Commit 4f83cf8f authored by Junxian's avatar Junxian
Browse files

[release] v0.0.1

parents
/******************************************************************************
* Copyright (c) 2023, Tri Dao.
******************************************************************************/
/******************************************************************************
* Adapted by Junxian Guo from https://github.com/Dao-AILab/flash-attention/blob/main/csrc/flash_attn/src/flash_fwd_launch_template.h
******************************************************************************/
#pragma once
#include <ATen/cuda/CUDAContext.h>
#include "static_switch.h"
#include "flash.h"
#include "flash_fwd_kernel.h"
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_local, bool Has_alibi, bool Is_even_MN, bool Is_even_K, bool Return_softmax>
__global__ void flash_fwd_kernel(Flash_fwd_params params) {
static_assert(!(Is_causal && Is_local)); // If Is_local is true, Is_causal should be false
flash::compute_attn<Kernel_traits, Is_dropout, Is_causal, Is_local, Has_alibi, Is_even_MN, Is_even_K, Return_softmax>(params);
}
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_local, bool Has_alibi, bool Is_even_MN, bool Is_even_K, bool Return_softmax, bool Is_exact_streaming>
__global__ void flash_fwd_block_kernel(Flash_fwd_params params) {
static_assert(!(Is_causal && Is_local)); // If Is_local is true, Is_causal should be false
flash::compute_block_attn<Kernel_traits, Is_dropout, Is_causal, Is_local, Has_alibi, Is_even_MN, Is_even_K, Return_softmax, Is_exact_streaming>(params);
}
template<typename Kernel_traits, bool Is_causal, bool Is_local, bool Has_alibi, bool Is_even_MN, bool Is_even_K, bool Split, bool Append_KV>
__global__ void flash_fwd_splitkv_kernel(Flash_fwd_params params) {
flash::compute_attn_splitkv<Kernel_traits, Is_causal, Is_local, Has_alibi, Is_even_MN, Is_even_K, Split, Append_KV>(params);
}
template<typename Kernel_traits, int kBlockM, int Log_max_splits, bool Is_even_K>
__global__ void flash_fwd_splitkv_combine_kernel(Flash_fwd_params params) {
static_assert(Log_max_splits >= 1);
flash::combine_attn_seqk_parallel<Kernel_traits, kBlockM, Log_max_splits, Is_even_K>(params);
}
template<typename Kernel_traits, bool Is_dropout, bool Is_causal>
void run_flash_fwd(Flash_fwd_params &params, cudaStream_t stream) {
constexpr size_t smem_size = Kernel_traits::kSmemSize;
// Work-around for gcc 7. It doesn't like nested BOOL_SWITCH.
// https://github.com/kokkos/kokkos-kernels/issues/349
// https://github.com/HazyResearch/flash-attention/issues/21
const int num_m_block = (params.seqlen_q + Kernel_traits::kBlockM - 1) / Kernel_traits::kBlockM;
dim3 grid(num_m_block, params.b, params.h);
const bool is_even_MN = params.cu_seqlens_q == nullptr && params.cu_seqlens_k == nullptr && params.seqlen_k % Kernel_traits::kBlockN == 0 && params.seqlen_q % Kernel_traits::kBlockM == 0;
const bool is_even_K = params.d == Kernel_traits::kHeadDim;
const bool return_softmax = params.p_ptr != nullptr;
BOOL_SWITCH(is_even_MN, IsEvenMNConst, [&] {
BOOL_SWITCH(is_even_K, IsEvenKConst, [&] {
BOOL_SWITCH((params.window_size_left >= 0 || params.window_size_right >= 0) && !Is_causal, Is_local, [&] {
BOOL_SWITCH(return_softmax, ReturnSoftmaxConst, [&] {
BOOL_SWITCH(params.alibi_slopes_ptr != nullptr, Has_alibi, [&] {
// Will only return softmax if dropout, to reduce compilation time.
// If not IsEvenKConst, we also set IsEvenMNConst to false to reduce number of templates.
// If return_softmax, set IsEvenMNConst to false to reduce number of templates
// If head dim > 128, set IsEvenMNConst to false to reduce number of templates
// If Is_local, set Is_causal to false
auto kernel = &flash_fwd_kernel<Kernel_traits, Is_dropout, Is_causal, Is_local && !Is_causal, Has_alibi, IsEvenMNConst && IsEvenKConst && !Is_local && !ReturnSoftmaxConst && Kernel_traits::kHeadDim <= 128, IsEvenKConst, ReturnSoftmaxConst && Is_dropout>;
// auto kernel = &flash_fwd_kernel<Kernel_traits, false, Is_causal, false, false, true, true, false>;
// auto kernel = &flash_fwd_kernel<Kernel_traits, false, Is_causal, false, true, true, false>;
if (smem_size >= 48 * 1024) {
C10_CUDA_CHECK(cudaFuncSetAttribute(
kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size));
}
// int ctas_per_sm;
// cudaError status_ = cudaOccupancyMaxActiveBlocksPerMultiprocessor(
// &ctas_per_sm, kernel, Kernel_traits::kNThreads, smem_size);
kernel<<<grid, Kernel_traits::kNThreads, smem_size, stream>>>(params);
C10_CUDA_KERNEL_LAUNCH_CHECK();
});
});
});
});
});
}
// blocksparse
template<typename Kernel_traits, bool Is_dropout, bool Is_causal>
void run_flash_fwd_block(Flash_fwd_params &params, cudaStream_t stream) {
constexpr size_t smem_size = Kernel_traits::kSmemSize;
// Work-around for gcc 7. It doesn't like nested BOOL_SWITCH.
// https://github.com/kokkos/kokkos-kernels/issues/349
// https://github.com/HazyResearch/flash-attention/issues/21
const int num_m_block = (params.seqlen_q + Kernel_traits::kBlockM - 1) / Kernel_traits::kBlockM;
dim3 grid(num_m_block, params.b, params.h);
const bool is_even_MN = params.cu_seqlens_q == nullptr && params.cu_seqlens_k == nullptr && params.seqlen_k % Kernel_traits::kBlockN == 0 && params.seqlen_q % Kernel_traits::kBlockM == 0;
const bool is_even_K = params.d == Kernel_traits::kHeadDim;
const bool return_softmax = params.p_ptr != nullptr;
BOOL_SWITCH(is_even_MN, IsEvenMNConst, [&] {
BOOL_SWITCH(is_even_K, IsEvenKConst, [&] {
BOOL_SWITCH((params.window_size_left >= 0 || params.window_size_right >= 0) && !Is_causal, Is_local, [&] {
BOOL_SWITCH(return_softmax, ReturnSoftmaxConst, [&] {
BOOL_SWITCH(params.is_exact_streaming, Is_exact_streaming, [&] {
// Will only return softmax if dropout, to reduce compilation time.
// If not IsEvenKConst, we also set IsEvenMNConst to false to reduce number of templates.
// If return_softmax, set IsEvenMNConst to false to reduce number of templates
// If head dim > 128, set IsEvenMNConst to false to reduce number of templates
// If Is_local, set Is_causal to false
auto kernel = &flash_fwd_block_kernel<Kernel_traits, Is_dropout, Is_causal, Is_local && !Is_causal, false, IsEvenMNConst && IsEvenKConst && !Is_local && !ReturnSoftmaxConst && Kernel_traits::kHeadDim <= 128, IsEvenKConst, ReturnSoftmaxConst && Is_dropout, Is_exact_streaming && Is_causal>;
if (smem_size >= 48 * 1024) {
C10_CUDA_CHECK(cudaFuncSetAttribute(
kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size));
}
// int ctas_per_sm;
// cudaError status_ = cudaOccupancyMaxActiveBlocksPerMultiprocessor(
// &ctas_per_sm, kernel, Kernel_traits::kNThreads, smem_size);
kernel<<<grid, Kernel_traits::kNThreads, smem_size, stream>>>(params);
C10_CUDA_KERNEL_LAUNCH_CHECK();
});
});
});
});
});
}
template<typename Kernel_traits>
void run_flash_splitkv_fwd(Flash_fwd_params &params, cudaStream_t stream) {
static_assert(!Kernel_traits::Is_Q_in_regs, "SplitKV implementation does not support Is_Q_in_regs");
static_assert(!Kernel_traits::Share_Q_K_smem, "SplitKV implementation does not support Share_Q_K_smem");
constexpr size_t smem_size = Kernel_traits::kSmemSize;
const int num_m_block = (params.seqlen_q + Kernel_traits::kBlockM - 1) / Kernel_traits::kBlockM;
dim3 grid(num_m_block, params.num_splits > 1 ? params.num_splits : params.b, params.num_splits > 1 ? params.b * params.h : params.h);
const bool is_even_MN = params.cu_seqlens_q == nullptr && params.cu_seqlens_k == nullptr && params.seqlen_k % Kernel_traits::kBlockN == 0 && params.seqlen_q % Kernel_traits::kBlockM == 0;
const bool is_even_K = params.d == Kernel_traits::kHeadDim;
BOOL_SWITCH(params.is_causal, Is_causal, [&] {
BOOL_SWITCH(is_even_MN, IsEvenMNConst, [&] {
BOOL_SWITCH(is_even_K, IsEvenKConst, [&] {
BOOL_SWITCH((params.window_size_left >= 0 || params.window_size_right >= 0) && !Is_causal, Is_local, [&] {
BOOL_SWITCH(params.num_splits > 1, Split, [&] {
BOOL_SWITCH(params.knew_ptr != nullptr, Append_KV, [&] {
BOOL_SWITCH(params.alibi_slopes_ptr != nullptr, Has_alibi, [&] {
// If Append_KV, then we must have seqlen_offsets, which means cu_seqlens_k != nullptr.
