#include using namespace metal; #define MAX(x, y) ((x) > (y) ? (x) : (y)) template METAL_FUNC void im2col( constant size_t &dst_numel, constant size_t &h_out, constant size_t &w_out, constant size_t &h_k, constant size_t &w_k, constant size_t &stride, constant size_t &padding, constant size_t &dilation, constant size_t *src_dims, constant size_t *src_strides, device const T *src, device T *dst, uint tid [[ thread_position_in_grid ]] ) { // dst: (b_size, h_out, w_out, c_in, h_k, w_k) // src: (b_size, c_in, h_in, w_in) if (tid >= dst_numel) { return; } const size_t b_in = src_dims[0]; const size_t c_in = src_dims[1]; const size_t h_in = src_dims[2]; const size_t w_in = src_dims[3]; const size_t dst_s4 = w_k; const size_t dst_s3 = h_k * dst_s4; const size_t dst_s2 = c_in * dst_s3; const size_t dst_s1 = w_out * dst_s2; const size_t dst_s0 = h_out * dst_s1; size_t tmp_tid = tid; const size_t b_idx = tmp_tid / dst_s0; tmp_tid -= b_idx * dst_s0; const size_t h_idx = tmp_tid / dst_s1; tmp_tid -= h_idx * dst_s1; const size_t w_idx = tmp_tid / dst_s2; tmp_tid -= w_idx * dst_s2; const size_t c_idx = tmp_tid / dst_s3; tmp_tid -= c_idx * dst_s3; const size_t h_k_idx = tmp_tid / dst_s4; tmp_tid -= h_k_idx * dst_s4; const size_t w_k_idx = tmp_tid; size_t src_h_idx = h_idx * stride + h_k_idx * dilation; size_t src_w_idx = w_idx * stride + w_k_idx * dilation; if (src_h_idx < padding || src_h_idx >= h_in + padding) { dst[tid] = static_cast(0); } else if (src_w_idx < padding || src_w_idx >= w_in + padding) { dst[tid] = static_cast(0); } else { src_h_idx -= padding; src_w_idx -= padding; const size_t src_i = b_idx * src_strides[0] + c_idx * src_strides[1] + src_h_idx * src_strides[2] + src_w_idx * src_strides[3]; dst[tid] = src[src_i]; } } template METAL_FUNC void im2col1d( constant size_t &dst_numel, constant size_t &l_out, constant size_t &l_k, constant size_t &stride, constant size_t &padding, constant size_t &dilation, constant size_t *src_dims, constant size_t *src_strides, device const T *src, device T *dst, uint tid [[ thread_position_in_grid ]] ) { // dst: (b_size, l_out, c_in, l_k) // src: (b_size, c_in, l_in) if (tid >= dst_numel) { return; } const size_t b_in = src_dims[0]; const size_t c_in = src_dims[1]; const size_t l_in = src_dims[2]; const size_t dst_s2 = l_k; const size_t dst_s1 = c_in * dst_s2; const size_t dst_s0 = l_out * dst_s1; size_t tmp_dst_i = tid; const size_t b_idx = tmp_dst_i / dst_s0; tmp_dst_i -= b_idx * dst_s0; const size_t l_idx = tmp_dst_i / dst_s1; tmp_dst_i -= l_idx * dst_s1; const size_t c_idx = tmp_dst_i / dst_s2; tmp_dst_i -= c_idx * dst_s2; const size_t l_k_idx = tmp_dst_i; size_t src_l_idx = l_idx * stride + l_k_idx * dilation; if (src_l_idx < padding || src_l_idx >= l_in + padding) { dst[tid] = static_cast(0); } else { src_l_idx -= padding; const size_t src_i = b_idx * src_strides[0] + c_idx * src_strides[1] + src_l_idx * src_strides[2]; dst[tid] = src[src_i]; } } template METAL_FUNC void upsample_nearest2d( constant size_t &w_out, constant size_t &h_out, constant float &w_scale, constant float &h_scale, constant size_t *src_dims, constant size_t *src_s, device const T *src, device T *dst, uint tid [[ thread_position_in_grid ]] ) { // src: (b_size, c_in, w_in, h_in) const size_t c = src_dims[1]; const size_t w_in = src_dims[2]; const size_t h_in = src_dims[3]; if (tid >= src_dims[0] * c * w_out * h_out) { return; } // TODO: Improve this. const size_t b_idx = tid / (w_out * h_out * c); const size_t c_idx = (tid / (w_out * h_out)) % c; const size_t dst_w = (tid / h_out) % w_out; const size_t dst_h = tid % h_out; size_t src_w = static_cast(dst_w * w_scale); size_t src_h = static_cast(dst_h * h_scale); if (src_w >= w_in) { src_w = w_in - 1; } if (src_h >= h_in) { src_h = h_in - 1; } const size_t src_i = b_idx * src_s[0] + c_idx * src_s[1] + src_w * src_s[2] + src_h * src_s[3]; dst[tid] = src[src_i]; } #define IM2COL_OP(T, FN_NAME) \ kernel void FN_NAME( \ constant size_t &dst_numel, \ constant size_t &h_out, \ constant size_t &w_out, \ constant size_t &h_k, \ constant size_t &w_k, \ constant size_t &stride, \ constant size_t &padding, \ constant size_t &dilation, \ constant size_t *src_dims, \ constant size_t *src_strides, \ device const T *src, \ device T *dst, \ uint tid [[ thread_position_in_grid ]] \ ) { \ im2col(dst_numel, h_out, w_out, h_k, w_k, stride, padding, dilation, src_dims, src_strides, src, dst, tid); \ } \ #define IM2COL1D_OP(T, FN_NAME) \ kernel void FN_NAME( \ constant size_t &dst_numel, \ constant size_t &l_out, \ constant size_t &l_k, \ constant size_t &stride, \ constant size_t &padding, \ constant size_t &dilation, \ constant size_t *src_dims, \ constant size_t *src_strides, \ device const T *src, \ device T *dst, \ uint tid [[ thread_position_in_grid ]] \ ) { \ im2col1d(dst_numel, l_out, l_k, stride, padding, dilation, src_dims, src_strides, src, dst, tid); \ } \ #define UPSAMPLE_NEAREST2D_OP(TYPENAME, FN_NAME) \ kernel void FN_NAME( \ constant size_t &w_out, \ constant size_t &h_out, \ constant float &w_scale, \ constant float &h_scale, \ constant size_t *dims, \ constant size_t *strides, \ device const TYPENAME *src, \ device TYPENAME *dst, \ uint tid [[ thread_position_in_grid ]] \ ) { \ upsample_nearest2d(w_out, h_out, w_scale, h_scale, dims, strides, src, dst, tid); \ } \ template METAL_FUNC void avg_pool2d( constant size_t &w_k, constant size_t &h_k, constant size_t &w_stride, constant size_t &h_stride, constant size_t *src_dims, constant size_t *src_strides, device const T *src, device T *dst, uint tid [[ thread_position_in_grid ]] ) { const size_t c = src_dims[1]; const size_t w_in = src_dims[2]; const size_t h_in = src_dims[3]; const size_t w_out = (w_in - w_k) / w_stride + 1; const size_t h_out = (h_in - h_k) / h_stride + 1; if (tid >= src_dims[0] * c * w_out * h_out) { return; } const size_t b_idx = tid / (w_out * h_out * c); const size_t c_idx = (tid / (w_out * h_out)) % c; const size_t dst_w = (tid / h_out) % w_out; const size_t dst_h = tid % h_out; const size_t src_idx0 = b_idx * src_strides[0]; A d = 0; for (size_t w_offset = 0; w_offset < w_k; ++w_offset) { size_t src_w = w_stride * dst_w + w_offset; if (src_w >= w_in){ continue; } for (size_t h_offset = 0; h_offset < h_k; ++h_offset) { size_t src_h = h_stride * dst_h + h_offset; if (src_h >= h_in) { continue; } const size_t src_idx = src_idx0 + c_idx * src_strides[1] + src_w * src_strides[2] + src_h * src_strides[3]; d += static_cast(src[src_idx]); } } dst[tid] = static_cast(d / (w_k * h_k)); } #define AVGPOOL2D_OP(TYPENAME, TYPEACC, FN_NAME) \ kernel void FN_NAME( \ constant size_t &w_k, \ constant size_t &h_k, \ constant size_t &w_s, \ constant size_t &h_s, \ constant size_t *src_dims, \ constant size_t *src_s, \ device const TYPENAME *src, \ device TYPENAME *dst, \ uint tid [[ thread_position_in_grid ]] \ ) { \ avg_pool2d(w_k, h_k, w_s, h_s, src_dims, src_s, src, dst, tid); \ } \ template METAL_FUNC void max_pool2d( constant size_t &w_k, constant size_t &h_k, constant size_t &w_stride, constant size_t &h_stride, constant size_t *src_dims, constant size_t *src_strides, device const T *src, device T *dst, uint tid [[ thread_position_in_grid ]] ) { const size_t c = src_dims[1]; const size_t w_in = src_dims[2]; const size_t h_in = src_dims[3]; const size_t w_out = (w_in - w_k) / w_stride + 1; const size_t h_out = (h_in - h_k) / h_stride + 1; if (tid >= src_dims[0] * c * w_out * h_out) { return; } const size_t b_idx = tid / (w_out * h_out * c); const size_t c_idx = (tid / (w_out * h_out)) % c; const size_t dst_w = (tid / h_out) % w_out; const size_t dst_h = tid % h_out; const size_t src_idx0 = b_idx * src_strides[0]; T d = 0; bool set = false; for (size_t w_offset = 0; w_offset < w_k; ++w_offset) { size_t src_w = w_stride * dst_w + w_offset; if (src_w >= w_in){ continue; } for (size_t h_offset = 0; h_offset < h_k; ++h_offset) { size_t src_h = h_stride * dst_h + h_offset; if (src_h >= h_in) { continue; } const size_t src_idx = src_idx0 + c_idx * src_strides[1] + src_w * src_strides[2] + src_h * src_strides[3]; if (set) { d = MAX(d, src[src_idx]); } else { d = src[src_idx]; set = true; } } } dst[tid] = d; } #define MAXPOOL2D_OP(TYPENAME, FN_NAME) \ kernel void FN_NAME( \ constant size_t &w_k, \ constant size_t &h_k, \ constant size_t &w_s, \ constant size_t &h_s, \ constant size_t *src_dims, \ constant size_t *src_s, \ device const TYPENAME *src, \ device TYPENAME *dst, \ uint tid [[ thread_position_in_grid ]] \ ) { \ max_pool2d(w_k, h_k, w_s, h_s, src_dims, src_s, src, dst, tid); \ } \ // Naive implementation of conv_transpose1d. template METAL_FUNC void conv_transpose1d( constant size_t &l_out, constant size_t &stride, constant size_t &padding, constant size_t &out_padding, constant size_t &dilation, constant size_t *src_dims, constant size_t *src_strides, constant size_t *k_dims, constant size_t *k_strides, device const T *src, device const T *k, device T *dst, uint tid [[ thread_position_in_grid ]] ) { // src: (b_size, c_in, l_in) // kernel: (c_in, c_out, l_k) const size_t l_k = k_dims[2]; const size_t c_out = k_dims[1]; const size_t c_in = src_dims[1]; const size_t l_in = src_dims[2]; if (tid >= src_dims[0] * c_out * l_out) { return; } const size_t b_idx = tid / (l_out * c_out); const size_t dst_c_idx = (tid / l_out) % c_out; const size_t out_x = tid % l_out; const size_t src_idx0 = b_idx * src_strides[0]; A d = 0; for (int k_x = 0; k_x < (int)l_k; ++k_x) { // let out_x = inp_x * p.stride + k_x * p.dilation - p.padding; int inp_x_stride = (int)(out_x + padding) - k_x * dilation; if (inp_x_stride < 0 || inp_x_stride % stride) { continue; } int inp_x = inp_x_stride / stride; if (inp_x >= l_in) continue; for (size_t src_c_idx = 0; src_c_idx < c_in; ++src_c_idx) { const size_t src_idx = src_idx0 + src_c_idx * src_strides[1] + inp_x * src_strides[2]; const size_t k_idx = src_c_idx * k_strides[0] + dst_c_idx * k_strides[1] + k_x * k_strides[2]; d += static_cast(src[src_idx]) * static_cast(k[k_idx]); } } dst[tid] = static_cast(d); } #define CONVT1D_OP(TYPENAME, TYPEACC, FN_NAME) \ kernel void FN_NAME( \ constant size_t &l_out, \ constant size_t &stride, \ constant size_t &padding, \ constant size_t &out_padding, \ constant size_t &dilation, \ constant size_t *src_dims, \ constant size_t *src_strides, \ constant size_t *k_dims, \ constant size_t *k_strides, \ device const TYPENAME *src, \ device const TYPENAME *k, \ device TYPENAME *dst, \ uint tid [[ thread_position_in_grid ]] \ ) { \ conv_transpose1d(l_out, stride, padding, out_padding, dilation, src_dims, src_strides, k_dims, k_strides, src, k, dst, tid); \ } \ template METAL_FUNC void conv_transpose2d( constant size_t &w_out, constant size_t &h_out, constant size_t &stride, constant size_t &padding, constant size_t &out_padding, constant size_t &dilation, constant size_t *input_dims, constant size_t *input_stride, constant size_t *k_dims, constant size_t *k_stride, device const T *src, device const T *k, device T *dst, uint tid [[ thread_position_in_grid ]] ) { const size_t h_k = k_dims[2]; const size_t w_k = k_dims[3]; const size_t c_out = k_dims[1]; const size_t c_in = input_dims[1]; const size_t h_in = input_dims[2]; const size_t w_in = input_dims[3]; if (tid >= input_dims[0] * c_out * w_out * h_out) { return; } const size_t b_idx = tid / (w_out * h_out * c_out); const size_t dst_c_idx = (tid / (w_out * h_out)) % c_out; const size_t out_y = (tid / w_out) % h_out; const size_t out_x = tid % w_out; const size_t src_idx0 = b_idx * input_stride[0]; A d = 0; for (int k_x = 0; k_x < (int)w_k; ++k_x) { const int inp_x_stride = (int)(out_x + padding) - k_x * dilation; if (inp_x_stride < 0 || inp_x_stride % stride) { continue; } const int inp_x = inp_x_stride / stride; if (inp_x >= w_in) continue; for (int k_y = 0; k_y < (int)h_k; ++k_y) { const int inp_y_stride = (int)(out_y + padding) - k_y * dilation; if (inp_y_stride < 0 || inp_y_stride % stride) { continue; } const int inp_y = inp_y_stride / stride; if (inp_y >= h_in) continue; for (size_t src_c_idx = 0; src_c_idx < c_in; ++src_c_idx) { const size_t src_idx = src_idx0 + src_c_idx * input_stride[1] + inp_y * input_stride[2] + inp_x * input_stride[3]; const size_t k_idx = src_c_idx * k_stride[0] + dst_c_idx * k_stride[1] + k_y * k_stride[2] + k_x * k_stride[3]; d += static_cast(src[src_idx]) * static_cast(k[k_idx]); } } } dst[tid] = static_cast(d); } #define CONVT2D_OP(TYPENAME, TYPEACC, FN_NAME) \ kernel void FN_NAME( \ constant size_t &w_out, \ constant size_t &h_out, \ constant size_t &stride, \ constant size_t &padding, \ constant size_t &out_padding, \ constant size_t &dilation, \ constant size_t *input_dims, \ constant size_t *input_stride, \ constant size_t *k_dims, \ constant size_t *k_stride, \ device const TYPENAME *src, \ device const TYPENAME *k, \ device TYPENAME *dst, \ uint tid [[ thread_position_in_grid ]] \ ) { \ conv_transpose2d(w_out, h_out, stride, padding, out_padding, dilation, input_dims, input_stride, k_dims, k_stride, src, k, dst, tid); \ } \ IM2COL_OP(float, im2col_f32) IM2COL_OP(half, im2col_f16) IM2COL_OP(uint8_t, im2col_u8) IM2COL_OP(uint32_t, im2col_u32) #if defined(__HAVE_BFLOAT__) IM2COL_OP(bfloat, im2col_bf16) #endif IM2COL1D_OP(float, im2col1d_f32) IM2COL1D_OP(uint8_t, im2col1d_u8) IM2COL1D_OP(uint32_t, im2col1d_u32) UPSAMPLE_NEAREST2D_OP(float, upsample_nearest2d_f32) UPSAMPLE_NEAREST2D_OP(half, upsample_nearest2d_f16) UPSAMPLE_NEAREST2D_OP(uint8_t, upsample_nearest2d_u8) UPSAMPLE_NEAREST2D_OP(uint32_t, upsample_nearest2d_u32) #if defined(__HAVE_BFLOAT__) UPSAMPLE_NEAREST2D_OP(bfloat, upsample_nearest2d_bf16) #endif MAXPOOL2D_OP(float, max_pool2d_f32) MAXPOOL2D_OP(half, max_pool2d_f16) MAXPOOL2D_OP(uint32_t, max_pool2d_u32) MAXPOOL2D_OP(uint8_t, max_pool2d_u8) #if defined(__HAVE_BFLOAT__) MAXPOOL2D_OP(bfloat, max_pool2d_bf16) #endif AVGPOOL2D_OP(float, float, avg_pool2d_f32) AVGPOOL2D_OP(half, float, avg_pool2d_f16) AVGPOOL2D_OP(uint32_t, uint32_t, avg_pool2d_u32) AVGPOOL2D_OP(uint8_t, uint8_t, avg_pool2d_u8) #if defined(__HAVE_BFLOAT__) AVGPOOL2D_OP(bfloat, float, avg_pool2d_bf16) #endif CONVT1D_OP(float, float, conv_transpose1d_f32) CONVT1D_OP(half, float, conv_transpose1d_f16) CONVT1D_OP(uint8_t, uint8_t, conv_transpose1d_u8) CONVT1D_OP(uint32_t, uint32_t, conv_transpose1d_u32) #if defined(__HAVE_BFLOAT__) CONVT1D_OP(bfloat, float, conv_transpose1d_bf16) #endif CONVT2D_OP(float, float, conv_transpose2d_f32) CONVT2D_OP(half, float, conv_transpose2d_f16) #if defined(__HAVE_BFLOAT__) CONVT1D_OP(bfloat, float, conv_transpose2d_bf16) #endif