embeddings: int = 8192, quant_config: Optional[QuantizationConfig] = None, prefix: str = "", bias: bool = False, ) -> None: super().__init__() self.hidden_size = hidden_size tp_size = get_tensor_model_parallel_world_size() self.total_num_heads = num_heads assert self.total_num_heads % tp_size == 0 self.num_heads = self.total_num_heads // tp_size self.total_num_kv_heads = num_kv_heads if self.total_num_kv_heads >= tp_size: # Number of KV heads is greater than TP size, so we partition # the KV heads across multiple tensor parallel GPUs. assert self.total_num_kv_heads % tp_size == 0 else: # Number of KV heads is less than TP size, so we replicate # the KV heads across multiple tensor parallel GPUs. assert tp_size % self.total_num_kv_heads == 0 self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size) # MistralConfig has an optional head_dim introduced by Mistral-Nemo self.head_dim = getattr( config, "head_dim", self.hidden_size // self.total_num_heads ) self.q_size = self.num_heads * self.head_dim self.kv_size = self.num_kv_heads * self.head_dim self.scaling = self.head_dim**-0.5 self.rope_theta = rope_theta self.max_position_embeddings = max_position_embeddings self.qkv_proj = QKVParallelLinear( hidden_size, self.head_dim, self.total_num_heads, self.total_num_kv_heads, bias=bias, quant_config=quant_config, prefix=f"{prefix}.qkv_proj", ) self.o_proj = RowParallelLinear( self.total_num_heads * self.head_dim, hidden_size, bias=bias, quant_config=quant_config, prefix=f"{prefix}.o_proj", ) self.rotary_emb = get_rope( self.head_dim, rotary_dim=self.head_dim, max_position=max_position_embeddings, base=rope_theta, rope_scaling=rope_scaling, is_neox_style=rope_is_neox_style, ) self.attn = RadixAttention( self.num_heads, self.head_dim, self.scaling, num_kv_heads=self.num_kv_heads, layer_id=layer_id, ) def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, forward_batch: ForwardBatch, ) -> torch.Tensor: qkv, _ = self.qkv_proj(hidden_states) q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1) q, k = self.rotary_emb(positions, q, k) attn_output = self.attn(q, k, v, forward_batch) output, _ = self.o_proj(attn_output) return output class LlamaDecoderLayer(nn.Module): def __init__( self, config: LlamaConfig, layer_id: int = 0, quant_config: Optional[QuantizationConfig] = None, prefix: str = "", ) -> None: super().__init__() self.hidden_size = config.hidden_size rope_theta = getattr(config, "rope_theta", 10000) rope_scaling = getattr(config, "rope_scaling", None) if rope_scaling is not None and getattr( config, "original_max_position_embeddings", None ): rope_scaling["original_max_position_embeddings"] = ( config.original_max_position_embeddings ) rope_is_neox_style = getattr(config, "rope_is_neox_style", True) max_position_embeddings = getattr(config, "max_position_embeddings", 8192) # Support llamafy/Qwen-Qwen2.5-7B-Instruct-llamafied with attention_bias # Support internlm/internlm-7b with bias attention_bias = getattr(config, "attention_bias", False) or getattr( config, "bias", False ) self.self_attn = LlamaAttention( config=config, hidden_size=self.hidden_size, num_heads=config.num_attention_heads, num_kv_heads=config.num_key_value_heads, layer_id=layer_id, rope_theta=rope_theta, rope_scaling=rope_scaling, rope_is_neox_style=rope_is_neox_style, max_position_embeddings=max_position_embeddings, quant_config=quant_config, prefix=f"{prefix}.self_attn", bias=attention_bias, ) self.mlp = LlamaMLP( hidden_size=self.hidden_size, intermediate_size=config.intermediate_size, hidden_act=config.hidden_act, quant_config=quant_config, prefix=f"{prefix}.mlp", ) self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = RMSNorm( config.hidden_size, eps=config.rms_norm_eps ) def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, forward_batch: ForwardBatch, residual: Optional[torch.Tensor], ) -> Tuple[torch.Tensor, torch.Tensor]: # Self Attention if residual is None: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) else: hidden_states, residual = self.input_layernorm(hidden_states, residual) hidden_states = self.self_attn( positions=positions, hidden_states=hidden_states, forward_batch=forward_batch, ) # Fully Connected hidden_states, residual = self.post_attention_layernorm(hidden_states, residual) hidden_states = self.mlp(hidden_states) return hidden_states, residual class LlamaModel(nn.Module): def __init__( self, config: LlamaConfig, quant_config: Optional[QuantizationConfig] = None, ) -> None: super().