// If not IsEvenKConst, we also set IsEvenMNConst to false to reduce number of templates.
// If Is_local, set Is_causal to false
auto kernel = &flash_fwd_splitkv_kernel<Kernel_traits, Is_causal, Is_local && !Is_causal, Has_alibi, IsEvenMNConst && !Append_KV && IsEvenKConst && !Is_local && Kernel_traits::kHeadDim <= 128, IsEvenKConst, Split, Append_KV>;
// auto kernel = &flash_fwd_splitkv_kernel<Kernel_traits, Is_causal, false, true, Split, Append_KV>;
// auto kernel = &flash_fwd_splitkv_kernel<Kernel_traits, Is_causal, false, IsEvenKConst>;
if (smem_size >= 48 * 1024) {
C10_CUDA_CHECK(cudaFuncSetAttribute(
kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size));
}
kernel<<<grid, Kernel_traits::kNThreads, smem_size, stream>>>(params);
C10_CUDA_KERNEL_LAUNCH_CHECK();
});
});
});
});
});
});
});
if (params.num_splits > 1) {
// We want kBlockM to be as small as possible for more parallelism.
// With 128 threads we can load 512 elements at a time, so if headdim is divisible by 128, kBlockM = 4.
// If headdim is divisible by 64, then we set kBlockM = 8, etc.
constexpr static int kBlockM = Kernel_traits::kHeadDim % 128 == 0 ? 4 : (Kernel_traits::kHeadDim % 64 == 0 ? 8 : 16);
dim3 grid_combine((params.b * params.h * params.seqlen_q + kBlockM - 1) / kBlockM);
BOOL_SWITCH(is_even_K, IsEvenKConst, [&] {
if (params.num_splits <= 2) {
flash_fwd_splitkv_combine_kernel<Kernel_traits, kBlockM, 1, IsEvenKConst><<<grid_combine, Kernel_traits::kNThreads, 0, stream>>>(params);
} else if (params.num_splits <= 4) {
flash_fwd_splitkv_combine_kernel<Kernel_traits, kBlockM, 2, IsEvenKConst><<<grid_combine, Kernel_traits::kNThreads, 0, stream>>>(params);
} else if (params.num_splits <= 8) {
flash_fwd_splitkv_combine_kernel<Kernel_traits, kBlockM, 3, IsEvenKConst><<<grid_combine, Kernel_traits::kNThreads, 0, stream>>>(params);
} else if (params.num_splits <= 16) {
flash_fwd_splitkv_combine_kernel<Kernel_traits, kBlockM, 4, IsEvenKConst><<<grid_combine, Kernel_traits::kNThreads, 0, stream>>>(params);
} else if (params.num_splits <= 32) {
flash_fwd_splitkv_combine_kernel<Kernel_traits, kBlockM, 5, IsEvenKConst><<<grid_combine, Kernel_traits::kNThreads, 0, stream>>>(params);
} else if (params.num_splits <= 64) {
flash_fwd_splitkv_combine_kernel<Kernel_traits, kBlockM, 6, IsEvenKConst><<<grid_combine, Kernel_traits::kNThreads, 0, stream>>>(params);
} else if (params.num_splits <= 128) {
flash_fwd_splitkv_combine_kernel<Kernel_traits, kBlockM, 7, IsEvenKConst><<<grid_combine, Kernel_traits::kNThreads, 0, stream>>>(params);
}
C10_CUDA_KERNEL_LAUNCH_CHECK();
});
}
}
template<typename T, int Headdim>
void run_mha_fwd_splitkv_dispatch(Flash_fwd_params &params, cudaStream_t stream) {
constexpr static int kBlockM = 64; // Fixed for all head dimensions
// TD [2023-08-28]: nvcc segfaults for headdim 96 with block size 64 x 256,
// and for headdim 192 with block size 64 x 128.
// Also for headdim 160 with block size 64 x 128 after the rotary addition.
constexpr static int kBlockN = Headdim <= 64 ? 256 : (Headdim <= 128 ? 128 : 64);
run_flash_splitkv_fwd<Flash_fwd_kernel_traits<Headdim, kBlockM, kBlockN, 4, false, false, T>>(params, stream);
}
template<typename T>
void run_mha_fwd_hdim32(Flash_fwd_params &params, cudaStream_t stream) {
constexpr static int Headdim = 32;
BOOL_SWITCH(params.p_dropout < 1.f, Is_dropout, [&] {
BOOL_SWITCH(params.is_causal, Is_causal, [&] {
run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 128, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
});
});
}
template<typename T>
void run_mha_fwd_hdim64(Flash_fwd_params &params, cudaStream_t stream) {
constexpr static int Headdim = 64;
BOOL_SWITCH(params.p_dropout < 1.f, Is_dropout, [&] {
BOOL_SWITCH(params.is_causal, Is_causal, [&] {
if constexpr(!Is_dropout) {
// Using 8 warps is 18% slower for seqlen=2k, 2 warps is 5% slower
// Using block size (64 x 256) is 27% slower for seqlen=2k
// Using block size (256 x 64) is 85% slower for seqlen=2k, because of register spilling
run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 128, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 4, true, false, T>, Is_dropout, Is_causal>(params, stream);
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 4, true, true, T>, Is_dropout, Is_causal>(params, stream);
} else {
run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 4, true, true, T>, Is_dropout, Is_causal>(params, stream);
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 4, true, false, T>, Is_dropout, Is_causal>(params, stream);
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 128, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
}
});
});
}
template<typename T>
void run_mha_fwd_hdim96(Flash_fwd_params &params, cudaStream_t stream) {
constexpr static int Headdim = 96;
auto dprops = at::cuda::getCurrentDeviceProperties();
bool is_sm8x = dprops->major == 8 && dprops->minor > 0;
BOOL_SWITCH(params.p_dropout < 1.f, Is_dropout, [&] {
BOOL_SWITCH(params.is_causal, Is_causal, [&] {
// For sm86 or sm89, 64 x 64 is the fastest for causal (because it's square),
if (is_sm8x) {
if constexpr(!Is_causal) {
run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
} else {
run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 64, 64, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
}
} else {
run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
}
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 4, true, false, T>, Is_dropout, Is_causal>(params, stream);
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 4, true, true, T>, Is_dropout, Is_causal>(params, stream);
// These two are always slower
// run_flash_fwd<Flash_fwd_kernel_traits<96, 128, 128, 4, true, T>>(params, stream);
// run_flash_fwd<Flash_fwd_kernel_traits<96, 64, 128, 4, true, T>>(params, stream);
});
});
}
template<typename T>
void run_mha_fwd_hdim128(Flash_fwd_params &params, cudaStream_t stream) {
constexpr static int Headdim = 128;
auto dprops = at::cuda::getCurrentDeviceProperties();
bool is_sm8x = dprops->major == 8 && dprops->minor > 0;
BOOL_SWITCH(params.p_dropout < 1.f, Is_dropout, [&] {
BOOL_SWITCH(params.is_causal, Is_causal, [&] {
if constexpr(!Is_dropout) {
// For sm86 or sm89, 64 x 64 is the fastest for causal (because it's square),
// and 128 x 32 (48 KB smem) is the fastest for non-causal since we get 2 CTAs per SM.
if (is_sm8x) {
if constexpr(!Is_causal) {
run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 32, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
} else {
run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 64, 64, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
}
} else {
run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
}
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 4, true, false, T>, Is_dropout, Is_causal>(params, stream);
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 4, true, true, T>, Is_dropout, Is_causal>(params, stream);
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 64, 128, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
// Using 8 warps (128 x 128 and 256 x 64) is 28% slower for seqlen=2k
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 128, 8, false, false, T>, Is_dropout, Is_causal>(params, stream);
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 8, false, false, T>, Is_dropout, Is_causal>(params, stream);
// 1st ones are good for H100, A100
// 2nd one is good for A6000 bc we get slightly better occupancy
} else {
run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 32, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 64, 64, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 32, 4, true, false, T>, Is_dropout, Is_causal>(params, stream);
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 32, 4, true, true, T>, Is_dropout, Is_causal>(params, stream);
}
});
});
}
template<typename T>
void run_mha_fwd_hdim160(Flash_fwd_params &params, cudaStream_t stream) {
constexpr static int Headdim = 160;
auto dprops = at::cuda::getCurrentDeviceProperties();
bool is_sm8x = dprops->major == 8 && dprops->minor > 0;
BOOL_SWITCH(params.p_dropout < 1.f, Is_dropout, [&] {
BOOL_SWITCH(params.is_causal, Is_causal, [&] {
// For A100, H100, 128 x 32 is the fastest.
// For sm86 or sm89, 64 x 64 is the fastest for causal (because it's square),
// and 128 x 64 with 8 warps is the fastest for non-causal.
if (is_sm8x) {
if constexpr(!Is_causal) {
run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 8, false, false, T>, Is_dropout, Is_causal>(params, stream);
} else {
run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 64, 64, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
}
} else {
run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 32, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
}
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 32, 4, false, true, T>, Is_dropout, Is_causal>(params, stream);
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 4, false, T>>(params, stream);
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 64, 128, 4, false, T>>(params, stream);
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 64, 64, 4, false, T>>(params, stream);
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 8, false, T>>(params, stream);
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 128, 8, false, T>>(params, stream);
});
});
}
template<typename T>
void run_mha_fwd_hdim192(Flash_fwd_params &params, cudaStream_t stream) {
constexpr static int Headdim = 192;
BOOL_SWITCH(params.p_dropout < 1.f, Is_dropout, [&] {
BOOL_SWITCH(params.is_causal, Is_causal, [&] {
if constexpr(!Is_dropout) {
run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 8, false, false, T>, Is_dropout, Is_causal>(params, stream);
} else {
run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 64, 64, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
}
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 64, 32, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 32, 8, false, false, T>, Is_dropout, Is_causal>(params, stream);
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 4, false, T>>(params, stream);
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 64, 128, 4, false, T>>(params, stream);
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 128, 8, false, T>>(params, stream);
});
});
}
template<typename T>
void run_mha_fwd_hdim224(Flash_fwd_params &params, cudaStream_t stream) {
constexpr static int Headdim = 224;
int device;
cudaGetDevice(&device);
int max_smem_per_block;
cudaError status_ = cudaDeviceGetAttribute(
&max_smem_per_block, cudaDevAttrMaxSharedMemoryPerBlockOptin, device);
if (status_ != cudaSuccess) {
C10_CUDA_CHECK(status_);
}
BOOL_SWITCH(params.p_dropout < 1.f, Is_dropout, [&] {
BOOL_SWITCH(params.is_causal, Is_causal, [&] {
if (max_smem_per_block >= 2 * Headdim * (128 + 2 * 64)) { // 112 KB
run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 8, false, false, T>, Is_dropout, Is_causal>(params, stream);
} else {
run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 64, 64, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
}
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 32, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 64, 32, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
// We can't do 128 x 32 with 8 warps because with headdim 224, kBlockKSmem = 32.
// If we have N = 32, there are only 1024 elements to load at once, where each load
// is 8 elements. This means we can only use 128 threads and not 256 threads.
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 32, 8, false, false, T>, Is_dropout, Is_causal>(params, stream);
});
});
}
template<typename T>
void run_mha_fwd_hdim256(Flash_fwd_params &params, cudaStream_t stream) {
constexpr static int Headdim = 256;
int device;
cudaGetDevice(&device);
int max_smem_per_sm, max_smem_per_block;
cudaError status_ = cudaDeviceGetAttribute(
&max_smem_per_sm, cudaDevAttrMaxSharedMemoryPerMultiprocessor, device);
status_ = cudaDeviceGetAttribute(
&max_smem_per_block, cudaDevAttrMaxSharedMemoryPerBlockOptin, device);
if (status_ != cudaSuccess) {
C10_CUDA_CHECK(status_);
}
BOOL_SWITCH(params.p_dropout < 1.f, Is_dropout, [&] {
BOOL_SWITCH(params.is_causal, Is_causal, [&] {
// For A100, we want to run with 128 x 64 (128KB smem).
// For H100 we want to run with 64 x 64 (96KB smem) since then we can get 2 CTAs per SM.
if (max_smem_per_block >= 2 * Headdim * (128 + 2 * 64) && max_smem_per_sm < 4 * Headdim * (64 + 2 * 64)) {
run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 8, false, false, T>, Is_dropout, Is_causal>(params, stream);
} else {
run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 64, 64, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
}
// 64 KB
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 64, 32, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
// 96 KB
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 32, 8, false, false, T>, Is_dropout, Is_causal>(params, stream);
});
});
}
template<typename T>
void run_mha_fwd_block_hdim32(Flash_fwd_params &params, cudaStream_t stream) {
constexpr static int Headdim = 32;
BOOL_SWITCH(params.p_dropout < 1.f, Is_dropout, [&] {
BOOL_SWITCH(params.is_causal, Is_causal, [&] {
run_flash_fwd_block<Flash_fwd_kernel_traits<Headdim, 128, 128, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
});
});
}
template<typename T>
void run_mha_fwd_block_hdim64(Flash_fwd_params &params, cudaStream_t stream) {
constexpr static int Headdim = 64;
BOOL_SWITCH(params.p_dropout < 1.f, Is_dropout, [&] {
BOOL_SWITCH(params.is_causal, Is_causal, [&] {
if constexpr(!Is_dropout) {
// Using 8 warps is 18% slower for seqlen=2k, 2 warps is 5% slower
// Using block size (64 x 256) is 27% slower for seqlen=2k
// Using block size (256 x 64) is 85% slower for seqlen=2k, because of register spilling
run_flash_fwd_block<Flash_fwd_kernel_traits<Headdim, 128, 128, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 4, true, false, T>, Is_dropout, Is_causal>(params, stream);
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 4, true, true, T>, Is_dropout, Is_causal>(params, stream);
} else {
run_flash_fwd_block<Flash_fwd_kernel_traits<Headdim, 128, 64, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 4, true, true, T>, Is_dropout, Is_causal>(params, stream);
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 4, true, false, T>, Is_dropout, Is_causal>(params, stream);
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 128, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
}
});
});
}
template<typename T>
void run_mha_fwd_block_hdim128(Flash_fwd_params &params, cudaStream_t stream) {
constexpr static int Headdim = 128;
auto dprops = at::cuda::getCurrentDeviceProperties();
bool is_sm8x = dprops->major == 8 && dprops->minor > 0;
BOOL_SWITCH(params.p_dropout < 1.f, Is_dropout, [&] {
BOOL_SWITCH(params.is_causal, Is_causal, [&] {
if constexpr(!Is_dropout) {
// For sm86 or sm89, 64 x 64 is the fastest for causal (because it's square),
// and 128 x 32 (48 KB smem) is the fastest for non-causal since we get 2 CTAs per SM.
if (is_sm8x) {
if constexpr(!Is_causal) {
run_flash_fwd_block<Flash_fwd_kernel_traits<Headdim, 128, 32, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
} else {
run_flash_fwd_block<Flash_fwd_kernel_traits<Headdim, 64, 64, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
}
} else {
run_flash_fwd_block<Flash_fwd_kernel_traits<Headdim, 128, 64, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
}
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 4, true, false, T>, Is_dropout, Is_causal>(params, stream);
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 4, true, true, T>, Is_dropout, Is_causal>(params, stream);
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 64, 128, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
// Using 8 warps (128 x 128 and 256 x 64) is 28% slower for seqlen=2k
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 128, 8, false, false, T>, Is_dropout, Is_causal>(params, stream);
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 64, 8, false, false, T>, Is_dropout, Is_causal>(params, stream);
// 1st ones are good for H100, A100
// 2nd one is good for A6000 bc we get slightly better occupancy
} else {
run_flash_fwd_block<Flash_fwd_kernel_traits<Headdim, 128, 32, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 64, 64, 4, false, false, T>, Is_dropout, Is_causal>(params, stream);
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 32, 4, true, false, T>, Is_dropout, Is_causal>(params, stream);
// run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 32, 4, true, true, T>, Is_dropout, Is_causal>(params, stream);
}
});
});
}
// Copyright (c) 2023, Tri Dao.