__init__() self.config = config self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = VocabParallelEmbedding( config.vocab_size, config.hidden_size, quant_config=quant_config, ) self.layers = make_layers( config.num_hidden_layers, lambda idx, prefix: LlamaDecoderLayer( config=config, quant_config=quant_config, layer_id=idx, prefix=prefix ), prefix="model.layers", ) self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, forward_batch: ForwardBatch, input_embeds: torch.Tensor = None, ) -> torch.Tensor: if input_embeds is None: hidden_states = self.embed_tokens(input_ids) else: hidden_states = input_embeds residual = None for i in range(len(self.layers)): layer = self.layers[i] hidden_states, residual = layer( positions, hidden_states, forward_batch, residual, ) hidden_states, _ = self.norm(hidden_states, residual) return hidden_states # If this function is called, it should always initialize KV cache scale # factors (or else raise an exception). Thus, handled exceptions should # make sure to leave KV cache scale factors in a known good (dummy) state def load_kv_cache_scales(self, quantization_param_path: str) -> None: tp_size = get_tensor_model_parallel_world_size() tp_rank = get_tensor_model_parallel_rank() for layer_idx, scaling_factor in kv_cache_scales_loader( quantization_param_path, tp_rank, tp_size, self.config.num_hidden_layers, self.config.__class__.model_type, ): if not isinstance(self.layers[layer_idx], nn.Identity): layer_self_attn = self.layers[layer_idx].self_attn if hasattr(layer_self_attn.attn, "k_scale"): layer_self_attn.attn.k_scale = scaling_factor layer_self_attn.attn.v_scale = scaling_factor else: raise RuntimeError( "Self attention has no KV cache scaling " "factor attribute!" ) class LlamaForCausalLM(nn.Module): # BitandBytes specific attributes default_bitsandbytes_target_modules = [ ".gate_proj.", ".down_proj.", ".up_proj.", ".q_proj.", ".k_proj.", ".v_proj.", ".o_proj.", ] # in TP, these weights are partitioned along the column dimension (dim=-1) column_parallel_weights_modules = [".down_proj.", ".o_proj."] bitsandbytes_stacked_params_mapping = { # shard_name, weight_name, index "q_proj": ("qkv_proj", 0), "k_proj": ("qkv_proj", 1), "v_proj": ("qkv_proj", 2), "gate_proj": ("gate_up_proj", 0), "up_proj": ("gate_up_proj", 1), } def __init__( self, config: LlamaConfig, quant_config: Optional[QuantizationConfig] = None, ) -> None: super().__init__() self.config = config self.quant_config = quant_config self.model = LlamaModel(config, quant_config=quant_config) # Llama 3.2 1B Instruct set tie_word_embeddings to True # Llama 3.1 8B Instruct set tie_word_embeddings to False if self.config.tie_word_embeddings: self.lm_head = self.model.embed_tokens else: self.lm_head = ParallelLMHead( config.vocab_size, config.hidden_size, quant_config=quant_config ) self.logits_processor = LogitsProcessor(config) self.pooler = Pooler(pooling_type=PoolingType.LAST, normalize=True) self.stacked_params_mapping = [ # (param_name, shard_name, shard_id) (".qkv_proj", ".q_proj", "q"), (".qkv_proj", ".k_proj", "k"), (".qkv_proj", ".v_proj", "v"), (".gate_up_proj", ".gate_proj", 0), (".gate_up_proj", ".up_proj", 1), ] @torch.no_grad() def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, forward_batch: ForwardBatch, input_embeds: torch.Tensor = None, get_embedding: bool = False, ) -> LogitsProcessorOutput: hidden_states = self.model(input_ids, positions, forward_batch, input_embeds) if not get_embedding: return self.logits_processor( input_ids, hidden_states, self.lm_head, forward_batch ) else: return self.pooler(hidden_states, forward_batch) def get_hidden_dim(self, module_name): # return input_dim, output_dim if module_name in ["q_proj", "o_proj", "qkv_proj"]: return self.config.hidden_size, self.config.hidden_size elif module_name in ["kv_proj"]: return self.config.hidden_size, self.config.hidden_size // ( self.config.num_attention_heads // self.config.num_key_value_heads ) elif module_name == "gate_up_proj": return self.config.hidden_size, self.config.intermediate_size elif module_name == "down_proj": return self.config.intermediate_size, self.config.hidden_size else: raise NotImplementedError() def get_module_name(self, name): params_mapping = { "q_proj": "qkv_proj", "k_proj": "qkv_proj", "v_proj": "qkv_proj", "gate_proj": "gate_up_proj", "up_proj": "gate_up_proj", } return params_mapping.get(name, name) def get_module_name_from_weight_name(self, name): for param_name, weight_name, shard_id, num_shard in self.stacked_params_mapping: if weight_name in name: return ( name.replace(weight_name, param_name)[: -len(".weight")], num_shard, ) return