// Splitting the different head dimensions to different files to speed up compilation.
// This file is auto-generated. See "generate_kernels.py"
#include "flash_fwd_launch_template.h"
template void run_mha_fwd_splitkv_dispatch<cutlass::bfloat16_t, 128>(Flash_fwd_params &params, cudaStream_t stream);
// Copyright (c) 2023, Tri Dao.
// Splitting the different head dimensions to different files to speed up compilation.
// This file is auto-generated. See "generate_kernels.py"
#include "flash_fwd_launch_template.h"
template void run_mha_fwd_splitkv_dispatch<cutlass::half_t, 128>(Flash_fwd_params &params, cudaStream_t stream);
// Copyright (c) 2023, Tri Dao.
// Splitting the different head dimensions to different files to speed up compilation.
// This file is auto-generated. See "generate_kernels.py"
#include "flash_fwd_launch_template.h"
template void run_mha_fwd_splitkv_dispatch<cutlass::bfloat16_t, 160>(Flash_fwd_params &params, cudaStream_t stream);
// Copyright (c) 2023, Tri Dao.
// Splitting the different head dimensions to different files to speed up compilation.
// This file is auto-generated. See "generate_kernels.py"
#include "flash_fwd_launch_template.h"
template void run_mha_fwd_splitkv_dispatch<cutlass::half_t, 160>(Flash_fwd_params &params, cudaStream_t stream);
// Copyright (c) 2023, Tri Dao.
// Splitting the different head dimensions to different files to speed up compilation.
// This file is auto-generated. See "generate_kernels.py"
#include "flash_fwd_launch_template.h"
template void run_mha_fwd_splitkv_dispatch<cutlass::bfloat16_t, 192>(Flash_fwd_params &params, cudaStream_t stream);
// Copyright (c) 2023, Tri Dao.
// Splitting the different head dimensions to different files to speed up compilation.
// This file is auto-generated. See "generate_kernels.py"
#include "flash_fwd_launch_template.h"
template void run_mha_fwd_splitkv_dispatch<cutlass::half_t, 192>(Flash_fwd_params &params, cudaStream_t stream);
// Copyright (c) 2023, Tri Dao.
// Splitting the different head dimensions to different files to speed up compilation.
// This file is auto-generated. See "generate_kernels.py"
#include "flash_fwd_launch_template.h"
template void run_mha_fwd_splitkv_dispatch<cutlass::bfloat16_t, 224>(Flash_fwd_params &params, cudaStream_t stream);
// Copyright (c) 2023, Tri Dao.
// Splitting the different head dimensions to different files to speed up compilation.
// This file is auto-generated. See "generate_kernels.py"
#include "flash_fwd_launch_template.h"
template void run_mha_fwd_splitkv_dispatch<cutlass::half_t, 224>(Flash_fwd_params &params, cudaStream_t stream);
// Copyright (c) 2023, Tri Dao.
// Splitting the different head dimensions to different files to speed up compilation.
// This file is auto-generated. See "generate_kernels.py"
#include "flash_fwd_launch_template.h"
template void run_mha_fwd_splitkv_dispatch<cutlass::bfloat16_t, 256>(Flash_fwd_params &params, cudaStream_t stream);
// Copyright (c) 2023, Tri Dao.
// Splitting the different head dimensions to different files to speed up compilation.
// This file is auto-generated. See "generate_kernels.py"
#include "flash_fwd_launch_template.h"
template void run_mha_fwd_splitkv_dispatch<cutlass::half_t, 256>(Flash_fwd_params &params, cudaStream_t stream);
// Copyright (c) 2023, Tri Dao.
// Splitting the different head dimensions to different files to speed up compilation.
// This file is auto-generated. See "generate_kernels.py"
#include "flash_fwd_launch_template.h"
template void run_mha_fwd_splitkv_dispatch<cutlass::bfloat16_t, 32>(Flash_fwd_params &params, cudaStream_t stream);
// Copyright (c) 2023, Tri Dao.
// Splitting the different head dimensions to different files to speed up compilation.
// This file is auto-generated. See "generate_kernels.py"
#include "flash_fwd_launch_template.h"
template void run_mha_fwd_splitkv_dispatch<cutlass::half_t, 32>(Flash_fwd_params &params, cudaStream_t stream);
// Copyright (c) 2023, Tri Dao.
// Splitting the different head dimensions to different files to speed up compilation.
// This file is auto-generated. See "generate_kernels.py"
#include "flash_fwd_launch_template.h"
template void run_mha_fwd_splitkv_dispatch<cutlass::bfloat16_t, 64>(Flash_fwd_params &params, cudaStream_t stream);
// Copyright (c) 2023, Tri Dao.
// Splitting the different head dimensions to different files to speed up compilation.
// This file is auto-generated. See "generate_kernels.py"
#include "flash_fwd_launch_template.h"
template void run_mha_fwd_splitkv_dispatch<cutlass::half_t, 64>(Flash_fwd_params &params, cudaStream_t stream);
// Copyright (c) 2023, Tri Dao.
// Splitting the different head dimensions to different files to speed up compilation.
// This file is auto-generated. See "generate_kernels.py"
#include "flash_fwd_launch_template.h"
template void run_mha_fwd_splitkv_dispatch<cutlass::bfloat16_t, 96>(Flash_fwd_params &params, cudaStream_t stream);
// Copyright (c) 2023, Tri Dao.
// Splitting the different head dimensions to different files to speed up compilation.
// This file is auto-generated. See "generate_kernels.py"
#include "flash_fwd_launch_template.h"
template void run_mha_fwd_splitkv_dispatch<cutlass::half_t, 96>(Flash_fwd_params &params, cudaStream_t stream);
# Copied from Driss Guessous's PR in PyTorch: https://github.com/pytorch/pytorch/pull/105602
# This file is run to generate the kernel instantiations for the flash_attn kernels
# They are written to several files in order to speed up compilation
import argparse
import itertools
from dataclasses import dataclass
from pathlib import Path
from typing import List, Optional
DTYPE_MAP = {
"fp16": "cutlass::half_t",
"bf16": "cutlass::bfloat16_t",
}
SM = [80] # Sm80 kernels support up to
HEAD_DIMENSIONS = [32, 64, 96, 128, 160, 192, 224, 256]
KERNEL_IMPL_TEMPLATE_FWD = """#include "flash_fwd_launch_template.h"
template<>
void run_mha_fwd_<{DTYPE}, {HEAD_DIM}>(Flash_fwd_params &params, cudaStream_t stream) {{
run_mha_fwd_hdim{HEAD_DIM}<{DTYPE}>(params, stream);
}}
"""
KERNEL_IMPL_TEMPLATE_FWD_SPLIT = """#include "flash_fwd_launch_template.h"
template void run_mha_fwd_splitkv_dispatch<{DTYPE}, {HEAD_DIM}>(Flash_fwd_params &params, cudaStream_t stream);
"""
KERNEL_IMPL_TEMPLATE_BWD = """#include "flash_bwd_launch_template.h"
template<>
void run_mha_bwd_<{DTYPE}, {HEAD_DIM}>(Flash_bwd_params &params, cudaStream_t stream, const bool configure) {{
run_mha_bwd_hdim{HEAD_DIM}<{DTYPE}>(params, stream, configure);
}}
"""
@dataclass
class Kernel:
sm: int
dtype: str
head_dim: int
direction: str
@property
def template(self) -> str:
if self.direction == "fwd":
return KERNEL_IMPL_TEMPLATE_FWD.format(
DTYPE=DTYPE_MAP[self.dtype], HEAD_DIM=self.head_dim
)
elif self.direction == "bwd":
return KERNEL_IMPL_TEMPLATE_BWD.format(
DTYPE=DTYPE_MAP[self.dtype], HEAD_DIM=self.head_dim
)
else:
return KERNEL_IMPL_TEMPLATE_FWD_SPLIT.format(
DTYPE=DTYPE_MAP[self.dtype], HEAD_DIM=self.head_dim
)
@property
def filename(self) -> str:
return f"flash_{self.direction}_hdim{self.head_dim}_{self.dtype}_sm{self.sm}.cu"
def get_all_kernels() -> List[Kernel]:
for dtype, head_dim, sm in itertools.product(DTYPE_MAP.keys(), HEAD_DIMENSIONS, SM):
for direction in ["fwd", "bwd", "fwd_split"]:
yield Kernel(sm=sm, dtype=dtype, head_dim=head_dim, direction=direction)
def write_kernel(kernel: Kernel, autogen_dir: Path) -> None:
prelude = """// Copyright (c) 2023, Tri Dao.
// Splitting the different head dimensions to different files to speed up compilation.
// This file is auto-generated. See "generate_kernels.py"\n
"""
(autogen_dir / kernel.filename).write_text(prelude + kernel.template)
def main(output_dir: Optional[str]) -> None:
if output_dir is None:
output_dir = Path(__file__).parent
else:
output_dir = Path(output_dir)
for kernel in get_all_kernels():
write_kernel(kernel, output_dir)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
prog="generate_kernels",
description="Generate the flash_attention kernels template instantiations",
)
# Set an optional output directory
parser.add_argument(
"-o",
"--output_dir",
required=False,
help="Where to generate the kernels "
" will default to the current directory ",
)
args = parser.parse_args()
main(args.output_dir)
/******************************************************************************
* Copyright (c) 2023, Tri Dao.
******************************************************************************/
#pragma once
#include "cute/algorithm/copy.hpp"
#include "cutlass/cutlass.h"
#include "cutlass/layout/layout.h"
#include <cutlass/numeric_types.h>
using namespace cute;
template<int kHeadDim_, int kBlockM_, int kBlockN_, int kNWarps_, typename elem_type=cutlass::half_t>
struct Flash_kernel_traits {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
using Element = elem_type;
static constexpr bool Has_cp_async = true;
#else
using Element = cutlass::half_t;
static constexpr bool Has_cp_async = false;
#endif
using ElementAccum = float;
using index_t = int64_t;
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
using MMA_Atom_Arch = std::conditional_t<
std::is_same_v<elem_type, cutlass::half_t>,
MMA_Atom<SM80_16x8x16_F32F16F16F32_TN>,
MMA_Atom<SM80_16x8x16_F32BF16BF16F32_TN>
>;
using ValLayoutMNK = Layout<Shape<_1, _2, _1>>;
#else
using MMA_Atom_Arch = MMA_Atom<SM75_16x8x8_F32F16F16F32_TN>;
using ValLayoutMNK = Layout<Shape<_1, _2, _2>>;
#endif
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 750
using SmemCopyAtom = Copy_Atom<SM75_U32x4_LDSM_N, elem_type>;
using SmemCopyAtomTransposed = Copy_Atom<SM75_U16x8_LDSM_T, elem_type>;
#else
using SmemCopyAtom = Copy_Atom<DefaultCopy, elem_type>;
using SmemCopyAtomTransposed = Copy_Atom<DefaultCopy, elem_type>;
#endif
};
// If Share_Q_K_smem is true, that forces Is_Q_in_regs to be true
template<int kHeadDim_, int kBlockM_, int kBlockN_, int kNWarps_, bool Is_Q_in_regs_=false, bool Share_Q_K_smem_=false, typename elem_type=cutlass::half_t,
typename Base=Flash_kernel_traits<kHeadDim_, kBlockM_, kBlockN_, kNWarps_, elem_type> >
struct Flash_fwd_kernel_traits : public Base {
using Element = typename Base::Element;
using ElementAccum = typename Base::ElementAccum;
using index_t = typename Base::index_t;
static constexpr bool Has_cp_async = Base::Has_cp_async;
using SmemCopyAtom = typename Base::SmemCopyAtom;
using SmemCopyAtomTransposed = typename Base::SmemCopyAtomTransposed;
static constexpr bool Share_Q_K_smem = Share_Q_K_smem_;
static constexpr bool Is_Q_in_regs = Is_Q_in_regs_ || Share_Q_K_smem;
// The number of threads.
static constexpr int kNWarps = kNWarps_; //number of warps in a thread block
static constexpr int kNThreads = kNWarps * 32;
static constexpr int kBlockM = kBlockM_;
static constexpr int kBlockN = kBlockN_;
static constexpr int kHeadDim = kHeadDim_;
static_assert(kHeadDim % 32 == 0);
static constexpr int kBlockKSmem = kHeadDim % 64 == 0 ? 64 : 32;
static constexpr int kBlockKGmem = kHeadDim % 128 == 0 ? 128 : (kHeadDim % 64 == 0 ? 64 : 32);
static constexpr int kSwizzle = kBlockKSmem == 32 ? 2 : 3;
using TiledMma = TiledMMA<
typename Base::MMA_Atom_Arch,
Layout<Shape<Int<kNWarps>,_1,_1>>, // 4x1x1 or 8x1x1 thread group
typename Base::ValLayoutMNK>; // 1x2x1 or 1x2x2 value group for 16x16x16 MMA and LDSM
using SmemLayoutAtomQ = decltype(
composition(Swizzle<kSwizzle, 3, 3>{},
// This has to be kBlockKSmem, using kHeadDim gives wrong results for d=128
Layout<Shape<_8, Int<kBlockKSmem>>,
Stride<Int<kBlockKSmem>, _1>>{}));
using SmemLayoutQ = decltype(tile_to_shape(
SmemLayoutAtomQ{},
Shape<Int<kBlockM>, Int<kHeadDim>>{}));
using SmemLayoutKV = decltype(tile_to_shape(
SmemLayoutAtomQ{},
Shape<Int<kBlockN>, Int<kHeadDim>>{}));
// This has to be kBlockN and not 8, otherwise we get wrong results for d=128
using SmemLayoutAtomVtransposedNoSwizzle = Layout<Shape<Int<kBlockKSmem>, Int<kBlockN>>,
Stride<_1, Int<kBlockKSmem>>>;
using SmemLayoutAtomVtransposed = decltype(
composition(Swizzle<kSwizzle, 3, 3>{}, SmemLayoutAtomVtransposedNoSwizzle{}));
using SmemLayoutVtransposed = decltype(tile_to_shape(
SmemLayoutAtomVtransposed{},
Shape<Int<kHeadDim>, Int<kBlockN>>{}));
// Maybe the VtransposeNoSwizzle just needs to have the right shape
// And the strides don't matter?
using SmemLayoutVtransposedNoSwizzle = decltype(tile_to_shape(
SmemLayoutAtomVtransposedNoSwizzle{},
Shape<Int<kHeadDim>, Int<kBlockN>>{}));
// using SmemLayoutVtransposedNoSwizzle = decltype(SmemLayoutVtransposed{}.layout_fn());
using SmemLayoutAtomO = decltype(
composition(Swizzle<kSwizzle, 3, 3>{},
Layout<Shape<Int<8>, Int<kBlockKSmem>>,
Stride<Int<kBlockKSmem>, _1>>{}));
using SmemLayoutO = decltype(tile_to_shape(
SmemLayoutAtomO{},
Shape<Int<kBlockM>, Int<kHeadDim>>{}));
using SmemCopyAtomO = Copy_Atom<DefaultCopy, Element>;
using SmemCopyAtomOaccum = Copy_Atom<DefaultCopy, ElementAccum>;
static constexpr int kSmemQCount = size(SmemLayoutQ{});
static constexpr int kSmemKVCount = size(SmemLayoutKV{}) * 2;
static constexpr int kSmemQSize = kSmemQCount * sizeof(Element);
static constexpr int kSmemKVSize = kSmemKVCount * sizeof(Element);
static constexpr int kSmemSize = Share_Q_K_smem ? std::max(kSmemQSize, kSmemKVSize) : kSmemQSize + kSmemKVSize;
static constexpr int kGmemElemsPerLoad = sizeof(cute::uint128_t) / sizeof(Element);
static_assert(kHeadDim % kGmemElemsPerLoad == 0, "kHeadDim must be a multiple of kGmemElemsPerLoad");
// Using kBlockKSmem here is 6-10% faster than kBlockKGmem for d=128 because of bank conflicts.