name[: -len(".weight")], 1 def get_num_params(self): params_dict = dict(self.named_parameters()) return len(params_dict) def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]): stacked_params_mapping = [ # (param_name, shard_name, shard_id) (".qkv_proj", ".q_proj", "q"), (".qkv_proj", ".k_proj", "k"), (".qkv_proj", ".v_proj", "v"), (".gate_up_proj", ".gate_proj", 0), (".gate_up_proj", ".up_proj", 1), ] params_dict = dict(self.named_parameters()) for name, loaded_weight in weights: if "rotary_emb.inv_freq" in name or "projector" in name: continue if "rotary_emb.cos_cached" in name or "rotary_emb.sin_cached" in name: # Models trained using ColossalAI may include these tensors in # the checkpoint. Skip them. continue if name.startswith("model.vision_tower") and name not in params_dict: continue # Handle FP8 kv-scale remapping if "scale" in name: name = maybe_remap_kv_scale_name(name, params_dict) if name is None: continue for param_name, weight_name, shard_id in stacked_params_mapping: if weight_name not in name: continue name = name.replace(weight_name, param_name) # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue param = params_dict[name] weight_loader = param.weight_loader weight_loader(param, loaded_weight, shard_id) break else: # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue # Skip loading kv_scale from ckpts towards new design. if name.endswith(".kv_scale") and name not in params_dict: continue if name in params_dict.keys(): param = params_dict[name] weight_loader = getattr( param, "weight_loader", default_weight_loader ) weight_loader(param, loaded_weight) else: logger.warning(f"Parameter {name} not found in params_dict") def get_weights_by_name( self, name: str, truncate_size: int = 100, tp_size: int = 1 ) -> Optional[torch.Tensor]: """Get the weights of the parameter by its name. Similar to `get_parameter` in Hugging Face. Only used for unit test with an unoptimized performance. For optimized performance, please use torch.save and torch.load. """ try: if name == "lm_head.weight" and self.config.tie_word_embeddings: logger.info( "word embedding is tied for this model, return embed_tokens.weight as lm_head.weight." ) return ( self.model.embed_tokens.weight.cpu() .to(torch.float32) .numpy() .tolist()[:truncate_size] ) mapped_name = name mapped_shard_id = None for param_name, weight_name, shard_id in self.stacked_params_mapping: if weight_name in name: mapped_name = name.replace(weight_name, param_name) mapped_shard_id = shard_id break params_dict = dict(self.named_parameters()) param = params_dict[mapped_name] if mapped_shard_id is not None: if mapped_shard_id in ["q", "k", "v"]: num_heads = self.config.num_attention_heads // tp_size num_kv_heads = self.config.num_key_value_heads // tp_size head_dim = ( self.config.hidden_size // self.config.num_attention_heads ) if mapped_shard_id == "q": offset = 0 size = num_heads * head_dim elif mapped_shard_id == "k": offset = num_heads * head_dim size = num_kv_heads * head_dim elif mapped_shard_id == "v": offset = (num_heads + num_kv_heads) * head_dim size = num_kv_heads * head_dim weight = param.data.narrow(0, offset, size) elif mapped_shard_id in [0, 1]: intermediate_size = self.config.intermediate_size slice_size = intermediate_size // tp_size if mapped_shard_id == 0: # gate_proj offset = 0 size = slice_size elif mapped_shard_id == 1: # up_proj offset = slice_size size = slice_size weight = param.data.narrow(0, offset, size) else: weight = param.data else: weight = param.data if tp_size > 1 and ("o_proj" in name or "down_proj" in name): gathered_weights = [torch.zeros_like(weight) for _ in range(tp_size)] torch.distributed.all_gather(gathered_weights, weight) weight = torch.cat(gathered_weights, dim=1) return weight.cpu().to(torch.float32).numpy().tolist()[:truncate_size] except Exception: logger.error( f"Error getting weights by name {name} in LlamaForCausalLM: {get_exception_traceback()}" ) return None def get_embed_and_head(self): return self.model.embed_tokens.weight, self.lm_head.weight def set_embed_and_head(self, embed, head): del self.model.embed_tokens.weight del self.lm_head.weight self.model.embed_tokens.weight = embed self.lm_head.weight = head torch.cuda.empty_cache() torch.cuda.synchronize() def load_kv_cache_scales(self, quantization_param_path: str) -> None: self.model.load_kv_cache_scales(quantization_param_path) class Phi3ForCausalLM(LlamaForCausalLM): pass class InternLM3ForCausalLM(LlamaForCausalLM): pass EntryClass = [LlamaForCausalLM, Phi3ForCausalLM, InternLM3ForCausalLM]