// For example, for d=128, smem is split into 2 "pages", each page takes care of columns
// 0-63 and 64-127. If we have 16 threads per row for gmem read, when we write to smem,
// thread 0 - 7 will write to the first page and thread 8 - 15 will write to the second page,
// to the same banks.
static constexpr int kGmemThreadsPerRow = kBlockKSmem / kGmemElemsPerLoad;
static_assert(kNThreads % kGmemThreadsPerRow == 0, "kNThreads must be a multiple of kGmemThreadsPerRow");
using GmemLayoutAtom = Layout<Shape <Int<kNThreads / kGmemThreadsPerRow>, Int<kGmemThreadsPerRow>>,
Stride<Int<kGmemThreadsPerRow>, _1>>;
// We use CACHEGLOBAL instead of CACHEALWAYS for both Q and K/V, since we won't be reading
// from the same address by the same threadblock. This is slightly faster.
using Gmem_copy_struct = std::conditional_t<
Has_cp_async,
SM80_CP_ASYNC_CACHEGLOBAL<cute::uint128_t>,
DefaultCopy
>;
using GmemTiledCopyQKV = decltype(
make_tiled_copy(Copy_Atom<Gmem_copy_struct, Element>{},
GmemLayoutAtom{},
Layout<Shape<_1, _8>>{})); // Val layout, 8 vals per read
using GmemTiledCopyO = decltype(
make_tiled_copy(Copy_Atom<DefaultCopy, Element>{},
GmemLayoutAtom{},
Layout<Shape<_1, _8>>{})); // Val layout, 8 vals per store
static constexpr int kGmemThreadsPerRowP = kBlockN / kGmemElemsPerLoad;
static_assert(kNThreads % kGmemThreadsPerRowP == 0, "kNThreads must be a multiple of kGmemThreadsPerRowP");
using GmemLayoutAtomP = Layout<Shape <Int<kNThreads / kGmemThreadsPerRowP>, Int<kGmemThreadsPerRowP>>,
Stride<Int<kGmemThreadsPerRowP>, _1>>;
using GmemTiledCopyP = decltype(
make_tiled_copy(Copy_Atom<DefaultCopy, Element>{},
GmemLayoutAtomP{},
Layout<Shape<_1, _8>>{})); // Val layout, 8 vals per store
using GmemLayoutAtomOaccum = std::conditional_t<
kBlockKSmem == 32,
Layout<Shape <_16, _8>, // Thread layout, 8 threads per row
Stride< _8, _1>>,
Layout<Shape <_8, _16>, // Thread layout, 16 threads per row
Stride< _16, _1>>
>;
using GmemTiledCopyOaccum = decltype(
make_tiled_copy(Copy_Atom<DefaultCopy, ElementAccum>{},
GmemLayoutAtomOaccum{},
Layout<Shape < _1, _4>>{})); // Val layout, 4 vals per store
using GmemLayoutAtomRotcossin = GmemLayoutAtom;
using GmemTiledCopyRotcossin = decltype(
make_tiled_copy(Copy_Atom<UniversalCopy<uint64_t>, Element>{},
GmemLayoutAtomRotcossin{},
Layout<Shape < _1, _4>>{})); // Val layout, 4 vals per load
using GmemTiledCopyRotcossinCont = decltype(
make_tiled_copy(Copy_Atom<DefaultCopy, Element>{},
GmemLayoutAtomRotcossin{},
Layout<Shape < _1, _8>>{})); // Val layout, 8 vals per load
};
// Is_V_in_regs is an option to reduce smem usage, but will increase register pressue.
// No_double_buffer is another option to reduce smem usage, but will slow things down.
template<int kHeadDim_, int kBlockM_, int kBlockN_, int kNWarps_,
int AtomLayoutMSdP_=1, int AtomLayoutNdKV=2, int AtomLayoutMdQ=2,
bool Is_V_in_regs_=false, bool No_double_buffer_=false, typename elem_type=cutlass::half_t,
typename Base=Flash_kernel_traits<kHeadDim_, kBlockM_, kBlockN_, kNWarps_, elem_type> >
struct Flash_bwd_kernel_traits : public Base {
using Element = typename Base::Element;
using ElementAccum = typename Base::ElementAccum;
using index_t = typename Base::index_t;
static constexpr bool Has_cp_async = Base::Has_cp_async;
using SmemCopyAtom = typename Base::SmemCopyAtom;
using SmemCopyAtomTransposed = typename Base::SmemCopyAtomTransposed;
static constexpr bool Is_V_in_regs = Is_V_in_regs_;
static constexpr bool No_double_buffer = No_double_buffer_;
// The number of threads.
static constexpr int kNWarps = kNWarps_;
static constexpr int kNThreads = kNWarps * 32;
static constexpr int kBlockM = kBlockM_;
static constexpr int kBlockN = kBlockN_;
static constexpr int kHeadDim = kHeadDim_;
static_assert(kHeadDim % 32 == 0);
static constexpr int kBlockKSmem = kHeadDim % 64 == 0 ? 64 : 32;
static constexpr int kBlockKGmem = kHeadDim % 128 == 0 ? 128 : (kHeadDim % 64 == 0 ? 64 : 32);
static constexpr int kSwizzle = kBlockKSmem == 32 ? 2 : 3;
static constexpr int AtomLayoutMSdP = AtomLayoutMSdP_;
static_assert(kNWarps % AtomLayoutMSdP == 0);
static_assert(kNWarps % AtomLayoutNdKV == 0);
static_assert(kNWarps % AtomLayoutMdQ == 0);
using TiledMmaSdP = TiledMMA<
typename Base::MMA_Atom_Arch,
Layout<Shape<Int<AtomLayoutMSdP>, Int<kNWarps / AtomLayoutMSdP>, _1>>,
typename Base::ValLayoutMNK>; // 1x2x1 or 1x2x2 value group for 16x16x16 MMA and LDSM
using TiledMmadKV = TiledMMA<
typename Base::MMA_Atom_Arch,
Layout<Shape<Int<AtomLayoutNdKV>, Int<kNWarps / AtomLayoutNdKV>, _1>>,
typename Base::ValLayoutMNK>; // 1x2x1 or 1x2x2 value group for 16x16x16 MMA and LDSM
using TiledMmadQ = TiledMMA<
typename Base::MMA_Atom_Arch,
Layout<Shape<Int<AtomLayoutMdQ>, Int<kNWarps / AtomLayoutMdQ>, _1>>, // 2x4x1 or 4x2x1 thread group
typename Base::ValLayoutMNK>; // 1x2x1 or 1x2x2 value group for 16x16x16 MMA and LDSM
using SmemLayoutAtomQdO = decltype(
composition(Swizzle<kSwizzle, 3, 3>{},
Layout<Shape<_8, Int<kBlockKSmem>>,
Stride<Int<kBlockKSmem>, _1>>{}));
using SmemLayoutQdO = decltype(tile_to_shape(
SmemLayoutAtomQdO{},
make_shape(Int<kBlockM>{}, Int<kHeadDim>{})));
using SmemLayoutAtomKV = decltype(
composition(Swizzle<kSwizzle, 3, 3>{},
Layout<Shape<Int<kBlockM / kNWarps>, Int<kBlockKSmem>>,
Stride<Int<kBlockKSmem>, _1>>{}));
using SmemLayoutKV = decltype(tile_to_shape(
// SmemLayoutAtomQdO{},
SmemLayoutAtomKV{},
make_shape(Int<kBlockN>{}, Int<kHeadDim>{})));
using SmemLayoutAtomKtransposedNoSwizzle = Layout<Shape<Int<kBlockKSmem>, Int<kBlockN>>,
Stride<_1, Int<kBlockKSmem>>>;
using SmemLayoutAtomKtransposed = decltype(
composition(Swizzle<kSwizzle, 3, 3>{}, SmemLayoutAtomKtransposedNoSwizzle{}));
using SmemLayoutKtransposed = decltype(tile_to_shape(
SmemLayoutAtomKtransposed{},
make_shape(Int<kHeadDim>{}, Int<kBlockN>{})));
// Maybe the KtransposeNoSwizzle just needs to have the right shape
// And the strides don't matter?
using SmemLayoutKtransposedNoSwizzle = decltype(tile_to_shape(
SmemLayoutAtomKtransposedNoSwizzle{},
make_shape(Int<kHeadDim>{}, Int<kBlockN>{})));
// using SmemLayoutKtransposedNoSwizzle = decltype(SmemLayoutKtransposed{}.layout_fn());
// TODO: generalize to other values of kBlockN
// TODO: what should be the Swizzle here? 3 is faster than 1, and 1 is faster than 2
// static constexpr int kPBlockN = kBlockN;
static_assert(kBlockN >= 64);
// TD [2023-03-19]: Idk why kPBlockN = 16 and kSwizzlePdS=3 is the fastest.
static constexpr int kPBlockN = 64;
static_assert(kPBlockN == 16 || kPBlockN == 32 || kPBlockN == 64);
// static constexpr int kSwizzlePdS = kPBlockN == 16 ? 1 : (kPBlockN == 32 ? 2 : 3);
static constexpr int kSwizzlePdS = 3;
using SmemLayoutAtomPdS = decltype(
composition(Swizzle<kSwizzlePdS, 3, 3>{},
Layout<Shape<Int<kBlockM>, Int<kPBlockN>>,
Stride<Int<kPBlockN>, _1>>{}));
using SmemLayoutPdS = decltype(tile_to_shape(
SmemLayoutAtomPdS{},
make_shape(Int<kBlockM>{}, Int<kBlockN>{})));
using SmemLayoutAtomPdStransposedNoSwizzle = Layout<Shape<Int<kPBlockN>, Int<kBlockM>>,
Stride<_1, Int<kPBlockN>>>;
using SmemLayoutAtomPdStransposed = decltype(
composition(Swizzle<kSwizzlePdS, 3, 3>{}, SmemLayoutAtomPdStransposedNoSwizzle{}));
using SmemLayoutPdStransposed = decltype(tile_to_shape(
SmemLayoutAtomPdStransposed{},
make_shape(Int<kBlockN>{}, Int<kBlockM>{})));
using SmemLayoutPdStransposedNoSwizzle = decltype(tile_to_shape(
SmemLayoutAtomPdStransposedNoSwizzle{},
make_shape(Int<kBlockN>{}, Int<kBlockM>{})));
// using SmemLayoutPdStransposedNoSwizzle = decltype(SmemLayoutPdStransposed{}.layout_fn());
using SmemCopyAtomPdS = Copy_Atom<DefaultCopy, elem_type>;
using SmemLayoutAtomQdOtransposedNoSwizzle = Layout<Shape<Int<kBlockKSmem>, Int<kBlockM>>,
Stride<_1, Int<kBlockKSmem>>>;
using SmemLayoutAtomQdOtransposed = decltype(
composition(Swizzle<kSwizzle, 3, 3>{}, SmemLayoutAtomQdOtransposedNoSwizzle{}));
using SmemLayoutQdOtransposed = decltype(tile_to_shape(
SmemLayoutAtomQdOtransposed{},
make_shape(Int<kHeadDim>{}, Int<kBlockM>{})));
using SmemLayoutQdOtransposedNoSwizzle = decltype(tile_to_shape(
SmemLayoutAtomQdOtransposedNoSwizzle{},
make_shape(Int<kHeadDim>{}, Int<kBlockM>{})));
// using SmemLayoutQdOtransposedNoSwizzle = decltype(SmemLayoutQdOtransposed{}.layout_fn());
using SmemLayoutAtomdKV = decltype(
composition(Swizzle<kSwizzle, 3, 3>{},
Layout<Shape<_8, Int<kBlockKSmem>>,
Stride<Int<kBlockKSmem>, _1>>{}));
using SmemLayoutdKV = decltype(tile_to_shape(
SmemLayoutAtomdKV{},
make_shape(Int<kBlockN>{}, Int<kHeadDim>{})));
using SmemCopyAtomdKV = Copy_Atom<DefaultCopy, elem_type>;
using SmemLayoutAtomdQ = decltype(
composition(Swizzle<kSwizzle, 3, 3>{},
Layout<Shape<_8, Int<kBlockKSmem>>,
Stride<Int<kBlockKSmem>, _1>>{}));
using SmemLayoutdQ = decltype(tile_to_shape(
SmemLayoutAtomdQ{},
make_shape(Int<kBlockM>{}, Int<kHeadDim>{})));
using SmemCopyAtomdQ = Copy_Atom<DefaultCopy, elem_type>;
static constexpr int kSmemQdOCount = size(SmemLayoutQdO{}) * (No_double_buffer ? 2 : 3); // Double buffer for sQ
static constexpr int kSmemKVCount = size(SmemLayoutKV{}) * 2;
static constexpr int kSmemdSCount = size(SmemLayoutPdS{});
static constexpr int kSmemPCount = size(SmemLayoutPdS{});
static constexpr int kSmemdQCount = size(SmemLayoutdQ{});
static constexpr int kSmemQdOSize = kSmemQdOCount * sizeof(Element);
static constexpr int kSmemKVSize = kSmemKVCount * sizeof(Element);
static constexpr int kSmemdSSize = kSmemdSCount * sizeof(Element);
static constexpr int kSmemPSize = kSmemPCount * sizeof(Element);
static constexpr int kSmemdQSize = kSmemdQCount * sizeof(Element);
static constexpr int kSmemSize = kSmemQdOSize
+ (!Is_V_in_regs
? kSmemKVSize + kSmemdSSize + std::max(kSmemPSize, kSmemdQSize)
: std::max(kSmemKVSize, kSmemKVSize / 2 + kSmemdSSize + std::max(kSmemPSize, kSmemdQSize)));
static constexpr int kSmemSize1colblock = kSmemQdOSize
+ (!Is_V_in_regs
? kSmemKVSize + kSmemdSSize + kSmemPSize
: std::max(kSmemKVSize, kSmemKVSize / 2 + kSmemdSSize + kSmemPSize));
static constexpr int kSmemSize1rowblock = kSmemQdOSize / 3 * 2 + kSmemKVSize / 2 * 3
+ kSmemdSSize + kSmemPSize;
static constexpr int kGmemElemsPerLoad = sizeof(cute::uint128_t) / sizeof(Element);
static_assert(kHeadDim % kGmemElemsPerLoad == 0, "kHeadDim must be a multiple of kGmemElemsPerLoad");
// Using kBlockKSmem instead of kHeadDim here to avoid bank conflicts, but doesn't seem
// to affect speed in practice.
static constexpr int kGmemThreadsPerRow = kBlockKSmem / kGmemElemsPerLoad;
static_assert(kNThreads % kGmemThreadsPerRow == 0, "kNThreads must be a multiple of kGmemThreadsPerRow");
using GmemLayoutAtom = Layout<Shape <Int<kNThreads / kGmemThreadsPerRow>, Int<kGmemThreadsPerRow>>,
Stride<Int<kGmemThreadsPerRow>, _1>>;
// We use CACHEGLOBAL instead of CACHEALWAYS for both Q and K/V, since we won't be reading
// from the same address by the same threadblock. This is slightly faster.
using Gmem_copy_struct = std::conditional_t<
Has_cp_async,
SM80_CP_ASYNC_CACHEGLOBAL<cute::uint128_t>,
DefaultCopy
>;
using GmemTiledCopyQKV = decltype(
make_tiled_copy(Copy_Atom<Gmem_copy_struct, elem_type>{},
GmemLayoutAtom{},
Layout<Shape<_1, _8>>{})); // Val layout, 8 vals per read
using GmemTiledCopydO = decltype(
make_tiled_copy(Copy_Atom<DefaultCopy, elem_type>{},
GmemLayoutAtom{},
Layout<Shape < _1, _8>>{})); // Val layout, 8 vals per store
using GmemTiledCopydKV = decltype(
make_tiled_copy(Copy_Atom<DefaultCopy, elem_type>{},
GmemLayoutAtom{},
Layout<Shape < _1, _8>>{})); // Val layout, 8 vals per store
using GmemTiledCopydQ = decltype(
make_tiled_copy(Copy_Atom<DefaultCopy, elem_type>{},
GmemLayoutAtom{},
Layout<Shape < _1, _8>>{})); // Val layout, 8 vals per store
using GmemLayoutAtomdQaccum = std::conditional_t<
kBlockKSmem == 32,
Layout<Shape <_32, _8>, // Thread layout, 8 threads per row
Stride< _8, _1>>,
Layout<Shape <_16, _16>, // Thread layout, 16 threads per row
Stride< _16, _1>>
>;
using GmemTiledCopydQaccum = decltype(
make_tiled_copy(Copy_Atom<DefaultCopy, ElementAccum>{},
GmemLayoutAtomdQaccum{},
Layout<Shape < _1, _4>>{})); // Val layout, 4 vals per store
using GmemTiledCopydQaccumAtomicAdd = decltype(
make_tiled_copy(Copy_Atom<DefaultCopy, ElementAccum>{},
Layout<Shape <_8, _32>, // Thread layout, 8 threads per row
Stride<_32, _1>>{},
Layout<Shape < _1, _1>>{})); // Val layout, 1 val per store
};
////////////////////////////////////////////////////////////////////////////////////////////////////
/******************************************************************************
* Copyright (c) 2023, Tri Dao.
******************************************************************************/
#pragma once
#include "cute/algorithm/copy.hpp"
#include "cutlass/cutlass.h"
#include "cutlass/layout/layout.h"
#include <cutlass/numeric_types.h>
using namespace cute;
template<int kHeadDim_, int kBlockM_, int kBlockN_, int kNWarps_, typename elem_type=cutlass::half_t>
struct Flash_kernel_traits_sm90 {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
using Element = elem_type;
static constexpr bool Has_cp_async = true;
#else
using Element = cutlass::half_t;
static constexpr bool Has_cp_async = false;
#endif
using ElementAccum = float;
using index_t = int64_t;
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
using MMA_Atom_Arch = std::conditional_t<
std::is_same_v<elem_type, cutlass::half_t>,
MMA_Atom<SM80_16x8x16_F32F16F16F32_TN>,
MMA_Atom<SM80_16x8x16_F32BF16BF16F32_TN>
>;
using ValLayoutMNK = Layout<Shape<_1, _2, _1>>;
#else
using MMA_Atom_Arch = MMA_Atom<SM75_16x8x8_F32F16F16F32_TN>;
using ValLayoutMNK = Layout<Shape<_1, _2, _2>>;
#endif
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 750
using SmemCopyAtom = Copy_Atom<SM75_U32x4_LDSM_N, elem_type>;
using SmemCopyAtomTransposed = Copy_Atom<SM75_U16x8_LDSM_T, elem_type>;
#else
using SmemCopyAtom = Copy_Atom<DefaultCopy, elem_type>;
using SmemCopyAtomTransposed = Copy_Atom<DefaultCopy, elem_type>;
#endif
};
template<int kHeadDim_, int kBlockM_, int kBlockN_, int kNWarps_, bool Is_Q_in_regs_=false, bool Share_Q_K_smem_=false, typename elem_type=cutlass::half_t,
typename Base=Flash_kernel_traits_sm90<kHeadDim_, kBlockM_, kBlockN_, kNWarps_, elem_type> >
struct Flash_fwd_kernel_traits : public Base {
using Element = typename Base::Element;
using ElementAccum = typename Base::ElementAccum;
using index_t = typename Base::index_t;
static constexpr bool Has_cp_async = Base::Has_cp_async;
using SmemCopyAtom = typename Base::SmemCopyAtom;
using SmemCopyAtomTransposed = typename Base::SmemCopyAtomTransposed;
static constexpr bool Share_Q_K_smem = Share_Q_K_smem_;
static constexpr bool Is_Q_in_regs = Is_Q_in_regs_ || Share_Q_K_smem;
// The number of threads.
static constexpr int kNWarps = kNWarps_;
static constexpr int kNThreads = kNWarps * 32;
static constexpr int kBlockM = kBlockM_;
static constexpr int kBlockN = kBlockN_;
static constexpr int kHeadDim = kHeadDim_;
static_assert(kHeadDim % 32 == 0);
static constexpr int kBlockKSmem = kHeadDim % 64 == 0 ? 64 : 32;
static constexpr int kBlockKGmem = kHeadDim % 128 == 0 ? 128 : (kHeadDim % 64 == 0 ? 64 : 32);
static constexpr int kSwizzle = kBlockKSmem == 32 ? 2 : 3;
using TiledMma = TiledMMA<
typename Base::MMA_Atom_Arch,
Layout<Shape<Int<kNWarps>,_1,_1>>, // 4x1x1 or 8x1x1 thread group
typename Base::ValLayoutMNK>; // 1x2x1 or 1x2x2 value group for 16x16x16 MMA and LDSM
using SmemLayoutAtomQ = decltype(
composition(Swizzle<kSwizzle, 3, 3>{},
// This has to be kBlockKSmem, using kHeadDim gives wrong results for d=128
Layout<Shape<_8, Int<kBlockKSmem>>,
Stride<Int<kBlockKSmem>, _1>>{}));
using SmemLayoutQ = decltype(tile_to_shape(
SmemLayoutAtomQ{},
Shape<Int<kBlockM>, Int<kHeadDim>>{}));
using SmemLayoutKV = decltype(tile_to_shape(
SmemLayoutAtomQ{},
Shape<Int<kBlockN>, Int<kHeadDim>>{}));
using SmemLayoutAtomVtransposed = decltype(
composition(Swizzle<kSwizzle, 3, 3>{},
// This has to be kBlockN and not 8, otherwise we get wrong results for d=128
Layout<Shape<Int<kBlockKSmem>, Int<kBlockN>>,
Stride<_1, Int<kBlockKSmem>>>{}));
using SmemLayoutVtransposed = decltype(tile_to_shape(
SmemLayoutAtomVtransposed{},
Shape<Int<kHeadDim>, Int<kBlockN>>{}));
// Maybe the VtransposeNoSwizzle just needs to have the right shape
// And the strides don't matter?
using SmemLayoutVtransposedNoSwizzle = decltype(SmemLayoutVtransposed{}.layout_fn());
using SmemLayoutAtomO = decltype(
composition(Swizzle<kSwizzle, 3, 3>{},
Layout<Shape<Int<8>, Int<kBlockKSmem>>,
Stride<Int<kBlockKSmem>, _1>>{}));
using SmemLayoutO = decltype(tile_to_shape(
SmemLayoutAtomO{},
Shape<Int<kBlockM>, Int<kHeadDim>>{}));
using SmemCopyAtomO = Copy_Atom<DefaultCopy, elem_type>;
static constexpr int kSmemQCount = size(SmemLayoutQ{});
static constexpr int kSmemKVCount = size(SmemLayoutKV{}) * 2;
static constexpr int kSmemQSize = kSmemQCount * sizeof(Element);
static constexpr int kSmemKVSize = kSmemKVCount * sizeof(Element);
static constexpr int kSmemSize = Share_Q_K_smem ? std::max(kSmemQSize, kSmemKVSize) : kSmemQSize + kSmemKVSize;
static constexpr int kGmemElemsPerLoad = sizeof(cute::uint128_t) / sizeof(Element);
static_assert(kHeadDim % kGmemElemsPerLoad == 0, "kHeadDim must be a multiple of kGmemElemsPerLoad");
// Using kBlockKSmem here is 6-10% faster than kBlockKGmem for d=128 because of bank conflicts.
// For example, for d=128, smem is split into 2 "pages", each page takes care of columns
// 0-63 and 64-127. If we have 16 threads per row for gmem read, when we write to smem,
// thread 0 - 7 will write to the first page and thread 8 - 15 will write to the second page,
// to the same banks.
static constexpr int kGmemThreadsPerRow = kBlockKSmem / kGmemElemsPerLoad;
static_assert(kNThreads % kGmemThreadsPerRow == 0, "kNThreads must be a multiple of kGmemThreadsPerRow");
using GmemLayoutAtom = Layout<Shape <Int<kNThreads / kGmemThreadsPerRow>, Int<kGmemThreadsPerRow>>,
Stride<Int<kGmemThreadsPerRow>, _1>>;
// We use CACHEGLOBAL instead of CACHEALWAYS for both Q and K/V, since we won't be reading
// from the same address by the same threadblock. This is slightly faster.
using Gmem_copy_struct = std::conditional_t<
Has_cp_async,
SM80_CP_ASYNC_CACHEGLOBAL<cute::uint128_t>,
DefaultCopy
>;
using GmemTiledCopyQKV = decltype(
make_tiled_copy(Copy_Atom<Gmem_copy_struct, elem_type>{},
GmemLayoutAtom{},
Layout<Shape<_1, _8>>{})); // Val layout, 8 vals per read
using GmemTiledCopyO = decltype(
make_tiled_copy(Copy_Atom<DefaultCopy, elem_type>{},
GmemLayoutAtom{},
Layout<Shape<_1, _8>>{})); // Val layout, 8 vals per store
static constexpr int kGmemThreadsPerRowP = kBlockN / kGmemElemsPerLoad;
static_assert(kNThreads % kGmemThreadsPerRowP == 0, "kNThreads must be a multiple of kGmemThreadsPerRowP");
using GmemLayoutAtomP = Layout<Shape <Int<kNThreads / kGmemThreadsPerRowP>, Int<kGmemThreadsPerRowP>>,
Stride<Int<kGmemThreadsPerRowP>, _1>>;
using GmemTiledCopyP = decltype(
make_tiled_copy(Copy_Atom<DefaultCopy, elem_type>{},
GmemLayoutAtomP{},
Layout<Shape<_1, _8>>{})); // Val layout, 8 vals per store
};
////////////////////////////////////////////////////////////////////////////////////////////////////
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment