"Src/git@developer.sourcefind.cn:modelzoo/yolov8_migraphx.git" did not exist on "fcfce60db94864f41c4413e805d01d8f5898b3ed"
Commit 25d2752f authored by yongshk's avatar yongshk
Browse files

Initial commit

parents
#[cfg(any(feature = "mkl", feature = "mkl-dynamic"))]
extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
use std::str::FromStr;
use anyhow::Result;
use candle_core::{Device, Tensor};
fn cos_sin(n: usize, device: &Device) -> Result<Tensor> {
let thetas: Vec<_> = (0..n).map(|i| (i as f32 / n as f32)).collect();
let xs: Vec<_> = thetas.iter().map(|t| t.cos().abs()).collect();
let ys: Vec<_> = thetas.iter().map(|t| t.sin().abs()).collect();
let xs = Tensor::from_vec(xs, (n, 1), device)?;
let ys = Tensor::from_vec(ys, (1, n), device)?;
let ys = Tensor::cat(&[&ys, &ys, &ys, &ys, &ys, &ys], 1)?;
Ok(xs.matmul(&ys)?)
}
fn main() -> Result<()> {
let device = Device::new_cuda(0)?;
let args = std::env::args().collect::<Vec<String>>();
let n = if args.len() < 2 {
2000usize
} else {
usize::from_str(&args[1])?
};
let xys_cpu = cos_sin(n, &Device::Cpu)?;
let xys = cos_sin(n, &device)?;
println!("{xys_cpu:?} {xys:?}");
let sum_keepdim_cpu = xys_cpu.sum_keepdim(1)?;
println!("{sum_keepdim_cpu}");
let sum_keepdim = xys.sum_keepdim(1)?;
println!("{sum_keepdim}");
let start = std::time::Instant::now();
let n_iters = 100;
let mut v = 0f32;
for _i in 0..n_iters {
let sum_keepdim = xys.sum_keepdim(1)?;
let sum_keepdim = sum_keepdim.sum_keepdim(0)?;
let sum_keepdim: f32 = sum_keepdim.reshape(&[])?.to_scalar()?;
v += sum_keepdim;
}
let elapsed = start.elapsed();
if v > 0. {
println!(
"ran {n_iters} iterations, time per iter: {:?} ({v})",
elapsed.div_f64(n_iters as f64)
);
}
Ok(())
}
#![allow(dead_code)]
use libc::{c_char, c_double, c_float, c_int, c_long, c_ulong};
mod ffi {
use super::*;
extern "C" {
// It would be nice to be able to switch to the NEWLAPACK version of the function but this
// seems to trigger some link error. Available function names can be seen here:
// /Library/Developer/CommandLineTools/SDKs/MacOSX13.3.sdk/System/Library/Frameworks/Accelerate.framework/Versions/A/Accelerate.tbd
#[link_name = "sgemm_"]
pub fn sgemm_ffi(
transa: *const c_char,
transb: *const c_char,
m: *const c_int,
n: *const c_int,
k: *const c_int,
alpha: *const c_float,
a: *const c_float,
lda: *const c_int,
b: *const c_float,
ldb: *const c_int,
beta: *const c_float,
c: *mut c_float,
ldc: *const c_int,
);
#[link_name = "dgemm_"]
pub fn dgemm_ffi(
transa: *const c_char,
transb: *const c_char,
m: *const c_int,
n: *const c_int,
k: *const c_int,
alpha: *const c_double,
a: *const c_double,
lda: *const c_int,
b: *const c_double,
ldb: *const c_int,
beta: *const c_double,
c: *mut c_double,
ldc: *const c_int,
);
pub fn vvexpf(dst: *mut c_float, src: *const c_float, len: *const c_int);
pub fn vvexp(dst: *mut c_double, src: *const c_double, len: *const c_int);
pub fn vvsqrtf(dst: *mut c_float, src: *const c_float, len: *const c_int);
pub fn vvsqrt(dst: *mut c_double, src: *const c_double, len: *const c_int);
pub fn vvsinf(dst: *mut c_float, src: *const c_float, len: *const c_int);
pub fn vvsin(dst: *mut c_double, src: *const c_double, len: *const c_int);
pub fn vvcosf(dst: *mut c_float, src: *const c_float, len: *const c_int);
pub fn vvcos(dst: *mut c_double, src: *const c_double, len: *const c_int);
pub fn vvlogf(dst: *mut c_float, src: *const c_float, len: *const c_int);
pub fn vvlog(dst: *mut c_double, src: *const c_double, len: *const c_int);
pub fn vvtanhf(dst: *mut c_float, src: *const c_float, len: *const c_int);
pub fn vvtanh(dst: *mut c_double, src: *const c_double, len: *const c_int);
pub fn vDSP_vaddD(
_: *const c_double,
_: c_long,
_: *const c_double,
_: c_long,
_: *mut c_double,
_: c_long,
_: c_ulong,
);
pub fn vDSP_vadd(
_: *const c_float,
_: c_long,
_: *const c_float,
_: c_long,
_: *mut c_float,
_: c_long,
_: c_ulong,
);
pub fn vDSP_vsubD(
_: *const c_double,
_: c_long,
_: *const c_double,
_: c_long,
_: *mut c_double,
_: c_long,
_: c_ulong,
);
pub fn vDSP_vsub(
_: *const c_float,
_: c_long,
_: *const c_float,
_: c_long,
_: *mut c_float,
_: c_long,
_: c_ulong,
);
pub fn vDSP_vmulD(
_: *const c_double,
_: c_long,
_: *const c_double,
_: c_long,
_: *mut c_double,
_: c_long,
_: c_ulong,
);
pub fn vDSP_vmul(
_: *const c_float,
_: c_long,
_: *const c_float,
_: c_long,
_: *mut c_float,
_: c_long,
_: c_ulong,
);
pub fn vDSP_vdivD(
_: *const c_double,
_: c_long,
_: *const c_double,
_: c_long,
_: *mut c_double,
_: c_long,
_: c_ulong,
);
pub fn vDSP_vdiv(
_: *const c_float,
_: c_long,
_: *const c_float,
_: c_long,
_: *mut c_float,
_: c_long,
_: c_ulong,
);
pub fn vDSP_vminD(
_: *const c_double,
_: c_long,
_: *const c_double,
_: c_long,
_: *mut c_double,
_: c_long,
_: c_ulong,
);
pub fn vDSP_vmin(
_: *const c_float,
_: c_long,
_: *const c_float,
_: c_long,
_: *mut c_float,
_: c_long,
_: c_ulong,
);
pub fn vDSP_vmaxD(
_: *const c_double,
_: c_long,
_: *const c_double,
_: c_long,
_: *mut c_double,
_: c_long,
_: c_ulong,
);
pub fn vDSP_vmax(
_: *const c_float,
_: c_long,
_: *const c_float,
_: c_long,
_: *mut c_float,
_: c_long,
_: c_ulong,
);
}
}
#[allow(clippy::too_many_arguments)]
#[inline]
pub unsafe fn sgemm(
transa: u8,
transb: u8,
m: i32,
n: i32,
k: i32,
alpha: f32,
a: &[f32],
lda: i32,
b: &[f32],
ldb: i32,
beta: f32,
c: &mut [f32],
ldc: i32,
) {
ffi::sgemm_ffi(
&(transa as c_char),
&(transb as c_char),
&m,
&n,
&k,
&alpha,
a.as_ptr(),
&lda,
b.as_ptr(),
&ldb,
&beta,
c.as_mut_ptr(),
&ldc,
)
}
#[allow(clippy::too_many_arguments)]
#[inline]
pub unsafe fn dgemm(
transa: u8,
transb: u8,
m: i32,
n: i32,
k: i32,
alpha: f64,
a: &[f64],
lda: i32,
b: &[f64],
ldb: i32,
beta: f64,
c: &mut [f64],
ldc: i32,
) {
ffi::dgemm_ffi(
&(transa as c_char),
&(transb as c_char),
&m,
&n,
&k,
&alpha,
a.as_ptr(),
&lda,
b.as_ptr(),
&ldb,
&beta,
c.as_mut_ptr(),
&ldc,
)
}
#[inline]
pub fn vs_exp(a: &[f32], y: &mut [f32]) {
let a_len = a.len();
let y_len = y.len();
if a_len != y_len {
panic!("a and y have different lengths {a_len} <> {y_len}")
}
unsafe { ffi::vvexpf(y.as_mut_ptr(), a.as_ptr(), &(a_len as i32)) }
}
#[inline]
pub fn vd_exp(a: &[f64], y: &mut [f64]) {
let a_len = a.len();
let y_len = y.len();
if a_len != y_len {
panic!("a and y have different lengths {a_len} <> {y_len}")
}
unsafe { ffi::vvexp(y.as_mut_ptr(), a.as_ptr(), &(a_len as i32)) }
}
#[inline]
pub fn vs_sqrt(a: &[f32], y: &mut [f32]) {
let a_len = a.len();
let y_len = y.len();
if a_len != y_len {
panic!("a and y have different lengths {a_len} <> {y_len}")
}
unsafe { ffi::vvsqrtf(y.as_mut_ptr(), a.as_ptr(), &(a_len as i32)) }
}
#[inline]
pub fn vd_sqrt(a: &[f64], y: &mut [f64]) {
let a_len = a.len();
let y_len = y.len();
if a_len != y_len {
panic!("a and y have different lengths {a_len} <> {y_len}")
}
unsafe { ffi::vvsqrt(y.as_mut_ptr(), a.as_ptr(), &(a_len as i32)) }
}
#[inline]
pub fn vs_sin(a: &[f32], y: &mut [f32]) {
let a_len = a.len();
let y_len = y.len();
if a_len != y_len {
panic!("a and y have different lengths {a_len} <> {y_len}")
}
unsafe { ffi::vvsinf(y.as_mut_ptr(), a.as_ptr(), &(a_len as i32)) }
}
#[inline]
pub fn vd_sin(a: &[f64], y: &mut [f64]) {
let a_len = a.len();
let y_len = y.len();
if a_len != y_len {
panic!("a and y have different lengths {a_len} <> {y_len}")
}
unsafe { ffi::vvsin(y.as_mut_ptr(), a.as_ptr(), &(a_len as i32)) }
}
#[inline]
pub fn vs_cos(a: &[f32], y: &mut [f32]) {
let a_len = a.len();
let y_len = y.len();
if a_len != y_len {
panic!("a and y have different lengths {a_len} <> {y_len}")
}
unsafe { ffi::vvcosf(y.as_mut_ptr(), a.as_ptr(), &(a_len as i32)) }
}
#[inline]
pub fn vd_cos(a: &[f64], y: &mut [f64]) {
let a_len = a.len();
let y_len = y.len();
if a_len != y_len {
panic!("a and y have different lengths {a_len} <> {y_len}")
}
unsafe { ffi::vvcos(y.as_mut_ptr(), a.as_ptr(), &(a_len as i32)) }
}
#[inline]
pub fn vs_tanh(a: &[f32], y: &mut [f32]) {
let a_len = a.len();
let y_len = y.len();
if a_len != y_len {
panic!("a and y have different lengths {a_len} <> {y_len}")
}
unsafe { ffi::vvtanhf(y.as_mut_ptr(), a.as_ptr(), &(a_len as i32)) }
}
#[inline]
pub fn vd_tanh(a: &[f64], y: &mut [f64]) {
let a_len = a.len();
let y_len = y.len();
if a_len != y_len {
panic!("a and y have different lengths {a_len} <> {y_len}")
}
unsafe { ffi::vvtanh(y.as_mut_ptr(), a.as_ptr(), &(a_len as i32)) }
}
#[inline]
pub fn vs_ln(a: &[f32], y: &mut [f32]) {
let a_len = a.len();
let y_len = y.len();
if a_len != y_len {
panic!("a and y have different lengths {a_len} <> {y_len}")
}
unsafe { ffi::vvlogf(y.as_mut_ptr(), a.as_ptr(), &(a_len as i32)) }
}
#[inline]
pub fn vd_ln(a: &[f64], y: &mut [f64]) {
let a_len = a.len();
let y_len = y.len();
if a_len != y_len {
panic!("a and y have different lengths {a_len} <> {y_len}")
}
unsafe { ffi::vvlog(y.as_mut_ptr(), a.as_ptr(), &(a_len as i32)) }
}
#[inline]
pub fn vs_sqr(a: &[f32], y: &mut [f32]) {
let a_len = a.len();
let y_len = y.len();
if a_len != y_len {
panic!("a and y have different lengths {a_len} <> {y_len}")
}
y.iter_mut().zip(a.iter()).for_each(|(y, a)| *y = *a * *a)
}
#[inline]
pub fn vd_sqr(a: &[f64], y: &mut [f64]) {
let a_len = a.len();
let y_len = y.len();
if a_len != y_len {
panic!("a and y have different lengths {a_len} <> {y_len}")
}
y.iter_mut().zip(a.iter()).for_each(|(y, a)| *y = *a * *a)
}
#[inline]
pub fn vs_tanh_inplace(y: &mut [f32]) {
unsafe { ffi::vvtanhf(y.as_mut_ptr(), y.as_ptr(), &(y.len() as i32)) }
}
#[inline]
pub fn vd_tanh_inplace(y: &mut [f64]) {
unsafe { ffi::vvtanh(y.as_mut_ptr(), y.as_ptr(), &(y.len() as i32)) }
}
#[inline]
pub fn vs_exp_inplace(y: &mut [f32]) {
unsafe { ffi::vvexpf(y.as_mut_ptr(), y.as_ptr(), &(y.len() as i32)) }
}
#[inline]
pub fn vd_exp_inplace(y: &mut [f64]) {
unsafe { ffi::vvexp(y.as_mut_ptr(), y.as_ptr(), &(y.len() as i32)) }
}
#[inline]
pub fn vs_gelu(vs: &[f32], ys: &mut [f32]) {
for (&v, y) in vs.iter().zip(ys.iter_mut()) {
*y = (2.0f32 / std::f32::consts::PI).sqrt() * v * (1.0 + 0.044715 * v * v)
}
vs_tanh_inplace(ys);
for (&v, y) in vs.iter().zip(ys.iter_mut()) {
*y = 0.5 * v * (1.0 + *y)
}
}
#[inline]
pub fn vd_gelu(vs: &[f64], ys: &mut [f64]) {
for (&v, y) in vs.iter().zip(ys.iter_mut()) {
*y = (2.0f64 / std::f64::consts::PI).sqrt() * v * (1.0 + 0.044715 * v * v)
}
vd_tanh_inplace(ys);
for (&v, y) in vs.iter().zip(ys.iter_mut()) {
*y = 0.5 * v * (1.0 + *y)
}
}
#[inline]
pub fn vs_silu(vs: &[f32], ys: &mut [f32]) {
for (&v, y) in vs.iter().zip(ys.iter_mut()) {
*y = -v
}
vs_exp_inplace(ys);
for (&v, y) in vs.iter().zip(ys.iter_mut()) {
*y = v / (1.0 + *y)
}
}
#[inline]
pub fn vd_silu(vs: &[f64], ys: &mut [f64]) {
for (&v, y) in vs.iter().zip(ys.iter_mut()) {
*y = -v
}
vd_exp_inplace(ys);
for (&v, y) in vs.iter().zip(ys.iter_mut()) {
*y = v / (1.0 + *y)
}
}
macro_rules! binary_op {
($fn_name:ident, $ty:ty, $accelerate_name:ident) => {
#[inline]
pub fn $fn_name(a: &[$ty], b: &[$ty], y: &mut [$ty]) {
let a_len = a.len();
let b_len = b.len();
let y_len = y.len();
if a_len != y_len || b_len != y_len {
panic!(
"{} a,b,y len mismatch {a_len} {b_len} {y_len}",
stringify!($fn_name)
);
}
unsafe {
// Weird quirk of accelerate, the rhs comes before the lhs.
ffi::$accelerate_name(
b.as_ptr(),
1,
a.as_ptr(),
1,
y.as_mut_ptr(),
1,
a_len as u64,
)
}
}
};
}
binary_op!(vs_add, f32, vDSP_vadd);
binary_op!(vd_add, f64, vDSP_vaddD);
binary_op!(vs_sub, f32, vDSP_vsub);
binary_op!(vd_sub, f64, vDSP_vsubD);
binary_op!(vs_mul, f32, vDSP_vmul);
binary_op!(vd_mul, f64, vDSP_vmulD);
binary_op!(vs_div, f32, vDSP_vdiv);
binary_op!(vd_div, f64, vDSP_vdivD);
binary_op!(vs_max, f32, vDSP_vmax);
binary_op!(vd_max, f64, vDSP_vmaxD);
binary_op!(vs_min, f32, vDSP_vmin);
binary_op!(vd_min, f64, vDSP_vminD);
use crate::op::{BinaryOpT, CmpOp, ReduceOp, UnaryOpT};
use crate::{CpuStorage, DType, Layout, Result, Shape};
pub trait BackendStorage: Sized {
type Device: BackendDevice;
fn try_clone(&self, _: &Layout) -> Result<Self>;
fn dtype(&self) -> DType;
fn device(&self) -> &Self::Device;
// Maybe this should return a Cow instead so that no copy is done on the cpu case.
fn to_cpu_storage(&self) -> Result<CpuStorage>;
fn affine(&self, _: &Layout, _: f64, _: f64) -> Result<Self>;
fn powf(&self, _: &Layout, _: f64) -> Result<Self>;
fn elu(&self, _: &Layout, _: f64) -> Result<Self>;
fn reduce_op(&self, _: ReduceOp, _: &Layout, _: &[usize]) -> Result<Self>;
fn cmp(&self, _: CmpOp, _: &Self, _: &Layout, _: &Layout) -> Result<Self>;
fn to_dtype(&self, _: &Layout, _: DType) -> Result<Self>;
fn unary_impl<B: UnaryOpT>(&self, _: &Layout) -> Result<Self>;
fn binary_impl<B: BinaryOpT>(&self, _: &Self, _: &Layout, _: &Layout) -> Result<Self>;
fn where_cond(&self, _: &Layout, _: &Self, _: &Layout, _: &Self, _: &Layout) -> Result<Self>;
fn conv1d(
&self,
_l: &Layout,
_kernel: &Self,
_kernel_l: &Layout,
_params: &crate::conv::ParamsConv1D,
) -> Result<Self>;
fn conv_transpose1d(
&self,
_l: &Layout,
_kernel: &Self,
_kernel_l: &Layout,
_params: &crate::conv::ParamsConvTranspose1D,
) -> Result<Self>;
fn conv2d(
&self,
_l: &Layout,
_kernel: &Self,
_kernel_l: &Layout,
_params: &crate::conv::ParamsConv2D,
) -> Result<Self>;
fn conv_transpose2d(
&self,
_l: &Layout,
_kernel: &Self,
_kernel_l: &Layout,
_params: &crate::conv::ParamsConvTranspose2D,
) -> Result<Self>;
fn avg_pool2d(&self, _: &Layout, _: (usize, usize), _: (usize, usize)) -> Result<Self>;
fn max_pool2d(&self, _: &Layout, _: (usize, usize), _: (usize, usize)) -> Result<Self>;
fn upsample_nearest1d(&self, _: &Layout, _: usize) -> Result<Self>;
fn upsample_nearest2d(&self, _: &Layout, _: usize, _: usize) -> Result<Self>;
fn gather(&self, _: &Layout, _: &Self, _: &Layout, _: usize) -> Result<Self>;
fn scatter_add(
&self,
_: &Layout,
_: &Self,
_: &Layout,
_: &Self,
_: &Layout,
_: usize,
) -> Result<Self>;
fn index_select(&self, _: &Self, _: &Layout, _: &Layout, _: usize) -> Result<Self>;
fn index_add(
&self,
_: &Layout,
_: &Self,
_: &Layout,
_: &Self,
_: &Layout,
_: usize,
) -> Result<Self>;
fn matmul(
&self,
_: &Self,
_: (usize, usize, usize, usize),
_: &Layout,
_: &Layout,
) -> Result<Self>;
fn copy_strided_src(&self, _: &mut Self, _: usize, _: &Layout) -> Result<()>;
#[allow(clippy::too_many_arguments)]
// Similar to cudaMemcpy2D, though values are in elements and not in bytes.
fn copy2d(
&self,
_: &mut Self,
_d1: usize,
_d2: usize,
_src_stride1: usize,
_dst_stride1: usize,
_src_offset: usize,
_dst_offset: usize,
) -> Result<()>;
}
pub trait BackendDevice: Sized + std::fmt::Debug + Clone {
type Storage: BackendStorage;
// TODO: Make the usize generic and part of a generic DeviceLocation.
fn new(_: usize) -> Result<Self>;
fn location(&self) -> crate::DeviceLocation;
fn same_device(&self, _: &Self) -> bool;
fn zeros_impl(&self, _shape: &Shape, _dtype: DType) -> Result<Self::Storage>;
fn ones_impl(&self, _shape: &Shape, _dtype: DType) -> Result<Self::Storage>;
/// # Safety
/// This function is unsafe as it doesn't initialize the underlying data store.
/// The caller should ensure that the data is properly initialized as early as possible
/// after this call.
unsafe fn alloc_uninit(&self, _shape: &Shape, _dtype: DType) -> Result<Self::Storage>;
fn storage_from_cpu_storage(&self, _: &CpuStorage) -> Result<Self::Storage>;
fn storage_from_cpu_storage_owned(&self, _: CpuStorage) -> Result<Self::Storage>;
fn rand_uniform(&self, _: &Shape, _: DType, _: f64, _: f64) -> Result<Self::Storage>;
fn rand_normal(&self, _: &Shape, _: DType, _: f64, _: f64) -> Result<Self::Storage>;
fn set_seed(&self, _: u64) -> Result<()>;
}
/// Methods for backpropagation of gradients.
use crate::op::{BinaryOp, Op, ReduceOp, UnaryOp};
use crate::{Error, Result, Tensor, TensorId};
use std::collections::HashMap;
// arg has been reduced to node via reduce_dims, expand it back to arg.
// This has to handle keepdims.
fn broadcast_back(arg: &Tensor, node: &Tensor, reduced_dims: &[usize]) -> Result<Tensor> {
if arg.rank() == node.rank() {
// keepdim = true
node.broadcast_as(arg.shape())
} else {
// keepdim = false
// first expand the reduced dims.
node.reshape(reduced_dims)?.broadcast_as(arg.shape())
}
}
thread_local! {
static CANDLE_GRAD_DO_NOT_DETACH: bool = {
match std::env::var("CANDLE_GRAD_DO_NOT_DETACH") {
Ok(s) => {
!s.is_empty() && s != "0"
},
Err(_) => false,
}
}
}
impl Tensor {
/// Return all the nodes that lead to this value in a topologically sorted vec, the first
/// elements having dependencies on the latter ones, e.g. the first element if any is the
/// argument.
/// This assumes that the op graph is a DAG.
fn sorted_nodes(&self) -> Vec<&Tensor> {
// The vec of sorted nodes is passed as an owned value rather than a mutable reference
// to get around some lifetime limitations.
fn walk<'a>(
node: &'a Tensor,
nodes: Vec<&'a Tensor>,
already_seen: &mut HashMap<TensorId, bool>,
) -> (bool, Vec<&'a Tensor>) {
if let Some(&tg) = already_seen.get(&node.id()) {
return (tg, nodes);
}
let mut track_grad = false;
let mut nodes = if node.is_variable() {
// Do not call recursively on the "leaf" nodes.
track_grad = true;
nodes
} else if node.dtype().is_int() {
nodes
} else if let Some(op) = node.op() {
match op {
Op::IndexAdd(t1, t2, t3, _)
| Op::ScatterAdd(t1, t2, t3, _)
| Op::CustomOp3(t1, t2, t3, _)
| Op::WhereCond(t1, t2, t3) => {
let (tg, nodes) = walk(t1, nodes, already_seen);
track_grad |= tg;
let (tg, nodes) = walk(t2, nodes, already_seen);
track_grad |= tg;
let (tg, nodes) = walk(t3, nodes, already_seen);
track_grad |= tg;
nodes
}
Op::Conv1D {
arg: lhs,
kernel: rhs,
..
}
| Op::ConvTranspose1D {
arg: lhs,
kernel: rhs,
..
}
| Op::Conv2D {
arg: lhs,
kernel: rhs,
..
}
| Op::ConvTranspose2D {
arg: lhs,
kernel: rhs,
..
}
| Op::CustomOp2(lhs, rhs, _)
| Op::Binary(lhs, rhs, _)
| Op::Gather(lhs, rhs, _)
| Op::IndexSelect(lhs, rhs, _)
| Op::Matmul(lhs, rhs)
| Op::SliceScatter0(lhs, rhs, _) => {
let (tg, nodes) = walk(lhs, nodes, already_seen);
track_grad |= tg;
let (tg, nodes) = walk(rhs, nodes, already_seen);
track_grad |= tg;
nodes
}
Op::Cat(args, _) => args.iter().fold(nodes, |nodes, arg| {
let (tg, nodes) = walk(arg, nodes, already_seen);
track_grad |= tg;
nodes
}),
Op::Affine { arg, mul, .. } => {
if *mul == 0. {
nodes
} else {
let (tg, nodes) = walk(arg, nodes, already_seen);
track_grad |= tg;
nodes
}
}
Op::Unary(_node, UnaryOp::Ceil)
| Op::Unary(_node, UnaryOp::Floor)
| Op::Unary(_node, UnaryOp::Round)
| Op::Unary(_node, UnaryOp::Sign) => nodes,
Op::Reshape(node)
| Op::UpsampleNearest1D { arg: node, .. }
| Op::UpsampleNearest2D { arg: node, .. }
| Op::AvgPool2D { arg: node, .. }
| Op::MaxPool2D { arg: node, .. }
| Op::Copy(node)
| Op::Broadcast(node)
| Op::Cmp(node, _)
| Op::Reduce(node, ReduceOp::Min | ReduceOp::Sum | ReduceOp::Max, _)
| Op::ToDevice(node)
| Op::Transpose(node, _, _)
| Op::Permute(node, _)
| Op::Narrow(node, _, _, _)
| Op::Unary(node, _)
| Op::Elu(node, _)
| Op::Powf(node, _)
| Op::CustomOp1(node, _) => {
let (tg, nodes) = walk(node, nodes, already_seen);
track_grad |= tg;
nodes
}
Op::ToDType(node) => {
if node.dtype().is_float() {
let (tg, nodes) = walk(node, nodes, already_seen);
track_grad |= tg;
nodes
} else {
nodes
}
}
Op::Reduce(_, ReduceOp::ArgMin | ReduceOp::ArgMax, _) => nodes,
}
} else {
nodes
};
already_seen.insert(node.id(), track_grad);
if track_grad {
nodes.push(node);
}
(track_grad, nodes)
}
let (_tg, mut nodes) = walk(self, vec![], &mut HashMap::new());
nodes.reverse();
nodes
}
pub fn backward(&self) -> Result<GradStore> {
let sorted_nodes = self.sorted_nodes();
let mut grads = GradStore::new();
grads.insert(self, self.ones_like()?.contiguous()?);
for node in sorted_nodes.iter() {
if node.is_variable() {
continue;
}
let grad = grads
.remove(node)
.expect("candle internal error - grad not populated");
// https://github.com/huggingface/candle/issues/1241
// Ideally, we would make these operations in place where possible to ensure that we
// do not have to allocate too often. Here we just call `.detach` to avoid computing
// the backprop graph of the backprop itself. This would be an issue for second order
// derivatives but these are out of scope at the moment.
let do_not_detach = CANDLE_GRAD_DO_NOT_DETACH.with(|b| *b);
let grad = if do_not_detach { grad } else { grad.detach() };
if let Some(op) = node.op() {
match op {
Op::Binary(lhs, rhs, BinaryOp::Add) => {
let lhs_sum_grad = grads.or_insert(lhs)?;
*lhs_sum_grad = lhs_sum_grad.add(&grad)?;
let rhs_sum_grad = grads.or_insert(rhs)?;
*rhs_sum_grad = rhs_sum_grad.add(&grad)?;
}
Op::Binary(lhs, rhs, BinaryOp::Sub) => {
let lhs_sum_grad = grads.or_insert(lhs)?;
*lhs_sum_grad = lhs_sum_grad.add(&grad)?;
let rhs_sum_grad = grads.or_insert(rhs)?;
*rhs_sum_grad = rhs_sum_grad.sub(&grad)?;
}
Op::Binary(lhs, rhs, BinaryOp::Mul) => {
let lhs_grad = grad.mul(rhs)?;
let lhs_sum_grad = grads.or_insert(lhs)?;
*lhs_sum_grad = lhs_sum_grad.add(&lhs_grad)?;
let rhs_grad = grad.mul(lhs)?;
let rhs_sum_grad = grads.or_insert(rhs)?;
*rhs_sum_grad = rhs_sum_grad.add(&rhs_grad)?;
}
Op::Binary(lhs, rhs, BinaryOp::Div) => {
let lhs_grad = grad.div(rhs)?;
let lhs_sum_grad = grads.or_insert(lhs)?;
*lhs_sum_grad = lhs_sum_grad.add(&lhs_grad)?;
let rhs_grad = grad.mul(lhs)?.div(&rhs.sqr()?)?;
let rhs_sum_grad = grads.or_insert(rhs)?;
*rhs_sum_grad = rhs_sum_grad.sub(&rhs_grad)?;
}
Op::Binary(lhs, rhs, BinaryOp::Minimum)
| Op::Binary(lhs, rhs, BinaryOp::Maximum) => {
let mask_lhs = node.eq(lhs)?.to_dtype(grad.dtype())?;
let mask_rhs = node.eq(rhs)?.to_dtype(grad.dtype())?;
// If both masks are 1 one the same point, we want to scale the
// gradient by 0.5 rather than 1.
let lhs_grad = mask_lhs.mul(&grad)?.div(&(&mask_rhs + 1.)?)?;
let lhs_sum_grad = grads.or_insert(lhs)?;
*lhs_sum_grad = lhs_sum_grad.add(&lhs_grad)?;
let rhs_grad = mask_rhs.mul(&grad)?.div(&(&mask_lhs + 1.)?)?;
let rhs_sum_grad = grads.or_insert(rhs)?;
*rhs_sum_grad = rhs_sum_grad.add(&rhs_grad)?;
}
Op::WhereCond(pred, t, f) => {
let zeros = grad.zeros_like()?;
let t_sum_grad = grads.or_insert(t)?;
let t_grad = pred.where_cond(&grad, &zeros)?;
*t_sum_grad = t_sum_grad.add(&t_grad)?;
let f_sum_grad = grads.or_insert(f)?;
let f_grad = pred.where_cond(&zeros, &grad)?;
*f_sum_grad = f_sum_grad.add(&f_grad)?;
}
Op::Conv1D {
arg,
kernel,
padding,
stride,
dilation,
} => {
// The output height for conv_transpose1d is:
// (l_in - 1) * stride - 2 * padding + dilation * (k_size - 1) + out_padding + 1
let grad_l_in = grad.dim(2)?;
let k_size = kernel.dim(2)?;
let out_size =
(grad_l_in - 1) * stride + dilation * (k_size - 1) + 1 - 2 * padding;
let out_padding = arg.dim(2)? - out_size;
let grad_arg = grad.conv_transpose1d(
kernel,
*padding,
out_padding,
*stride,
*dilation,
/* groups */ 1,
)?;
let sum_grad = grads.or_insert(arg)?;
*sum_grad = sum_grad.add(&grad_arg)?;
let grad_kernel = arg
.transpose(0, 1)?
.conv1d(&grad.transpose(0, 1)?, *padding, *dilation, *stride, 1)?
.transpose(0, 1)?;
let sum_grad = grads.or_insert(kernel)?;
let (_, _, k0) = kernel.dims3()?;
let (_, _, g_k0) = grad_kernel.dims3()?;
let grad_kernel = if g_k0 != k0 {
grad_kernel.narrow(2, 0, k0)?
} else {
grad_kernel
};
*sum_grad = sum_grad.add(&grad_kernel)?;
}
Op::Conv2D {
arg,
kernel,
padding,
stride,
dilation,
} => {
// The output height for conv_transpose2d is:
// (i_h - 1) * stride - 2 * padding + dilation * (k_h - 1) + out_padding + 1
let grad_h = grad.dim(2)?;
let k_h = kernel.dim(2)?;
let out_size =
(grad_h - 1) * stride + dilation * (k_h - 1) + 1 - 2 * padding;
let out_padding = arg.dim(2)? - out_size;
let grad_arg = grad.conv_transpose2d(
kernel,
*padding,
out_padding,
*stride,
*dilation,
)?;
let sum_grad = grads.or_insert(arg)?;
*sum_grad = sum_grad.add(&grad_arg)?;
let grad_kernel = arg
.transpose(0, 1)?
.conv2d(&grad.transpose(0, 1)?, *padding, *dilation, *stride, 1)?
.transpose(0, 1)?;
let sum_grad = grads.or_insert(kernel)?;
let (_, _, k0, k1) = kernel.dims4()?;
let (_, _, g_k0, g_k1) = grad_kernel.dims4()?;
let grad_kernel = if g_k0 != k0 || g_k1 != k1 {
grad_kernel.narrow(2, 0, k0)?.narrow(3, 0, k1)?
} else {
grad_kernel
};
*sum_grad = sum_grad.add(&grad_kernel)?;
}
Op::ConvTranspose1D { .. } => Err(Error::BackwardNotSupported {
op: "conv-transpose1d",
})?,
Op::ConvTranspose2D {
arg,
kernel,
padding,
stride,
dilation,
output_padding: _output_padding,
} => {
let grad_arg = grad.conv2d(kernel, *padding, *dilation, *stride, 1)?;
let sum_grad = grads.or_insert(arg)?;
*sum_grad = sum_grad.add(&grad_arg)?;
let grad_kernel = grad
.transpose(0, 1)?
.conv2d(&arg.transpose(0, 1)?, *padding, *stride, *dilation, 1)?
.transpose(0, 1)?;
let sum_grad = grads.or_insert(kernel)?;
let (_, _, k0, k1) = kernel.dims4()?;
let (_, _, g_k0, g_k1) = grad_kernel.dims4()?;
let grad_kernel = if g_k0 != k0 || g_k1 != k1 {
grad_kernel.narrow(2, 0, k0)?.narrow(3, 0, k1)?
} else {
grad_kernel
};
*sum_grad = sum_grad.add(&grad_kernel)?;
}
Op::AvgPool2D {
arg,
kernel_size,
stride,
} => {
if kernel_size != stride {
crate::bail!("backward not supported for avgpool2d if ksize {kernel_size:?} != stride {stride:?}")
}
let (_n, _c, h, w) = arg.dims4()?;
let grad_arg = grad.upsample_nearest2d(h, w)?;
let grad_arg =
(grad_arg * (1f64 / (kernel_size.0 * kernel_size.1) as f64))?;
let sum_grad = grads.or_insert(arg)?;
*sum_grad = sum_grad.add(&grad_arg)?;
}
Op::MaxPool2D {
arg,
kernel_size,
stride,
} => {
if kernel_size != stride {
crate::bail!("backward not supported for maxpool2d if ksize {kernel_size:?} != stride {stride:?}")
}
let (_n, _c, h, w) = arg.dims4()?;
// For computing the max-pool gradient, we compute a mask where a 1 means
// that the element is the maximum, then we apply this mask to the
// upsampled gradient (taking into account that multiple max may exist so
// we scale the gradient for this case).
let node_upsampled = node.upsample_nearest2d(h, w)?;
let mask = arg.eq(&node_upsampled)?.to_dtype(arg.dtype())?;
let avg = mask.avg_pool2d_with_stride(*kernel_size, *stride)?;
let grad_arg = ((grad * avg)?.upsample_nearest2d(h, w)? * mask)?;
let sum_grad = grads.or_insert(arg)?;
*sum_grad = sum_grad.add(&grad_arg)?;
}
Op::UpsampleNearest1D { arg, target_size } => {
let (_n, c, size) = arg.dims3()?;
if target_size % size != 0 {
crate::bail!("backward not supported for non integer upscaling factors")
}
let scale = target_size / size;
let kernel = Tensor::ones((c, 1, scale), arg.dtype(), arg.device())?;
let conv_sum = grad.conv1d(&kernel, 0, scale, 1, c)?;
let sum_grad = grads.or_insert(arg)?;
*sum_grad = conv_sum;
}
Op::UpsampleNearest2D {
arg,
target_h,
target_w,
} => {
let (_n, c, h, w) = arg.dims4()?;
if target_h % h != 0 || target_w % w != 0 {
crate::bail!("backward not supported for non integer upscaling factors")
}
let scale_h = target_h / h;
let scale_w = target_w / w;
if scale_h != scale_w {
crate::bail!("backward not supported for non uniform upscaling factors")
};
let kernel =
Tensor::ones((c, 1, scale_h, scale_w), arg.dtype(), arg.device())?;
let conv_sum = grad.conv2d(&kernel, 0, scale_h, 1, c)?;
let sum_grad = grads.or_insert(arg)?;
*sum_grad = conv_sum;
}
Op::SliceScatter0(lhs, rhs, start_rhs) => {
let rhs_sum_grad = grads.or_insert(rhs)?;
let rhs_grad = grad.narrow(0, *start_rhs, rhs.dim(0)?)?;
*rhs_sum_grad = rhs_sum_grad.add(&rhs_grad)?;
let lhs_sum_grad = grads.or_insert(lhs)?;
let lhs_grad = grad.slice_scatter0(&rhs.zeros_like()?, *start_rhs)?;
*lhs_sum_grad = lhs_sum_grad.add(&lhs_grad)?
}
Op::Gather(arg, indexes, dim) => {
let sum_grad = grads.or_insert(arg)?;
*sum_grad = sum_grad.scatter_add(indexes, &grad, *dim)?;
}
Op::ScatterAdd(init, indexes, src, dim) => {
let init_sum_grad = grads.or_insert(init)?;
*init_sum_grad = init_sum_grad.add(&grad)?;
let src_grad = grad.gather(indexes, *dim)?;
let src_sum_grad = grads.or_insert(src)?;
*src_sum_grad = src_sum_grad.add(&src_grad)?;
}
Op::IndexAdd(init, indexes, src, dim) => {
let init_sum_grad = grads.or_insert(init)?;
*init_sum_grad = init_sum_grad.add(&grad)?;
let src_grad = grad.index_select(indexes, *dim)?;
let src_sum_grad = grads.or_insert(src)?;
*src_sum_grad = src_sum_grad.add(&src_grad)?;
}
Op::IndexSelect(arg, indexes, dim) => {
let sum_grad = grads.or_insert(arg)?;
*sum_grad = sum_grad.index_add(indexes, &grad, *dim)?;
}
Op::Matmul(lhs, rhs) => {
// Skipping checks, the op went ok, we can skip
// the matmul size checks for now.
let lhs_grad = grad.matmul(&rhs.t()?)?;
let lhs_sum_grad = grads.or_insert(lhs)?;
*lhs_sum_grad = lhs_sum_grad.add(&lhs_grad)?;
let rhs_grad = lhs.t()?.matmul(&grad)?;
let rhs_sum_grad = grads.or_insert(rhs)?;
*rhs_sum_grad = rhs_sum_grad.add(&rhs_grad)?;
}
Op::Cat(args, dim) => {
let mut start_idx = 0;
for arg in args {
let len = arg.dims()[*dim];
let arg_grad = grad.narrow(*dim, start_idx, len)?;
let sum_grad = grads.or_insert(arg)?;
*sum_grad = sum_grad.add(&arg_grad)?;
start_idx += len;
}
}
Op::Broadcast(arg) => {
let arg_dims = arg.dims();
let node_dims = node.dims();
// The number of dims that have been inserted on the left.
let left_dims = node_dims.len() - arg_dims.len();
let mut sum_dims: Vec<usize> = (0..left_dims).collect();
for (dim, (node_dim, arg_dim)) in node_dims[left_dims..]
.iter()
.zip(arg_dims.iter())
.enumerate()
{
if node_dim != arg_dim {
sum_dims.push(dim + left_dims)
}
}
let mut arg_grad = grad.sum_keepdim(sum_dims.as_slice())?;
for _i in 0..left_dims {
arg_grad = arg_grad.squeeze(0)?
}
let sum_grad = grads.or_insert(arg)?;
*sum_grad = sum_grad.add(&arg_grad.broadcast_as(sum_grad.dims())?)?;
}
Op::Reduce(arg, ReduceOp::Sum, reduced_dims) => {
let grad = broadcast_back(arg, &grad, reduced_dims)?;
let sum_grad = grads.or_insert(arg)?;
*sum_grad = sum_grad.add(&grad)?;
}
Op::Reduce(arg, ReduceOp::Max, reduced_dims) => {
let node = broadcast_back(arg, node, reduced_dims)?;
let grad = broadcast_back(arg, &grad, reduced_dims)?;
let grad = node.eq(arg)?.to_dtype(grad.dtype())?.mul(&grad)?;
let sum_grad = grads.or_insert(arg)?;
*sum_grad = sum_grad.add(&grad.broadcast_as(sum_grad.dims())?)?;
}
Op::Reduce(arg, ReduceOp::Min, reduced_dims) => {
let node = broadcast_back(arg, node, reduced_dims)?;
let grad = broadcast_back(arg, &grad, reduced_dims)?;
let grad = node.eq(arg)?.to_dtype(grad.dtype())?.mul(&grad)?;
let sum_grad = grads.or_insert(arg)?;
*sum_grad = sum_grad.add(&grad.broadcast_as(sum_grad.dims())?)?;
}
Op::ToDType(arg) => {
let sum_grad = grads.or_insert(arg)?;
*sum_grad = sum_grad.add(&grad.to_dtype(arg.dtype())?)?
}
Op::Copy(arg) => {
let sum_grad = grads.or_insert(arg)?;
*sum_grad = sum_grad.add(&grad)?
}
Op::Affine { arg, mul, .. } => {
let arg_grad = grad.affine(*mul, 0.)?;
let sum_grad = grads.or_insert(arg)?;
*sum_grad = sum_grad.add(&arg_grad)?
}
Op::Unary(arg, UnaryOp::Log) => {
let sum_grad = grads.or_insert(arg)?;
*sum_grad = sum_grad.add(&(grad / arg)?)?
}
Op::Unary(arg, UnaryOp::Sin) => {
let sum_grad = grads.or_insert(arg)?;
*sum_grad = sum_grad.add(&(&grad * arg.cos())?)?
}
Op::Unary(arg, UnaryOp::Cos) => {
let sum_grad = grads.or_insert(arg)?;
*sum_grad = sum_grad.sub(&(&grad * arg.sin())?)?
}
Op::Unary(arg, UnaryOp::Tanh) => {
let sum_grad = grads.or_insert(arg)?;
let minus_dtanh = (node.sqr()? - 1.)?;
*sum_grad = sum_grad.sub(&(&grad * &minus_dtanh)?)?
}
Op::Unary(arg, UnaryOp::Abs) => {
let sum_grad = grads.or_insert(arg)?;
let ones = arg.ones_like()?;
let abs_grad = arg.ge(&arg.zeros_like()?)?.where_cond(&ones, &ones.neg()?);
*sum_grad = sum_grad.add(&(&grad * abs_grad)?)?
}
Op::Unary(arg, UnaryOp::Exp) => {
let sum_grad = grads.or_insert(arg)?;
*sum_grad = sum_grad.add(&(&grad * *node)?)?
}
Op::Unary(arg, UnaryOp::Neg) => {
let sum_grad = grads.or_insert(arg)?;
*sum_grad = sum_grad.sub(&grad)?
}
Op::Unary(arg, UnaryOp::Recip) => {
let sum_grad = grads.or_insert(arg)?;
let grad = (grad / arg.sqr()?)?;
*sum_grad = sum_grad.sub(&grad)?
}
&Op::Narrow(ref arg, dim, start_idx, len) => {
let arg_dims = arg.dims();
let left_pad = if start_idx == 0 {
None
} else {
let mut dims = arg_dims.to_vec();
dims[dim] = start_idx;
Some(Tensor::zeros(dims, grad.dtype(), grad.device())?)
};
let right_pad = arg_dims[dim] - start_idx - len;
let right_pad = if right_pad == 0 {
None
} else {
let mut dims = arg_dims.to_vec();
dims[dim] = right_pad;
Some(Tensor::zeros(dims, grad.dtype(), grad.device())?)
};
let arg_grad = match (left_pad, right_pad) {
(None, None) => grad,
(Some(l), None) => Tensor::cat(&[&l, &grad], dim)?,
(None, Some(r)) => Tensor::cat(&[&grad, &r], dim)?,
(Some(l), Some(r)) => Tensor::cat(&[&l, &grad, &r], dim)?,
};
let sum_grad = grads.or_insert(arg)?;
*sum_grad = sum_grad.add(&arg_grad)?
}
Op::Unary(_, UnaryOp::Floor)
| Op::Unary(_, UnaryOp::Round)
| Op::Reduce(_, ReduceOp::ArgMin, _)
| Op::Reduce(_, ReduceOp::ArgMax, _)
| Op::Unary(_, UnaryOp::Sign)
| Op::Cmp(_, _) => {}
Op::Reshape(arg) => {
let arg_grad = grad.reshape(arg.dims())?;
let sum_grad = grads.or_insert(arg)?;
*sum_grad = sum_grad.add(&arg_grad)?
}
Op::Unary(_, UnaryOp::Ceil) => Err(Error::BackwardNotSupported { op: "ceil" })?,
Op::Unary(arg, UnaryOp::Gelu) => {
let sum_grad = grads.or_insert(arg)?;
let cube = arg.powf(3.)?;
let tanh = (0.0356774 * &cube + (0.797885 * arg)?)?.tanh()?;
let gelu_grad = (((0.5 * &tanh)?
+ (0.0535161 * cube + (0.398942 * arg)?)? * (1. - tanh.powf(2.)?))?
+ 0.5)?;
*sum_grad = sum_grad.add(&(&grad * gelu_grad)?)?
}
Op::Unary(arg, UnaryOp::Erf) => {
let sum_grad = grads.or_insert(arg)?;
// d/dx erf(x) = 2/sqrt(pi) * e^(-x^2)
let erf_grad =
(2. / std::f64::consts::PI.sqrt()) * (arg.sqr()?.neg()?).exp()?;
*sum_grad = sum_grad.add(&(&grad * erf_grad)?)?
}
Op::Unary(arg, UnaryOp::GeluErf) => {
let sum_grad = grads.or_insert(arg)?;
// d/dx gelu_erf(x) = 0.5 + 0.398942 e^(-x^2/2) x + 0.5 erf(x/sqrt(2))
let neg_half_square = (arg.sqr()?.neg()? / 2.)?;
let scaled_exp_arg = (0.398942 * neg_half_square.exp()? * arg)?;
let arg_scaled_sqrt = (arg / 2f64.sqrt())?;
let erf_scaled_sqrt = (0.5 * arg_scaled_sqrt.erf()?)?;
let gelu_erf_grad = (0.5 + scaled_exp_arg + erf_scaled_sqrt)?;
*sum_grad = sum_grad.add(&(&grad * gelu_erf_grad)?)?;
}
Op::Unary(arg, UnaryOp::Relu) => {
let sum_grad = grads.or_insert(arg)?;
let relu_grad = arg.ge(&arg.zeros_like()?)?.to_dtype(arg.dtype())?;
*sum_grad = sum_grad.add(&(&grad * relu_grad)?)?
}
Op::Unary(arg, UnaryOp::Silu) => {
let sum_grad = grads.or_insert(arg)?;
// d/dx silu = sigmoid(x) * (1 + x * (1 - sigmoid(x)))
let sigmoid_arg = (*node / arg)?;
let silu_grad = (&sigmoid_arg * (1. + (arg * (1. - &sigmoid_arg)?)?)?)?;
*sum_grad = sum_grad.add(&(&grad * silu_grad)?)?
}
Op::Elu(arg, alpha) => {
// d/dx elu(x) = 1 for x > 0, alpha * e^x for x <= 0
let sum_grad = grads.or_insert(arg)?;
let zeros = arg.zeros_like()?;
let positive_mask = arg.gt(&zeros)?.to_dtype(arg.dtype())?;
let negative_mask = arg.le(&zeros)?.to_dtype(arg.dtype())?;
let negative_exp_mask = ((negative_mask * arg.exp())? * *alpha)?;
let combined_mask = (positive_mask + negative_exp_mask)?;
*sum_grad = sum_grad.add(&(grad * combined_mask)?)?
}
Op::Powf(arg, e) => {
let arg_grad = (&(grad * arg.powf(e - 1.)?)? * *e)?;
let sum_grad = grads.or_insert(arg)?;
*sum_grad = sum_grad.add(&arg_grad)?
}
Op::CustomOp1(arg, c) => {
if let Some(arg_grad) = c.bwd(arg, node, &grad)? {
let sum_grad = grads.or_insert(arg)?;
*sum_grad = sum_grad.add(&arg_grad)?
}
}
Op::CustomOp2(arg1, arg2, c) => {
let (arg_grad1, arg_grad2) = c.bwd(arg1, arg2, node, &grad)?;
if let Some(arg_grad1) = arg_grad1 {
let sum_grad = grads.or_insert(arg1)?;
*sum_grad = sum_grad.add(&arg_grad1)?
}
if let Some(arg_grad2) = arg_grad2 {
let sum_grad = grads.or_insert(arg2)?;
*sum_grad = sum_grad.add(&arg_grad2)?
}
}
Op::CustomOp3(arg1, arg2, arg3, c) => {
let (arg_grad1, arg_grad2, arg_grad3) =
c.bwd(arg1, arg2, arg3, node, &grad)?;
if let Some(arg_grad1) = arg_grad1 {
let sum_grad = grads.or_insert(arg1)?;
*sum_grad = sum_grad.add(&arg_grad1)?
}
if let Some(arg_grad2) = arg_grad2 {
let sum_grad = grads.or_insert(arg2)?;
*sum_grad = sum_grad.add(&arg_grad2)?
}
if let Some(arg_grad3) = arg_grad3 {
let sum_grad = grads.or_insert(arg3)?;
*sum_grad = sum_grad.add(&arg_grad3)?
}
}
Op::Unary(arg, UnaryOp::Sqr) => {
let arg_grad = arg.mul(&grad)?.affine(2., 0.)?;
let sum_grad = grads.or_insert(arg)?;
*sum_grad = sum_grad.add(&arg_grad)?
}
Op::Unary(arg, UnaryOp::Sqrt) => {
let arg_grad = grad.div(node)?.affine(0.5, 0.)?;
let sum_grad = grads.or_insert(arg)?;
*sum_grad = sum_grad.add(&arg_grad)?
}
Op::ToDevice(arg) => {
let sum_grad = grads.or_insert(arg)?;
let arg_grad = grad.to_device(sum_grad.device())?;
*sum_grad = sum_grad.add(&arg_grad)?
}
Op::Transpose(arg, dim1, dim2) => {
let arg_grad = grad.transpose(*dim1, *dim2)?;
let sum_grad = grads.or_insert(arg)?;
*sum_grad = sum_grad.add(&arg_grad)?
}
Op::Permute(arg, dims) => {
let mut inv_dims = vec![0; dims.len()];
for (i, &dim_idx) in dims.iter().enumerate() {
inv_dims[dim_idx] = i
}
let arg_grad = grad.permute(inv_dims)?;
let sum_grad = grads.or_insert(arg)?;
*sum_grad = sum_grad.add(&arg_grad)?
}
};
}
}
Ok(grads)
}
}
/// A store for gradients, associating a tensor id to the corresponding gradient tensor, used for back propagation.
#[derive(Debug)]
pub struct GradStore(HashMap<TensorId, Tensor>);
impl GradStore {
/// Create a new gradient store
fn new() -> Self {
GradStore(HashMap::new())
}
/// Get the gradient tensor corresponding to the given tensor id
pub fn get_id(&self, id: TensorId) -> Option<&Tensor> {
self.0.get(&id)
}
/// Get the gradient tensor associated with the given tensor
pub fn get(&self, tensor: &Tensor) -> Option<&Tensor> {
self.0.get(&tensor.id())
}
/// Remove the gradient tensor associated with the given tensor, returning it if it exists
pub fn remove(&mut self, tensor: &Tensor) -> Option<Tensor> {
self.0.remove(&tensor.id())
}
/// Insert a gradient tensor associated with the given tensor, returning the previous gradient tensor if it existed
pub fn insert(&mut self, tensor: &Tensor, grad: Tensor) -> Option<Tensor> {
self.0.insert(tensor.id(), grad)
}
/// Get the gradient tensor associated with the given tensor, or, if it does not exist,
/// insert a tensor of zeroes, with the same shape and type as the given tensors and return it
fn or_insert(&mut self, tensor: &Tensor) -> Result<&mut Tensor> {
use std::collections::hash_map::Entry;
let grad = match self.0.entry(tensor.id()) {
Entry::Occupied(entry) => entry.into_mut(),
Entry::Vacant(entry) => {
let grad = tensor.zeros_like()?;
entry.insert(grad)
}
};
Ok(grad)
}
}
use crate::{op::BackpropOp, op::Op, Error, Result, Tensor};
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct ParamsConv1D {
pub(crate) b_size: usize,
// Maybe we should have a version without l_in as this bit depends on the input and not only on
// the weights.
pub(crate) l_in: usize,
pub(crate) c_out: usize,
pub(crate) c_in: usize,
pub(crate) k_size: usize,
pub(crate) padding: usize,
pub(crate) stride: usize,
pub(crate) dilation: usize,
}
impl ParamsConv1D {
pub(crate) fn l_out(&self) -> usize {
(self.l_in + 2 * self.padding - self.dilation * (self.k_size - 1) - 1) / self.stride + 1
}
pub(crate) fn out_dims(&self) -> Vec<usize> {
let l_out = self.l_out();
vec![self.b_size, self.c_out, l_out]
}
}
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct ParamsConvTranspose1D {
pub(crate) b_size: usize,
pub(crate) l_in: usize,
pub(crate) c_out: usize,
pub(crate) c_in: usize,
pub(crate) k_size: usize,
pub(crate) padding: usize,
pub(crate) output_padding: usize,
pub(crate) stride: usize,
pub(crate) dilation: usize,
}
impl ParamsConvTranspose1D {
pub(crate) fn l_out(&self) -> usize {
(self.l_in - 1) * self.stride - 2 * self.padding
+ self.dilation * (self.k_size - 1)
+ self.output_padding
+ 1
}
pub(crate) fn out_dims(&self) -> Vec<usize> {
let l_out = self.l_out();
vec![self.b_size, self.c_out, l_out]
}
}
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub enum CudnnFwdAlgo {
ImplicitGemm,
ImplicitPrecompGemm,
Gemm,
Direct,
Fft,
FftTiling,
Winograd,
WinogradNonFused,
Count,
}
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct ParamsConv2D {
pub(crate) b_size: usize,
pub(crate) i_h: usize,
pub(crate) i_w: usize,
pub(crate) k_h: usize,
pub(crate) k_w: usize,
pub(crate) c_out: usize,
pub(crate) c_in: usize,
pub(crate) padding: usize,
pub(crate) stride: usize,
pub(crate) dilation: usize,
pub cudnn_fwd_algo: Option<CudnnFwdAlgo>,
}
impl ParamsConv2D {
pub(crate) fn out_h(&self) -> usize {
(self.i_h + 2 * self.padding - self.dilation * (self.k_h - 1) - 1) / self.stride + 1
}
pub(crate) fn out_w(&self) -> usize {
(self.i_w + 2 * self.padding - self.dilation * (self.k_w - 1) - 1) / self.stride + 1
}
pub(crate) fn out_dims(&self) -> Vec<usize> {
vec![self.b_size, self.c_out, self.out_h(), self.out_w()]
}
}
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct ParamsConvTranspose2D {
pub(crate) b_size: usize,
pub(crate) i_h: usize,
pub(crate) i_w: usize,
pub(crate) k_h: usize,
pub(crate) k_w: usize,
pub(crate) c_out: usize,
pub(crate) c_in: usize,
pub(crate) padding: usize,
pub(crate) output_padding: usize,
pub(crate) stride: usize,
pub(crate) dilation: usize,
}
impl ParamsConvTranspose2D {
pub(crate) fn out_h(&self) -> usize {
(self.i_h - 1) * self.stride + self.dilation * (self.k_h - 1) + self.output_padding + 1
- 2 * self.padding
}
pub(crate) fn out_w(&self) -> usize {
(self.i_w - 1) * self.stride + self.dilation * (self.k_w - 1) + self.output_padding + 1
- 2 * self.padding
}
pub(crate) fn out_dims(&self) -> Vec<usize> {
vec![self.b_size, self.c_out, self.out_h(), self.out_w()]
}
}
impl Tensor {
fn conv1d_single_group(&self, kernel: &Self, params: &ParamsConv1D) -> Result<Self> {
let storage =
self.storage()
.conv1d(self.layout(), &kernel.storage(), kernel.layout(), params)?;
let op = BackpropOp::new2(self, kernel, |arg, kernel| Op::Conv1D {
arg,
kernel,
padding: params.padding,
stride: params.stride,
dilation: params.dilation,
});
let out_dims = params.out_dims();
Ok(crate::tensor::from_storage(storage, out_dims, op, false))
}
/// Applies a 1D convolution over the input tensor.
pub fn conv1d(
&self,
kernel: &Self,
padding: usize,
stride: usize,
dilation: usize,
groups: usize,
) -> Result<Self> {
let (c_out, c_in_k, k_size) = kernel.dims3()?;
let (b_size, c_in, l_in) = self.dims3()?;
if c_in != c_in_k * groups {
Err(Error::Conv1dInvalidArgs {
inp_shape: self.shape().clone(),
k_shape: kernel.shape().clone(),
padding,
stride,
msg: "the number of in-channels on the input doesn't match the kernel size",
}
.bt())?
}
let params = ParamsConv1D {
b_size,
l_in,
c_out: c_out / groups,
c_in: c_in / groups,
k_size,
padding,
stride,
dilation,
};
if groups == 1 {
self.conv1d_single_group(kernel, &params)
} else {
let blocks = self.chunk(groups, 1)?;
let kernel = kernel.chunk(groups, 0)?;
let blocks = blocks
.iter()
.zip(&kernel)
.map(|(block, kernel)| block.conv1d_single_group(kernel, &params))
.collect::<Result<Vec<_>>>()?;
Tensor::cat(&blocks, 1)
}
}
fn conv_transpose1d_single_group(
&self,
kernel: &Self,
params: &ParamsConvTranspose1D,
) -> Result<Self> {
let storage = self.storage().conv_transpose1d(
self.layout(),
&kernel.storage(),
kernel.layout(),
params,
)?;
let op = BackpropOp::new2(self, kernel, |arg, kernel| Op::ConvTranspose1D {
arg,
kernel,
padding: params.padding,
output_padding: params.output_padding,
stride: params.stride,
dilation: params.dilation,
});
let out_dims = params.out_dims();
Ok(crate::tensor::from_storage(storage, out_dims, op, false))
}
/// Applies a 1D transposed convolution over the input tensor.
pub fn conv_transpose1d(
&self,
kernel: &Self,
padding: usize,
output_padding: usize,
stride: usize,
dilation: usize,
groups: usize,
) -> Result<Self> {
let (c_in_k, c_out, k_size) = kernel.dims3()?;
let (b_size, c_in, l_in) = self.dims3()?;
if c_in != c_in_k {
crate::bail!("in_channel mismatch between input ({c_in}) and kernel ({c_in_k})")
}
if c_in % groups != 0 {
crate::bail!("in_channel {c_in} is not divisible by the number of groups")
}
let params = ParamsConvTranspose1D {
b_size,
l_in,
k_size,
c_out,
c_in: c_in / groups,
padding,
output_padding,
stride,
dilation,
};
if groups == 1 {
self.conv_transpose1d_single_group(kernel, &params)
} else {
let blocks = self.chunk(groups, 1)?;
let kernel = kernel.chunk(groups, 0)?;
let blocks = blocks
.iter()
.zip(&kernel)
.map(|(block, kernel)| block.conv_transpose1d_single_group(kernel, &params))
.collect::<Result<Vec<_>>>()?;
Tensor::cat(&blocks, 1)
}
}
fn conv2d_single_group(&self, kernel: &Self, params: &ParamsConv2D) -> Result<Self> {
let storage =
self.storage()
.conv2d(self.layout(), &kernel.storage(), kernel.layout(), params)?;
let op = BackpropOp::new2(self, kernel, |arg, kernel| Op::Conv2D {
arg,
kernel,
padding: params.padding,
stride: params.stride,
dilation: params.dilation,
});
let out_dims = params.out_dims();
Ok(crate::tensor::from_storage(storage, out_dims, op, false))
}
/// Applies a 2D convolution over the input tensor.
pub fn conv2d(
&self,
kernel: &Self,
padding: usize,
stride: usize,
dilation: usize,
groups: usize,
) -> Result<Self> {
let (b_size, c_in, i_h, i_w) = self.dims4()?;
let (c_out, c_in_k, k_h, k_w) = kernel.dims4()?;
if c_in != c_in_k * groups {
crate::bail!(
"in_channel mismatch between input ({c_in}, groups {groups}) and kernel ({c_in_k})"
)
}
let params = ParamsConv2D {
b_size,
i_h,
i_w,
k_h,
k_w,
c_out: c_out / groups,
c_in: c_in / groups,
padding,
stride,
dilation,
cudnn_fwd_algo: None,
};
if groups == 1 {
self.conv2d_single_group(kernel, &params)
} else {
let blocks = self.chunk(groups, 1)?;
let kernel = kernel.chunk(groups, 0)?;
let blocks = blocks
.iter()
.zip(&kernel)
.map(|(block, kernel)| block.conv2d_single_group(kernel, &params))
.collect::<Result<Vec<_>>>()?;
Tensor::cat(&blocks, 1)
}
}
/// Applies a 2D transposed convolution over the input tensor.
pub fn conv_transpose2d(
&self,
kernel: &Self,
padding: usize,
output_padding: usize,
stride: usize,
dilation: usize,
) -> Result<Self> {
let (b_size, c_in, i_h, i_w) = self.dims4()?;
let (c_in_k, c_out, k_h, k_w) = kernel.dims4()?;
if c_in != c_in_k {
crate::bail!("in_channel mismatch between input ({c_in}) and kernel ({c_in_k})")
}
let params = ParamsConvTranspose2D {
b_size,
i_h,
i_w,
k_h,
k_w,
c_out,
c_in,
padding,
output_padding,
stride,
dilation,
};
let storage = self.storage().conv_transpose2d(
self.layout(),
&kernel.storage(),
kernel.layout(),
&params,
)?;
let op = BackpropOp::new2(self, kernel, |arg, kernel| Op::ConvTranspose2D {
arg,
kernel,
padding: params.padding,
output_padding: params.output_padding,
stride: params.stride,
dilation: params.dilation,
});
let out_dims = params.out_dims();
Ok(crate::tensor::from_storage(storage, out_dims, op, false))
}
}
//! Implement conversion traits for tensors
use crate::{DType, Device, Error, Tensor, WithDType};
use half::{bf16, f16, slice::HalfFloatSliceExt};
use std::convert::TryFrom;
impl<T: WithDType> TryFrom<&Tensor> for Vec<T> {
type Error = Error;
fn try_from(tensor: &Tensor) -> Result<Self, Self::Error> {
tensor.to_vec1::<T>()
}
}
impl<T: WithDType> TryFrom<&Tensor> for Vec<Vec<T>> {
type Error = Error;
fn try_from(tensor: &Tensor) -> Result<Self, Self::Error> {
tensor.to_vec2::<T>()
}
}
impl<T: WithDType> TryFrom<&Tensor> for Vec<Vec<Vec<T>>> {
type Error = Error;
fn try_from(tensor: &Tensor) -> Result<Self, Self::Error> {
tensor.to_vec3::<T>()
}
}
impl<T: WithDType> TryFrom<Tensor> for Vec<T> {
type Error = Error;
fn try_from(tensor: Tensor) -> Result<Self, Self::Error> {
Vec::<T>::try_from(&tensor)
}
}
impl<T: WithDType> TryFrom<Tensor> for Vec<Vec<T>> {
type Error = Error;
fn try_from(tensor: Tensor) -> Result<Self, Self::Error> {
Vec::<Vec<T>>::try_from(&tensor)
}
}
impl<T: WithDType> TryFrom<Tensor> for Vec<Vec<Vec<T>>> {
type Error = Error;
fn try_from(tensor: Tensor) -> Result<Self, Self::Error> {
Vec::<Vec<Vec<T>>>::try_from(&tensor)
}
}
impl<T: WithDType> TryFrom<&[T]> for Tensor {
type Error = Error;
fn try_from(v: &[T]) -> Result<Self, Self::Error> {
Tensor::from_slice(v, v.len(), &Device::Cpu)
}
}
impl<T: WithDType> TryFrom<Vec<T>> for Tensor {
type Error = Error;
fn try_from(v: Vec<T>) -> Result<Self, Self::Error> {
let len = v.len();
Tensor::from_vec(v, len, &Device::Cpu)
}
}
macro_rules! from_tensor {
($typ:ident) => {
impl TryFrom<&Tensor> for $typ {
type Error = Error;
fn try_from(tensor: &Tensor) -> Result<Self, Self::Error> {
tensor.to_scalar::<$typ>()
}
}
impl TryFrom<Tensor> for $typ {
type Error = Error;
fn try_from(tensor: Tensor) -> Result<Self, Self::Error> {
$typ::try_from(&tensor)
}
}
impl TryFrom<$typ> for Tensor {
type Error = Error;
fn try_from(v: $typ) -> Result<Self, Self::Error> {
Tensor::new(v, &Device::Cpu)
}
}
};
}
from_tensor!(f64);
from_tensor!(f32);
from_tensor!(f16);
from_tensor!(bf16);
from_tensor!(i64);
from_tensor!(u32);
from_tensor!(u8);
impl Tensor {
pub fn write_bytes<W: std::io::Write>(&self, f: &mut W) -> crate::Result<()> {
use byteorder::{LittleEndian, WriteBytesExt};
let vs = self.flatten_all()?;
match self.dtype() {
DType::BF16 => {
let vs = vs.to_vec1::<bf16>()?;
for &v in vs.reinterpret_cast() {
f.write_u16::<LittleEndian>(v)?
}
}
DType::F16 => {
let vs = vs.to_vec1::<f16>()?;
for &v in vs.reinterpret_cast() {
f.write_u16::<LittleEndian>(v)?
}
}
DType::F32 => {
// TODO: Avoid using a buffer when data is already on the CPU.
for v in vs.to_vec1::<f32>()? {
f.write_f32::<LittleEndian>(v)?
}
}
DType::F64 => {
for v in vs.to_vec1::<f64>()? {
f.write_f64::<LittleEndian>(v)?
}
}
DType::U32 => {
for v in vs.to_vec1::<u32>()? {
f.write_u32::<LittleEndian>(v)?
}
}
DType::I64 => {
for v in vs.to_vec1::<i64>()? {
f.write_i64::<LittleEndian>(v)?
}
}
DType::U8 => {
let vs = vs.to_vec1::<u8>()?;
f.write_all(&vs)?;
}
}
Ok(())
}
}
use super::{Cpu, CpuF16};
#[cfg(target_arch = "x86")]
use core::arch::x86::*;
#[cfg(target_arch = "x86_64")]
use core::arch::x86_64::*;
use half::f16;
pub struct CurrentCpu {}
const STEP: usize = 32;
const EPR: usize = 8;
const ARR: usize = STEP / EPR;
impl Cpu<ARR> for CurrentCpu {
type Unit = __m256;
type Array = [__m256; ARR];
const STEP: usize = STEP;
const EPR: usize = EPR;
fn n() -> usize {
ARR
}
unsafe fn zero() -> Self::Unit {
_mm256_setzero_ps()
}
unsafe fn zero_array() -> Self::Array {
[Self::zero(); ARR]
}
unsafe fn from_f32(v: f32) -> Self::Unit {
_mm256_set1_ps(v)
}
unsafe fn load(mem_addr: *const f32) -> Self::Unit {
_mm256_loadu_ps(mem_addr)
}
unsafe fn vec_add(a: Self::Unit, b: Self::Unit) -> Self::Unit {
_mm256_add_ps(a, b)
}
unsafe fn vec_fma(a: Self::Unit, b: Self::Unit, c: Self::Unit) -> Self::Unit {
_mm256_add_ps(_mm256_mul_ps(b, c), a)
}
unsafe fn vec_store(mem_addr: *mut f32, a: Self::Unit) {
_mm256_storeu_ps(mem_addr, a);
}
unsafe fn vec_reduce(mut x: Self::Array, y: *mut f32) {
for i in 0..ARR / 2 {
x[2 * i] = _mm256_add_ps(x[2 * i], x[2 * i + 1]);
}
for i in 0..ARR / 4 {
x[4 * i] = _mm256_add_ps(x[4 * i], x[4 * i + 2]);
}
#[allow(clippy::reversed_empty_ranges)]
for i in 0..ARR / 8 {
x[8 * i] = _mm256_add_ps(x[8 * i], x[8 * i + 4]);
}
let t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), _mm256_extractf128_ps(x[0], 1));
let t1 = _mm_hadd_ps(t0, t0);
*y = _mm_cvtss_f32(_mm_hadd_ps(t1, t1));
}
}
pub struct CurrentCpuF16 {}
impl CpuF16<ARR> for CurrentCpuF16 {
type Unit = __m256;
type Array = [__m256; ARR];
const STEP: usize = STEP;
const EPR: usize = EPR;
fn n() -> usize {
ARR
}
unsafe fn zero() -> Self::Unit {
_mm256_setzero_ps()
}
unsafe fn zero_array() -> Self::Array {
[Self::zero(); ARR]
}
unsafe fn from_f32(v: f32) -> Self::Unit {
_mm256_set1_ps(v)
}
#[cfg(target_feature = "f16c")]
unsafe fn load(mem_addr: *const f16) -> Self::Unit {
_mm256_cvtph_ps(_mm_loadu_si128(mem_addr as *const __m128i))
}
#[cfg(not(target_feature = "f16c"))]
unsafe fn load(mem_addr: *const f16) -> Self::Unit {
let mut tmp = [0.0f32; 8];
for i in 0..8 {
tmp[i] = (*mem_addr.add(i)).to_f32();
}
_mm256_loadu_ps(tmp.as_ptr())
}
unsafe fn vec_add(a: Self::Unit, b: Self::Unit) -> Self::Unit {
_mm256_add_ps(a, b)
}
unsafe fn vec_fma(a: Self::Unit, b: Self::Unit, c: Self::Unit) -> Self::Unit {
_mm256_add_ps(_mm256_mul_ps(b, c), a)
}
#[cfg(target_feature = "f16c")]
unsafe fn vec_store(mem_addr: *mut f16, a: Self::Unit) {
_mm_storeu_si128(mem_addr as *mut __m128i, _mm256_cvtps_ph(a, 0))
}
#[cfg(not(target_feature = "f16c"))]
unsafe fn vec_store(mem_addr: *mut f16, a: Self::Unit) {
let mut tmp = [0.0f32; 8];
_mm256_storeu_ps(tmp.as_mut_ptr(), a);
for i in 0..8 {
*mem_addr.add(i) = f16::from_f32(tmp[i]);
}
}
unsafe fn vec_reduce(mut x: Self::Array, y: *mut f32) {
let mut offset = ARR >> 1;
for i in 0..offset {
x[i] = _mm256_add_ps(x[i], x[offset + i]);
}
offset >>= 1;
for i in 0..offset {
x[i] = _mm256_add_ps(x[i], x[offset + i]);
}
offset >>= 1;
for i in 0..offset {
x[i] = _mm256_add_ps(x[i], x[offset + i]);
}
let t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), _mm256_extractf128_ps(x[0], 1));
let t1 = _mm_hadd_ps(t0, t0);
*y = _mm_cvtss_f32(_mm_hadd_ps(t1, t1));
}
}
#![allow(clippy::excessive_precision)]
// Code taken from https://github.com/statrs-dev/statrs
//! Provides the [error](https://en.wikipedia.org/wiki/Error_function) and
//! related functions
mod evaluate {
//! Provides functions that don't have a numerical solution and must
//! be solved computationally (e.g. evaluation of a polynomial)
/// evaluates a polynomial at `z` where `coeff` are the coeffecients
/// to a polynomial of order `k` where `k` is the length of `coeff` and the
/// coeffecient
/// to the `k`th power is the `k`th element in coeff. E.g. [3,-1,2] equates to
/// `2z^2 - z + 3`
///
/// # Remarks
///
/// Returns 0 for a 0 length coefficient slice
pub fn polynomial(z: f64, coeff: &[f64]) -> f64 {
let n = coeff.len();
if n == 0 {
return 0.0;
}
let mut sum = *coeff.last().unwrap();
for c in coeff[0..n - 1].iter().rev() {
sum = *c + z * sum;
}
sum
}
}
use std::f64;
/// `erf` calculates the error function at `x`.
pub fn erf(x: f64) -> f64 {
if x.is_nan() {
f64::NAN
} else if x >= 0.0 && x.is_infinite() {
1.0
} else if x <= 0.0 && x.is_infinite() {
-1.0
} else if x == 0. {
0.0
} else {
erf_impl(x, false)
}
}
/// `erf_inv` calculates the inverse error function
/// at `x`.
pub fn erf_inv(x: f64) -> f64 {
if x == 0.0 {
0.0
} else if x >= 1.0 {
f64::INFINITY
} else if x <= -1.0 {
f64::NEG_INFINITY
} else if x < 0.0 {
erf_inv_impl(-x, 1.0 + x, -1.0)
} else {
erf_inv_impl(x, 1.0 - x, 1.0)
}
}
/// `erfc` calculates the complementary error function
/// at `x`.
pub fn erfc(x: f64) -> f64 {
if x.is_nan() {
f64::NAN
} else if x == f64::INFINITY {
0.0
} else if x == f64::NEG_INFINITY {
2.0
} else {
erf_impl(x, true)
}
}
/// `erfc_inv` calculates the complementary inverse
/// error function at `x`.
pub fn erfc_inv(x: f64) -> f64 {
if x <= 0.0 {
f64::INFINITY
} else if x >= 2.0 {
f64::NEG_INFINITY
} else if x > 1.0 {
erf_inv_impl(-1.0 + x, 2.0 - x, -1.0)
} else {
erf_inv_impl(1.0 - x, x, 1.0)
}
}
// **********************************************************
// ********** Coefficients for erf_impl polynomial **********
// **********************************************************
/// Polynomial coefficients for a numerator of `erf_impl`
/// in the interval [1e-10, 0.5].
const ERF_IMPL_AN: &[f64] = &[
0.00337916709551257388990745,
-0.00073695653048167948530905,
-0.374732337392919607868241,
0.0817442448733587196071743,
-0.0421089319936548595203468,
0.0070165709512095756344528,
-0.00495091255982435110337458,
0.000871646599037922480317225,
];
/// Polynomial coefficients for a denominator of `erf_impl`
/// in the interval [1e-10, 0.5]
const ERF_IMPL_AD: &[f64] = &[
1.0,
-0.218088218087924645390535,
0.412542972725442099083918,
-0.0841891147873106755410271,
0.0655338856400241519690695,
-0.0120019604454941768171266,
0.00408165558926174048329689,
-0.000615900721557769691924509,
];
/// Polynomial coefficients for a numerator in `erf_impl`
/// in the interval [0.5, 0.75].
const ERF_IMPL_BN: &[f64] = &[
-0.0361790390718262471360258,
0.292251883444882683221149,
0.281447041797604512774415,
0.125610208862766947294894,
0.0274135028268930549240776,
0.00250839672168065762786937,
];
/// Polynomial coefficients for a denominator in `erf_impl`
/// in the interval [0.5, 0.75].
const ERF_IMPL_BD: &[f64] = &[
1.0,
1.8545005897903486499845,
1.43575803037831418074962,
0.582827658753036572454135,
0.124810476932949746447682,
0.0113724176546353285778481,
];
/// Polynomial coefficients for a numerator in `erf_impl`
/// in the interval [0.75, 1.25].
const ERF_IMPL_CN: &[f64] = &[
-0.0397876892611136856954425,
0.153165212467878293257683,
0.191260295600936245503129,
0.10276327061989304213645,
0.029637090615738836726027,
0.0046093486780275489468812,
0.000307607820348680180548455,
];
/// Polynomial coefficients for a denominator in `erf_impl`
/// in the interval [0.75, 1.25].
const ERF_IMPL_CD: &[f64] = &[
1.0,
1.95520072987627704987886,
1.64762317199384860109595,
0.768238607022126250082483,
0.209793185936509782784315,
0.0319569316899913392596356,
0.00213363160895785378615014,
];
/// Polynomial coefficients for a numerator in `erf_impl`
/// in the interval [1.25, 2.25].
const ERF_IMPL_DN: &[f64] = &[
-0.0300838560557949717328341,
0.0538578829844454508530552,
0.0726211541651914182692959,
0.0367628469888049348429018,
0.00964629015572527529605267,
0.00133453480075291076745275,
0.778087599782504251917881e-4,
];
/// Polynomial coefficients for a denominator in `erf_impl`
/// in the interval [1.25, 2.25].
const ERF_IMPL_DD: &[f64] = &[
1.0,
1.75967098147167528287343,
1.32883571437961120556307,
0.552528596508757581287907,
0.133793056941332861912279,
0.0179509645176280768640766,
0.00104712440019937356634038,
-0.106640381820357337177643e-7,
];
/// Polynomial coefficients for a numerator in `erf_impl`
/// in the interval [2.25, 3.5].
const ERF_IMPL_EN: &[f64] = &[
-0.0117907570137227847827732,
0.014262132090538809896674,
0.0202234435902960820020765,
0.00930668299990432009042239,
0.00213357802422065994322516,
0.00025022987386460102395382,
0.120534912219588189822126e-4,
];
/// Polynomial coefficients for a denominator in `erf_impl`
/// in the interval [2.25, 3.5].
const ERF_IMPL_ED: &[f64] = &[
1.0,
1.50376225203620482047419,
0.965397786204462896346934,
0.339265230476796681555511,
0.0689740649541569716897427,
0.00771060262491768307365526,
0.000371421101531069302990367,
];
/// Polynomial coefficients for a numerator in `erf_impl`
/// in the interval [3.5, 5.25].
const ERF_IMPL_FN: &[f64] = &[
-0.00546954795538729307482955,
0.00404190278731707110245394,
0.0054963369553161170521356,
0.00212616472603945399437862,
0.000394984014495083900689956,
0.365565477064442377259271e-4,
0.135485897109932323253786e-5,
];
/// Polynomial coefficients for a denominator in `erf_impl`
/// in the interval [3.5, 5.25].
const ERF_IMPL_FD: &[f64] = &[
1.0,
1.21019697773630784832251,
0.620914668221143886601045,
0.173038430661142762569515,
0.0276550813773432047594539,
0.00240625974424309709745382,
0.891811817251336577241006e-4,
-0.465528836283382684461025e-11,
];
/// Polynomial coefficients for a numerator in `erf_impl`
/// in the interval [5.25, 8].
const ERF_IMPL_GN: &[f64] = &[
-0.00270722535905778347999196,
0.0013187563425029400461378,
0.00119925933261002333923989,
0.00027849619811344664248235,
0.267822988218331849989363e-4,
0.923043672315028197865066e-6,
];
/// Polynomial coefficients for a denominator in `erf_impl`
/// in the interval [5.25, 8].
const ERF_IMPL_GD: &[f64] = &[
1.0,
0.814632808543141591118279,
0.268901665856299542168425,
0.0449877216103041118694989,
0.00381759663320248459168994,
0.000131571897888596914350697,
0.404815359675764138445257e-11,
];
/// Polynomial coefficients for a numerator in `erf_impl`
/// in the interval [8, 11.5].
const ERF_IMPL_HN: &[f64] = &[
-0.00109946720691742196814323,
0.000406425442750422675169153,
0.000274499489416900707787024,
0.465293770646659383436343e-4,
0.320955425395767463401993e-5,
0.778286018145020892261936e-7,
];
/// Polynomial coefficients for a denominator in `erf_impl`
/// in the interval [8, 11.5].
const ERF_IMPL_HD: &[f64] = &[
1.0,
0.588173710611846046373373,
0.139363331289409746077541,
0.0166329340417083678763028,
0.00100023921310234908642639,
0.24254837521587225125068e-4,
];
/// Polynomial coefficients for a numerator in `erf_impl`
/// in the interval [11.5, 17].
const ERF_IMPL_IN: &[f64] = &[
-0.00056907993601094962855594,
0.000169498540373762264416984,
0.518472354581100890120501e-4,
0.382819312231928859704678e-5,
0.824989931281894431781794e-7,
];
/// Polynomial coefficients for a denominator in `erf_impl`
/// in the interval [11.5, 17].
const ERF_IMPL_ID: &[f64] = &[
1.0,
0.339637250051139347430323,
0.043472647870310663055044,
0.00248549335224637114641629,
0.535633305337152900549536e-4,
-0.117490944405459578783846e-12,
];
/// Polynomial coefficients for a numerator in `erf_impl`
/// in the interval [17, 24].
const ERF_IMPL_JN: &[f64] = &[
-0.000241313599483991337479091,
0.574224975202501512365975e-4,
0.115998962927383778460557e-4,
0.581762134402593739370875e-6,
0.853971555085673614607418e-8,
];
/// Polynomial coefficients for a denominator in `erf_impl`
/// in the interval [17, 24].
const ERF_IMPL_JD: &[f64] = &[
1.0,
0.233044138299687841018015,
0.0204186940546440312625597,
0.000797185647564398289151125,
0.117019281670172327758019e-4,
];
/// Polynomial coefficients for a numerator in `erf_impl`
/// in the interval [24, 38].
const ERF_IMPL_KN: &[f64] = &[
-0.000146674699277760365803642,
0.162666552112280519955647e-4,
0.269116248509165239294897e-5,
0.979584479468091935086972e-7,
0.101994647625723465722285e-8,
];
/// Polynomial coefficients for a denominator in `erf_impl`
/// in the interval [24, 38].
const ERF_IMPL_KD: &[f64] = &[
1.0,
0.165907812944847226546036,
0.0103361716191505884359634,
0.000286593026373868366935721,
0.298401570840900340874568e-5,
];
/// Polynomial coefficients for a numerator in `erf_impl`
/// in the interval [38, 60].
const ERF_IMPL_LN: &[f64] = &[
-0.583905797629771786720406e-4,
0.412510325105496173512992e-5,
0.431790922420250949096906e-6,
0.993365155590013193345569e-8,
0.653480510020104699270084e-10,
];
/// Polynomial coefficients for a denominator in `erf_impl`
/// in the interval [38, 60].
const ERF_IMPL_LD: &[f64] = &[
1.0,
0.105077086072039915406159,
0.00414278428675475620830226,
0.726338754644523769144108e-4,
0.477818471047398785369849e-6,
];
/// Polynomial coefficients for a numerator in `erf_impl`
/// in the interval [60, 85].
const ERF_IMPL_MN: &[f64] = &[
-0.196457797609229579459841e-4,
0.157243887666800692441195e-5,
0.543902511192700878690335e-7,
0.317472492369117710852685e-9,
];
/// Polynomial coefficients for a denominator in `erf_impl`
/// in the interval [60, 85].
const ERF_IMPL_MD: &[f64] = &[
1.0,
0.052803989240957632204885,
0.000926876069151753290378112,
0.541011723226630257077328e-5,
0.535093845803642394908747e-15,
];
/// Polynomial coefficients for a numerator in `erf_impl`
/// in the interval [85, 110].
const ERF_IMPL_NN: &[f64] = &[
-0.789224703978722689089794e-5,
0.622088451660986955124162e-6,
0.145728445676882396797184e-7,
0.603715505542715364529243e-10,
];
/// Polynomial coefficients for a denominator in `erf_impl`
/// in the interval [85, 110].
const ERF_IMPL_ND: &[f64] = &[
1.0,
0.0375328846356293715248719,
0.000467919535974625308126054,
0.193847039275845656900547e-5,
];
// **********************************************************
// ********** Coefficients for erf_inv_impl polynomial ******
// **********************************************************
/// Polynomial coefficients for a numerator of `erf_inv_impl`
/// in the interval [0, 0.5].
const ERF_INV_IMPL_AN: &[f64] = &[
-0.000508781949658280665617,
-0.00836874819741736770379,
0.0334806625409744615033,
-0.0126926147662974029034,
-0.0365637971411762664006,
0.0219878681111168899165,
0.00822687874676915743155,
-0.00538772965071242932965,
];
/// Polynomial coefficients for a denominator of `erf_inv_impl`
/// in the interval [0, 0.5].
const ERF_INV_IMPL_AD: &[f64] = &[
1.0,
-0.970005043303290640362,
-1.56574558234175846809,
1.56221558398423026363,
0.662328840472002992063,
-0.71228902341542847553,
-0.0527396382340099713954,
0.0795283687341571680018,
-0.00233393759374190016776,
0.000886216390456424707504,
];
/// Polynomial coefficients for a numerator of `erf_inv_impl`
/// in the interval [0.5, 0.75].
const ERF_INV_IMPL_BN: &[f64] = &[
-0.202433508355938759655,
0.105264680699391713268,
8.37050328343119927838,
17.6447298408374015486,
-18.8510648058714251895,
-44.6382324441786960818,
17.445385985570866523,
21.1294655448340526258,
-3.67192254707729348546,
];
/// Polynomial coefficients for a denominator of `erf_inv_impl`
/// in the interval [0.5, 0.75].
const ERF_INV_IMPL_BD: &[f64] = &[
1.0,
6.24264124854247537712,
3.9713437953343869095,
-28.6608180499800029974,
-20.1432634680485188801,
48.5609213108739935468,
10.8268667355460159008,
-22.6436933413139721736,
1.72114765761200282724,
];
/// Polynomial coefficients for a numerator of `erf_inv_impl`
/// in the interval [0.75, 1] with x less than 3.
const ERF_INV_IMPL_CN: &[f64] = &[
-0.131102781679951906451,
-0.163794047193317060787,
0.117030156341995252019,
0.387079738972604337464,
0.337785538912035898924,
0.142869534408157156766,
0.0290157910005329060432,
0.00214558995388805277169,
-0.679465575181126350155e-6,
0.285225331782217055858e-7,
-0.681149956853776992068e-9,
];
/// Polynomial coefficients for a denominator of `erf_inv_impl`
/// in the interval [0.75, 1] with x less than 3.
const ERF_INV_IMPL_CD: &[f64] = &[
1.0,
3.46625407242567245975,
5.38168345707006855425,
4.77846592945843778382,
2.59301921623620271374,
0.848854343457902036425,
0.152264338295331783612,
0.01105924229346489121,
];
/// Polynomial coefficients for a numerator of `erf_inv_impl`
/// in the interval [0.75, 1] with x between 3 and 6.
const ERF_INV_IMPL_DN: &[f64] = &[
-0.0350353787183177984712,
-0.00222426529213447927281,
0.0185573306514231072324,
0.00950804701325919603619,
0.00187123492819559223345,
0.000157544617424960554631,
0.460469890584317994083e-5,
-0.230404776911882601748e-9,
0.266339227425782031962e-11,
];
/// Polynomial coefficients for a denominator of `erf_inv_impl`
/// in the interval [0.75, 1] with x between 3 and 6.
const ERF_INV_IMPL_DD: &[f64] = &[
1.0,
1.3653349817554063097,
0.762059164553623404043,
0.220091105764131249824,
0.0341589143670947727934,
0.00263861676657015992959,
0.764675292302794483503e-4,
];
/// Polynomial coefficients for a numerator of `erf_inv_impl`
/// in the interval [0.75, 1] with x between 6 and 18.
const ERF_INV_IMPL_EN: &[f64] = &[
-0.0167431005076633737133,
-0.00112951438745580278863,
0.00105628862152492910091,
0.000209386317487588078668,
0.149624783758342370182e-4,
0.449696789927706453732e-6,
0.462596163522878599135e-8,
-0.281128735628831791805e-13,
0.99055709973310326855e-16,
];
/// Polynomial coefficients for a denominator of `erf_inv_impl`
/// in the interval [0.75, 1] with x between 6 and 18.
const ERF_INV_IMPL_ED: &[f64] = &[
1.0,
0.591429344886417493481,
0.138151865749083321638,
0.0160746087093676504695,
0.000964011807005165528527,
0.275335474764726041141e-4,
0.282243172016108031869e-6,
];
/// Polynomial coefficients for a numerator of `erf_inv_impl`
/// in the interval [0.75, 1] with x between 18 and 44.
const ERF_INV_IMPL_FN: &[f64] = &[
-0.0024978212791898131227,
-0.779190719229053954292e-5,
0.254723037413027451751e-4,
0.162397777342510920873e-5,
0.396341011304801168516e-7,
0.411632831190944208473e-9,
0.145596286718675035587e-11,
-0.116765012397184275695e-17,
];
/// Polynomial coefficients for a denominator of `erf_inv_impl`
/// in the interval [0.75, 1] with x between 18 and 44.
const ERF_INV_IMPL_FD: &[f64] = &[
1.0,
0.207123112214422517181,
0.0169410838120975906478,
0.000690538265622684595676,
0.145007359818232637924e-4,
0.144437756628144157666e-6,
0.509761276599778486139e-9,
];
/// Polynomial coefficients for a numerator of `erf_inv_impl`
/// in the interval [0.75, 1] with x greater than 44.
const ERF_INV_IMPL_GN: &[f64] = &[
-0.000539042911019078575891,
-0.28398759004727721098e-6,
0.899465114892291446442e-6,
0.229345859265920864296e-7,
0.225561444863500149219e-9,
0.947846627503022684216e-12,
0.135880130108924861008e-14,
-0.348890393399948882918e-21,
];
/// Polynomial coefficients for a denominator of `erf_inv_impl`
/// in the interval [0.75, 1] with x greater than 44.
const ERF_INV_IMPL_GD: &[f64] = &[
1.0,
0.0845746234001899436914,
0.00282092984726264681981,
0.468292921940894236786e-4,
0.399968812193862100054e-6,
0.161809290887904476097e-8,
0.231558608310259605225e-11,
];
/// `erf_impl` computes the error function at `z`.
/// If `inv` is true, `1 - erf` is calculated as opposed to `erf`
fn erf_impl(z: f64, inv: bool) -> f64 {
if z < 0.0 {
if !inv {
return -erf_impl(-z, false);
}
if z < -0.5 {
return 2.0 - erf_impl(-z, true);
}
return 1.0 + erf_impl(-z, false);
}
let result = if z < 0.5 {
if z < 1e-10 {
z * 1.125 + z * 0.003379167095512573896158903121545171688
} else {
z * 1.125
+ z * evaluate::polynomial(z, ERF_IMPL_AN) / evaluate::polynomial(z, ERF_IMPL_AD)
}
} else if z < 110.0 {
let (r, b) = if z < 0.75 {
(
evaluate::polynomial(z - 0.5, ERF_IMPL_BN)
/ evaluate::polynomial(z - 0.5, ERF_IMPL_BD),
0.3440242112,
)
} else if z < 1.25 {
(
evaluate::polynomial(z - 0.75, ERF_IMPL_CN)
/ evaluate::polynomial(z - 0.75, ERF_IMPL_CD),
0.419990927,
)
} else if z < 2.25 {
(
evaluate::polynomial(z - 1.25, ERF_IMPL_DN)
/ evaluate::polynomial(z - 1.25, ERF_IMPL_DD),
0.4898625016,
)
} else if z < 3.5 {
(
evaluate::polynomial(z - 2.25, ERF_IMPL_EN)
/ evaluate::polynomial(z - 2.25, ERF_IMPL_ED),
0.5317370892,
)
} else if z < 5.25 {
(
evaluate::polynomial(z - 3.5, ERF_IMPL_FN)
/ evaluate::polynomial(z - 3.5, ERF_IMPL_FD),
0.5489973426,
)
} else if z < 8.0 {
(
evaluate::polynomial(z - 5.25, ERF_IMPL_GN)
/ evaluate::polynomial(z - 5.25, ERF_IMPL_GD),
0.5571740866,
)
} else if z < 11.5 {
(
evaluate::polynomial(z - 8.0, ERF_IMPL_HN)
/ evaluate::polynomial(z - 8.0, ERF_IMPL_HD),
0.5609807968,
)
} else if z < 17.0 {
(
evaluate::polynomial(z - 11.5, ERF_IMPL_IN)
/ evaluate::polynomial(z - 11.5, ERF_IMPL_ID),
0.5626493692,
)
} else if z < 24.0 {
(
evaluate::polynomial(z - 17.0, ERF_IMPL_JN)
/ evaluate::polynomial(z - 17.0, ERF_IMPL_JD),
0.5634598136,
)
} else if z < 38.0 {
(
evaluate::polynomial(z - 24.0, ERF_IMPL_KN)
/ evaluate::polynomial(z - 24.0, ERF_IMPL_KD),
0.5638477802,
)
} else if z < 60.0 {
(
evaluate::polynomial(z - 38.0, ERF_IMPL_LN)
/ evaluate::polynomial(z - 38.0, ERF_IMPL_LD),
0.5640528202,
)
} else if z < 85.0 {
(
evaluate::polynomial(z - 60.0, ERF_IMPL_MN)
/ evaluate::polynomial(z - 60.0, ERF_IMPL_MD),
0.5641309023,
)
} else {
(
evaluate::polynomial(z - 85.0, ERF_IMPL_NN)
/ evaluate::polynomial(z - 85.0, ERF_IMPL_ND),
0.5641584396,
)
};
let g = (-z * z).exp() / z;
g * b + g * r
} else {
0.0
};
if inv && z >= 0.5 {
result
} else if z >= 0.5 || inv {
1.0 - result
} else {
result
}
}
// `erf_inv_impl` computes the inverse error function where
// `p`,`q`, and `s` are the first, second, and third intermediate
// parameters respectively
fn erf_inv_impl(p: f64, q: f64, s: f64) -> f64 {
let result = if p <= 0.5 {
let y = 0.0891314744949340820313;
let g = p * (p + 10.0);
let r = evaluate::polynomial(p, ERF_INV_IMPL_AN) / evaluate::polynomial(p, ERF_INV_IMPL_AD);
g * y + g * r
} else if q >= 0.25 {
let y = 2.249481201171875;
let g = (-2.0 * q.ln()).sqrt();
let xs = q - 0.25;
let r =
evaluate::polynomial(xs, ERF_INV_IMPL_BN) / evaluate::polynomial(xs, ERF_INV_IMPL_BD);
g / (y + r)
} else {
let x = (-q.ln()).sqrt();
if x < 3.0 {
let y = 0.807220458984375;
let xs = x - 1.125;
let r = evaluate::polynomial(xs, ERF_INV_IMPL_CN)
/ evaluate::polynomial(xs, ERF_INV_IMPL_CD);
y * x + r * x
} else if x < 6.0 {
let y = 0.93995571136474609375;
let xs = x - 3.0;
let r = evaluate::polynomial(xs, ERF_INV_IMPL_DN)
/ evaluate::polynomial(xs, ERF_INV_IMPL_DD);
y * x + r * x
} else if x < 18.0 {
let y = 0.98362827301025390625;
let xs = x - 6.0;
let r = evaluate::polynomial(xs, ERF_INV_IMPL_EN)
/ evaluate::polynomial(xs, ERF_INV_IMPL_ED);
y * x + r * x
} else if x < 44.0 {
let y = 0.99714565277099609375;
let xs = x - 18.0;
let r = evaluate::polynomial(xs, ERF_INV_IMPL_FN)
/ evaluate::polynomial(xs, ERF_INV_IMPL_FD);
y * x + r * x
} else {
let y = 0.99941349029541015625;
let xs = x - 44.0;
let r = evaluate::polynomial(xs, ERF_INV_IMPL_GN)
/ evaluate::polynomial(xs, ERF_INV_IMPL_GD);
y * x + r * x
}
};
s * result
}
pub trait VecOps: num_traits::NumAssign + Copy {
fn min(self, rhs: Self) -> Self;
fn max(self, rhs: Self) -> Self;
/// Dot-product of two vectors.
///
/// # Safety
///
/// The length of `lhs` and `rhs` have to be at least `len`. `res` has to point to a valid
/// element.
#[inline(always)]
unsafe fn vec_dot(lhs: *const Self, rhs: *const Self, res: *mut Self, len: usize) {
*res = Self::zero();
for i in 0..len {
*res += *lhs.add(i) * *rhs.add(i)
}
}
/// Sum of all elements in a vector.
///
/// # Safety
///
/// The length of `xs` must be at least `len`. `res` has to point to a valid
/// element.
#[inline(always)]
unsafe fn vec_reduce_sum(xs: *const Self, res: *mut Self, len: usize) {
*res = Self::zero();
for i in 0..len {
*res += *xs.add(i)
}
}
/// Maximum element in a non-empty vector.
///
/// # Safety
///
/// The length of `xs` must be at least `len` and positive. `res` has to point to a valid
/// element.
#[inline(always)]
unsafe fn vec_reduce_max(xs: *const Self, res: *mut Self, len: usize) {
*res = *xs;
for i in 1..len {
*res = (*res).max(*xs.add(i))
}
}
/// Minimum element in a non-empty vector.
///
/// # Safety
///
/// The length of `xs` must be at least `len` and positive. `res` has to point to a valid
/// element.
#[inline(always)]
unsafe fn vec_reduce_min(xs: *const Self, res: *mut Self, len: usize) {
*res = *xs;
for i in 1..len {
*res = (*res).min(*xs.add(i))
}
}
}
impl VecOps for f32 {
#[inline(always)]
fn min(self, other: Self) -> Self {
Self::min(self, other)
}
#[inline(always)]
fn max(self, other: Self) -> Self {
Self::max(self, other)
}
#[inline(always)]
unsafe fn vec_dot(lhs: *const Self, rhs: *const Self, res: *mut Self, len: usize) {
super::vec_dot_f32(lhs, rhs, res, len)
}
#[inline(always)]
unsafe fn vec_reduce_sum(xs: *const Self, res: *mut Self, len: usize) {
super::vec_sum(xs, res, len)
}
}
impl VecOps for half::f16 {
#[inline(always)]
fn min(self, other: Self) -> Self {
Self::min(self, other)
}
#[inline(always)]
fn max(self, other: Self) -> Self {
Self::max(self, other)
}
#[inline(always)]
unsafe fn vec_dot(lhs: *const Self, rhs: *const Self, res: *mut Self, len: usize) {
let mut res_f32 = 0f32;
super::vec_dot_f16(lhs, rhs, &mut res_f32, len);
*res = half::f16::from_f32(res_f32);
}
}
impl VecOps for f64 {
#[inline(always)]
fn min(self, other: Self) -> Self {
Self::min(self, other)
}
#[inline(always)]
fn max(self, other: Self) -> Self {
Self::max(self, other)
}
}
impl VecOps for half::bf16 {
#[inline(always)]
fn min(self, other: Self) -> Self {
Self::min(self, other)
}
#[inline(always)]
fn max(self, other: Self) -> Self {
Self::max(self, other)
}
}
impl VecOps for u8 {
#[inline(always)]
fn min(self, other: Self) -> Self {
<Self as Ord>::min(self, other)
}
#[inline(always)]
fn max(self, other: Self) -> Self {
<Self as Ord>::max(self, other)
}
}
impl VecOps for u32 {
#[inline(always)]
fn min(self, other: Self) -> Self {
<Self as Ord>::min(self, other)
}
#[inline(always)]
fn max(self, other: Self) -> Self {
<Self as Ord>::max(self, other)
}
}
impl VecOps for i64 {
#[inline(always)]
fn min(self, other: Self) -> Self {
<Self as Ord>::min(self, other)
}
#[inline(always)]
fn max(self, other: Self) -> Self {
<Self as Ord>::max(self, other)
}
}
#[inline(always)]
pub fn par_for_each(n_threads: usize, func: impl Fn(usize) + Send + Sync) {
if n_threads == 1 {
func(0)
} else {
rayon::scope(|s| {
for thread_idx in 0..n_threads {
let func = &func;
s.spawn(move |_| func(thread_idx));
}
})
}
}
#[inline(always)]
pub fn par_range(lo: usize, up: usize, n_threads: usize, func: impl Fn(usize) + Send + Sync) {
if n_threads == 1 {
for i in lo..up {
func(i)
}
} else {
rayon::scope(|s| {
for thread_idx in 0..n_threads {
let func = &func;
s.spawn(move |_| {
for i in (thread_idx..up).step_by(n_threads) {
func(i)
}
});
}
})
}
}
pub mod erf;
pub mod kernels;
trait Cpu<const ARR: usize> {
type Unit;
type Array;
const STEP: usize;
const EPR: usize;
fn n() -> usize;
unsafe fn zero() -> Self::Unit;
unsafe fn zero_array() -> Self::Array;
unsafe fn load(mem_addr: *const f32) -> Self::Unit;
unsafe fn vec_add(a: Self::Unit, b: Self::Unit) -> Self::Unit;
unsafe fn vec_fma(a: Self::Unit, b: Self::Unit, c: Self::Unit) -> Self::Unit;
unsafe fn vec_reduce(x: Self::Array, y: *mut f32);
unsafe fn from_f32(v: f32) -> Self::Unit;
unsafe fn vec_store(mem_addr: *mut f32, a: Self::Unit);
}
trait CpuF16<const ARR: usize> {
type Unit;
type Array;
const STEP: usize;
const EPR: usize;
fn n() -> usize;
unsafe fn zero() -> Self::Unit;
unsafe fn zero_array() -> Self::Array;
unsafe fn load(mem_addr: *const f16) -> Self::Unit;
unsafe fn vec_add(a: Self::Unit, b: Self::Unit) -> Self::Unit;
unsafe fn vec_fma(a: Self::Unit, b: Self::Unit, c: Self::Unit) -> Self::Unit;
unsafe fn vec_reduce(x: Self::Array, y: *mut f32);
unsafe fn from_f32(v: f32) -> Self::Unit;
unsafe fn vec_store(mem_addr: *mut f16, a: Self::Unit);
}
use half::f16;
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
#[cfg(target_feature = "avx")]
pub mod avx;
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
#[cfg(target_feature = "avx")]
pub use avx::{CurrentCpu, CurrentCpuF16};
#[cfg(target_arch = "wasm32")]
#[cfg(target_feature = "simd128")]
pub mod simd128;
#[cfg(target_arch = "wasm32")]
#[cfg(target_feature = "simd128")]
pub use simd128::CurrentCpu;
#[cfg(any(target_arch = "arm", target_arch = "aarch64"))]
#[cfg(target_feature = "neon")]
pub mod neon;
#[cfg(any(target_arch = "arm", target_arch = "aarch64"))]
#[cfg(target_feature = "neon")]
pub use neon::CurrentCpu;
#[cfg(any(
target_feature = "neon",
target_feature = "avx",
target_feature = "simd128"
))]
#[inline(always)]
pub(crate) unsafe fn vec_dot_f32(a_row: *const f32, b_row: *const f32, c: *mut f32, k: usize) {
let np = k & !(CurrentCpu::STEP - 1);
let mut sum = CurrentCpu::zero_array();
let mut ax = CurrentCpu::zero_array();
let mut ay = CurrentCpu::zero_array();
for i in (0..np).step_by(CurrentCpu::STEP) {
for j in 0..CurrentCpu::n() {
ax[j] = CurrentCpu::load(a_row.add(i + j * CurrentCpu::EPR));
ay[j] = CurrentCpu::load(b_row.add(i + j * CurrentCpu::EPR));
sum[j] = CurrentCpu::vec_fma(sum[j], ax[j], ay[j]);
}
}
CurrentCpu::vec_reduce(sum, c);
// leftovers
for i in np..k {
*c += *a_row.add(i) * (*b_row.add(i));
}
}
#[cfg(not(any(
target_feature = "neon",
target_feature = "avx",
target_feature = "simd128"
)))]
#[inline(always)]
pub(crate) unsafe fn vec_dot_f32(a_row: *const f32, b_row: *const f32, c: *mut f32, k: usize) {
// leftovers
for i in 0..k {
*c += *a_row.add(i) * (*b_row.add(i));
}
}
#[cfg(any(
target_feature = "neon",
target_feature = "avx",
target_feature = "simd128"
))]
#[inline(always)]
pub(crate) unsafe fn vec_sum(row: *const f32, b: *mut f32, k: usize) {
let np = k & !(CurrentCpu::STEP - 1);
let mut sum = CurrentCpu::zero_array();
let mut x = CurrentCpu::zero_array();
for i in (0..np).step_by(CurrentCpu::STEP) {
for j in 0..CurrentCpu::n() {
x[j] = CurrentCpu::load(row.add(i + j * CurrentCpu::EPR));
sum[j] = CurrentCpu::vec_add(sum[j], x[j]);
}
}
CurrentCpu::vec_reduce(sum, b);
// leftovers
for i in np..k {
*b += *row.add(i)
}
}
#[cfg(not(any(
target_feature = "neon",
target_feature = "avx",
target_feature = "simd128"
)))]
#[inline(always)]
pub(crate) unsafe fn vec_sum(row: *const f32, b: *mut f32, k: usize) {
*b = 0f32;
for i in 0..k {
*b += *row.add(i)
}
}
#[cfg(target_feature = "avx")]
#[inline(always)]
pub(crate) unsafe fn vec_dot_f16(a_row: *const f16, b_row: *const f16, c: *mut f32, k: usize) {
let mut sumf = 0.0f32;
let np = k & !(CurrentCpuF16::STEP - 1);
let mut sum = CurrentCpuF16::zero_array();
let mut ax = CurrentCpuF16::zero_array();
let mut ay = CurrentCpuF16::zero_array();
for i in (0..np).step_by(CurrentCpuF16::STEP) {
for j in 0..CurrentCpuF16::n() {
ax[j] = CurrentCpuF16::load(a_row.add(i + j * CurrentCpuF16::EPR));
ay[j] = CurrentCpuF16::load(b_row.add(i + j * CurrentCpuF16::EPR));
sum[j] = CurrentCpuF16::vec_fma(sum[j], ax[j], ay[j]);
}
}
CurrentCpuF16::vec_reduce(sum, &mut sumf);
// leftovers
for i in np..k {
sumf += (*a_row.add(i)).to_f32() * (*b_row.add(i)).to_f32();
}
*c = sumf;
}
#[cfg(not(target_feature = "avx"))]
#[inline(always)]
pub(crate) unsafe fn vec_dot_f16(a_row: *const f16, b_row: *const f16, c: *mut f32, k: usize) {
// leftovers
let mut sum = 0.0;
for i in 0..k {
sum += (*a_row.add(i)).to_f32() * (*b_row.add(i)).to_f32();
}
*c = sum;
}
use super::Cpu;
#[cfg(target_arch = "arm")]
use core::arch::arm::*;
#[cfg(target_arch = "aarch64")]
use core::arch::aarch64::*;
pub struct CurrentCpu {}
const STEP: usize = 16;
const EPR: usize = 4;
const ARR: usize = STEP / EPR;
impl CurrentCpu {
#[cfg(target_arch = "aarch64")]
unsafe fn reduce_one(x: float32x4_t) -> f32 {
vaddvq_f32(x)
}
#[cfg(target_arch = "arm")]
unsafe fn reduce_one(x: float32x4_t) -> f32 {
vgetq_lane_f32(x, 0) + vgetq_lane_f32(x, 1) + vgetq_lane_f32(x, 2) + vgetq_lane_f32(x, 3)
}
}
impl Cpu<ARR> for CurrentCpu {
type Unit = float32x4_t;
type Array = [float32x4_t; ARR];
const STEP: usize = STEP;
const EPR: usize = EPR;
fn n() -> usize {
ARR
}
unsafe fn zero() -> Self::Unit {
vdupq_n_f32(0.0)
}
unsafe fn from_f32(x: f32) -> Self::Unit {
vdupq_n_f32(x)
}
unsafe fn zero_array() -> Self::Array {
[Self::zero(); ARR]
}
unsafe fn load(mem_addr: *const f32) -> Self::Unit {
vld1q_f32(mem_addr)
}
unsafe fn vec_add(a: Self::Unit, b: Self::Unit) -> Self::Unit {
vaddq_f32(a, b)
}
unsafe fn vec_fma(a: Self::Unit, b: Self::Unit, c: Self::Unit) -> Self::Unit {
vfmaq_f32(a, b, c)
}
unsafe fn vec_store(mem_addr: *mut f32, a: Self::Unit) {
vst1q_f32(mem_addr, a);
}
unsafe fn vec_reduce(mut x: Self::Array, y: *mut f32) {
for i in 0..ARR / 2 {
x[2 * i] = vaddq_f32(x[2 * i], x[2 * i + 1]);
}
for i in 0..ARR / 4 {
x[4 * i] = vaddq_f32(x[4 * i], x[4 * i + 2]);
}
*y = Self::reduce_one(x[0]);
}
}
use super::Cpu;
use core::arch::wasm32::*;
pub struct CurrentCpu {}
const STEP: usize = 16;
const EPR: usize = 4;
const ARR: usize = STEP / EPR;
impl Cpu<ARR> for CurrentCpu {
type Unit = v128;
type Array = [v128; ARR];
const STEP: usize = STEP;
const EPR: usize = EPR;
fn n() -> usize {
ARR
}
unsafe fn zero() -> Self::Unit {
f32x4_splat(0.0)
}
unsafe fn zero_array() -> Self::Array {
[Self::zero(); ARR]
}
unsafe fn from_f32(v: f32) -> Self::Unit {
f32x4_splat(v)
}
unsafe fn load(mem_addr: *const f32) -> Self::Unit {
v128_load(mem_addr as *mut v128)
}
unsafe fn vec_add(a: Self::Unit, b: Self::Unit) -> Self::Unit {
f32x4_add(a, b)
}
unsafe fn vec_fma(a: Self::Unit, b: Self::Unit, c: Self::Unit) -> Self::Unit {
f32x4_add(f32x4_mul(b, c), a)
}
unsafe fn vec_store(mem_addr: *mut f32, a: Self::Unit) {
v128_store(mem_addr as *mut v128, a);
}
unsafe fn vec_reduce(mut x: Self::Array, y: *mut f32) {
for i in 0..ARR / 2 {
x[2 * i] = f32x4_add(x[2 * i], x[2 * i + 1]);
}
for i in 0..ARR / 4 {
x[4 * i] = f32x4_add(x[4 * i], x[4 * i + 2]);
}
for i in 0..ARR / 8 {
x[8 * i] = f32x4_add(x[8 * i], x[8 * i + 4]);
}
*y = f32x4_extract_lane::<0>(x[0])
+ f32x4_extract_lane::<1>(x[0])
+ f32x4_extract_lane::<2>(x[0])
+ f32x4_extract_lane::<3>(x[0]);
}
}
use crate::backend::{BackendDevice, BackendStorage};
use crate::op::{BinaryOpT, CmpOp, ReduceOp, UnaryOpT};
use crate::{DType, Error, IntDType, Layout, Result, Shape, WithDType};
use half::{bf16, f16};
use rayon::prelude::*;
mod utils;
pub use utils::{
binary_map, binary_map_vec, unary_map, unary_map_vec, Map1, Map1Any, Map2, Map2U8,
};
const USE_IM2COL_CONV1D: bool = true;
const USE_IM2COL_CONV1D_TR: bool = true;
const USE_IM2COL_CONV2D: bool = true;
// TODO: Maybe we should not implement [Clone] here and instead have an explicit allocator +
// intercept the oom errors to avoid panicking and provide a proper error.
#[derive(Debug, Clone)]
pub enum CpuStorage {
U8(Vec<u8>),
U32(Vec<u32>),
I64(Vec<i64>),
BF16(Vec<bf16>),
F16(Vec<f16>),
F32(Vec<f32>),
F64(Vec<f64>),
}
#[derive(Debug, Clone)]
pub struct CpuDevice;
struct Cmp(CmpOp);
impl Map2U8 for Cmp {
const OP: &'static str = "cmp";
#[inline(always)]
fn f<T: WithDType>(
&self,
lhs: &[T],
lhs_l: &Layout,
rhs: &[T],
rhs_l: &Layout,
) -> Result<Vec<u8>> {
let dst = match self.0 {
CmpOp::Eq => binary_map(lhs_l, rhs_l, lhs, rhs, |x, y| u8::from(x == y)),
CmpOp::Ne => binary_map(lhs_l, rhs_l, lhs, rhs, |x, y| u8::from(x != y)),
CmpOp::Lt => binary_map(lhs_l, rhs_l, lhs, rhs, |x, y| u8::from(x < y)),
CmpOp::Le => binary_map(lhs_l, rhs_l, lhs, rhs, |x, y| u8::from(x <= y)),
CmpOp::Gt => binary_map(lhs_l, rhs_l, lhs, rhs, |x, y| u8::from(x > y)),
CmpOp::Ge => binary_map(lhs_l, rhs_l, lhs, rhs, |x, y| u8::from(x >= y)),
};
Ok(dst)
}
}
struct WCond<'a, T: IntDType>(&'a [T], &'a Layout);
impl<'a, I: IntDType> Map2 for WCond<'a, I> {
const OP: &'static str = "where";
#[inline(always)]
fn f<T: WithDType>(&self, t: &[T], t_l: &Layout, f: &[T], f_l: &Layout) -> Result<Vec<T>> {
let vs = match (
self.1.contiguous_offsets(),
t_l.contiguous_offsets(),
f_l.contiguous_offsets(),
) {
(Some((o1, o2)), Some((o_t1, o_t2)), Some((o_f1, o_f2))) => {
let pred = &self.0[o1..o2];
let t = &t[o_t1..o_t2];
let f = &f[o_f1..o_f2];
pred.iter()
.zip(t.iter().zip(f.iter()))
.map(|(p, (&t, &f))| if p.is_true() { t } else { f })
.collect::<Vec<_>>()
}
_ => self
.1
.strided_index()
.zip(t_l.strided_index().zip(f_l.strided_index()))
.map(|(i_p, (i_t, i_f))| {
if self.0[i_p].is_true() {
t[i_t]
} else {
f[i_f]
}
})
.collect::<Vec<_>>(),
};
Ok(vs)
}
}
struct ReduceIndex {
reduce_dim_index: usize,
use_min: bool,
return_index: bool,
}
impl ReduceIndex {
// The value gets replaced if f(s[current_acc], s[i]) returns true.
#[inline(always)]
fn fold_impl<T, U, F, G>(&self, src: &[T], src_l: &Layout, f: F, g: G) -> Result<Vec<U>>
where
T: Clone + Copy,
U: Clone + Copy,
F: Fn(T, T) -> bool,
G: Fn(T, usize) -> U,
{
let reduce_dim_size = src_l.dims()[self.reduce_dim_index];
let reduce_dim_stride = src_l.stride()[self.reduce_dim_index];
let dst_len = src_l.shape().elem_count() / reduce_dim_size;
let mut dst: Vec<U> = Vec::with_capacity(dst_len);
let dst_to_set = dst.spare_capacity_mut();
let dst_to_set = unsafe { std::mem::transmute::<_, &mut [U]>(dst_to_set) };
match src_l.contiguous_offsets() {
Some((o1, o2)) => {
let src = &src[o1..o2];
if reduce_dim_stride == 1 {
for (start_src_i, dst_v) in dst_to_set.iter_mut().enumerate() {
let start_src_i = start_src_i * reduce_dim_size;
let src = &src[start_src_i..start_src_i + reduce_dim_size];
let mut acc = 0;
let mut val = src[0];
for (src_i, &s) in src.iter().enumerate() {
if f(val, s) {
acc = src_i;
val = s
}
}
*dst_v = g(val, acc)
}
} else {
for (start_src_i, dst_v) in dst_to_set.iter_mut().enumerate() {
let (p, q) = (
start_src_i / reduce_dim_stride,
start_src_i % reduce_dim_stride,
);
// start_src_i = p * reduce_dim_stride + q
let start_src_i = p * reduce_dim_stride * reduce_dim_size + q;
let src = &src[start_src_i..];
let mut acc = 0;
let mut val = src[0];
for src_i in 0..reduce_dim_size {
let s = src[src_i * reduce_dim_stride];
if f(val, s) {
acc = src_i;
val = s
}
}
*dst_v = g(val, acc)
}
}
}
None => {
let l = src_l.narrow(self.reduce_dim_index, 0, 1)?;
for (unstr_index, src_index) in l.strided_index().enumerate() {
let src = &src[src_index..];
let mut acc = 0;
let mut val = src[0];
for src_i in 0..reduce_dim_size {
let s = src[src_i * reduce_dim_stride];
if f(val, s) {
acc = src_i;
val = s
}
}
dst_to_set[unstr_index] = g(val, acc)
}
}
}
unsafe { dst.set_len(dst_len) };
Ok(dst)
}
}
impl Map1Any for ReduceIndex {
#[inline(always)]
fn f<T: WithDType, W: Fn(Vec<T>) -> CpuStorage>(
&self,
src: &[T],
src_l: &Layout,
wrap: W,
) -> Result<CpuStorage> {
if src_l.shape().elem_count() == 0 {
Err(Error::EmptyTensor { op: "reduce" }.bt())?
}
let dst = match (self.return_index, self.use_min) {
(false, true) => wrap(self.fold_impl(src, src_l, |x, y| x > y, |v, _i| v)?),
(false, false) => wrap(self.fold_impl(src, src_l, |x, y| x < y, |v, _i| v)?),
(true, true) => {
CpuStorage::U32(self.fold_impl(src, src_l, |x, y| x > y, |_v, i| i as u32)?)
}
(true, false) => {
CpuStorage::U32(self.fold_impl(src, src_l, |x, y| x < y, |_v, i| i as u32)?)
}
};
Ok(dst)
}
}
struct ReduceSum<'a> {
dst_shape: &'a Shape,
reduce_dims: &'a [usize],
reduce_dims_and_stride: Vec<(usize, usize)>,
}
impl<'a> ReduceSum<'a> {
#[inline(always)]
fn fold_impl<T>(&self, src: &[T], src_l: &Layout, start_elt: T) -> Result<Vec<T>>
where
T: WithDType,
{
let mut dst = vec![start_elt; self.dst_shape.elem_count()];
match src_l.contiguous_offsets() {
Some((o1, o2)) => {
let src = &src[o1..o2];
// Handle the case where we reduce over the last dimensions separately as it is
// fairly common and easy to optimize. This rely on the layout being contiguous!
// reduce_dims is sorted, check if it is ranging from a to n-1.
let reduce_over_last_dims = self
.reduce_dims
.iter()
.rev()
.enumerate()
.all(|(i, &v)| v == src_l.shape().rank() - 1 - i);
if reduce_over_last_dims {
let reduce_sz = self
.reduce_dims_and_stride
.iter()
.map(|(u, _)| u)
.product::<usize>();
for (dst_i, dst_v) in dst.iter_mut().enumerate() {
let src_i = dst_i * reduce_sz;
unsafe {
T::vec_reduce_sum(
src[src_i..src_i + reduce_sz].as_ptr(),
dst_v,
reduce_sz,
)
};
}
return Ok(dst);
};
for (unstr_index, &src) in src.iter().enumerate() {
let mut dst_index = unstr_index;
// Set the reduce_dims indexes to 0.
for &(dim, stride) in self.reduce_dims_and_stride.iter() {
// The compiler is able to optimize the following in a single divmod op.
let (pre, post) = (dst_index / stride, dst_index % stride);
dst_index = (pre / dim) * stride + post;
}
dst[dst_index] += src;
}
}
None => {
for (unstr_index, src_index) in src_l.strided_index().enumerate() {
let mut dst_index = unstr_index;
// Set the reduce_dims indexes to 0.
for &(dim, stride) in self.reduce_dims_and_stride.iter() {
// The compiler is able to optimize the following in a single divmod op.
let (pre, post) = (dst_index / stride, dst_index % stride);
dst_index = (pre / dim) * stride + post;
}
dst[dst_index] += src[src_index];
}
}
}
Ok(dst)
}
}
impl<'a> Map1 for ReduceSum<'a> {
#[inline(always)]
fn f<T: WithDType>(&self, src: &[T], src_l: &Layout) -> Result<Vec<T>> {
self.fold_impl(src, src_l, T::zero())
}
}
struct Affine(f64, f64);
impl Map1 for Affine {
fn f<T: WithDType>(&self, vs: &[T], layout: &Layout) -> Result<Vec<T>> {
let mul = T::from_f64(self.0);
let add = T::from_f64(self.1);
Ok(unary_map(vs, layout, |v| v * mul + add))
}
}
struct AvgPool2D((usize, usize), (usize, usize));
impl Map1 for AvgPool2D {
fn f<T: WithDType>(&self, src: &[T], layout: &Layout) -> Result<Vec<T>> {
// https://pytorch.org/docs/stable/generated/torch.nn.AvgPool2d.html
let (k_h, k_w) = self.0;
let (s_h, s_w) = self.1;
let (b_sz, c, h, w) = layout.shape().dims4()?;
let stride = layout.stride();
let (stride_h, stride_w) = (stride[2], stride[3]);
let h_out = (h - k_h) / s_h + 1;
let w_out = (w - k_w) / s_w + 1;
let src_index = layout.start_offset();
let mut dst = vec![T::zero(); b_sz * c * h_out * w_out];
let scale = 1f64 / (k_h * k_w) as f64;
let scale = T::from_f64(scale);
for b_idx in 0..b_sz {
let dst = &mut dst[b_idx * c * h_out * w_out..];
let src_index = src_index + b_idx * stride[0];
for c_idx in 0..c {
let dst = &mut dst[c_idx * h_out * w_out..];
let src_index = src_index + c_idx * stride[1];
for h_idx in 0..h_out {
for w_idx in 0..w_out {
let mut sum = T::zero();
for m in 0..k_h {
for n in 0..k_w {
let m = s_h * h_idx + m;
let n = s_w * w_idx + n;
sum += src[src_index + m * stride_h + n * stride_w]
}
}
dst[h_idx * w_out + w_idx] = sum * scale;
}
}
}
}
Ok(dst)
}
}
struct MaxPool2D((usize, usize), (usize, usize));
impl Map1 for MaxPool2D {
fn f<T: WithDType>(&self, src: &[T], layout: &Layout) -> Result<Vec<T>> {
// https://pytorch.org/docs/stable/generated/torch.nn.MaxPool2d.html
let (k_h, k_w) = self.0;
let (s_h, s_w) = self.1;
let (b_sz, c, h, w) = layout.shape().dims4()?;
let stride = layout.stride();
let (stride_h, stride_w) = (stride[2], stride[3]);
let h_out = (h - k_h) / s_h + 1;
let w_out = (w - k_w) / s_w + 1;
let src_index = layout.start_offset();
let mut dst = vec![T::zero(); b_sz * c * h_out * w_out];
for b_idx in 0..b_sz {
let dst = &mut dst[b_idx * c * h_out * w_out..];
let src_index = src_index + b_idx * stride[0];
for c_idx in 0..c {
let dst = &mut dst[c_idx * h_out * w_out..];
let src_index = src_index + c_idx * stride[1];
for h_idx in 0..h_out {
for w_idx in 0..w_out {
let mut largest =
src[src_index + s_h * h_idx * stride_h + s_w * w_idx * stride_w];
for m in 0..k_h {
for n in 0..k_w {
let m = s_h * h_idx + m;
let n = s_w * w_idx + n;
if largest < src[src_index + m * stride_h + n * stride_w] {
largest = src[src_index + m * stride_h + n * stride_w]
}
}
}
dst[h_idx * w_out + w_idx] = largest;
}
}
}
}
Ok(dst)
}
}
struct UpsampleNearest1D(usize);
impl Map1 for UpsampleNearest1D {
fn f<T: WithDType>(&self, src: &[T], layout: &Layout) -> Result<Vec<T>> {
// TODO: Specialized implementation for the case 2*sz?
let dst_sz = self.0;
let (b_sz, c, src_sz) = layout.shape().dims3()?;
let stride = layout.stride();
let stride_sz = stride[2];
let src_index = layout.start_offset();
let scale_sz = src_sz as f64 / dst_sz as f64;
let mut dst = vec![T::zero(); b_sz * c * dst_sz];
let src_idxs = (0..dst_sz)
.map(|idx| usize::min(src_sz - 1, (idx as f64 * scale_sz) as usize))
.collect::<Vec<_>>();
for b_idx in 0..b_sz {
let dst = &mut dst[b_idx * c * dst_sz..];
let src_index = src_index + b_idx * stride[0];
for c_idx in 0..c {
let dst = &mut dst[c_idx * dst_sz..];
let src_index = src_index + c_idx * stride[1];
for (idx, src_idx) in src_idxs.iter().enumerate() {
dst[idx] = src[src_index + src_idx * stride_sz]
}
}
}
Ok(dst)
}
}
struct UpsampleNearest2D(usize, usize);
impl Map1 for UpsampleNearest2D {
fn f<T: WithDType>(&self, src: &[T], layout: &Layout) -> Result<Vec<T>> {
// TODO: Specialized implementation for the case 2*h, 2*w?
let (dst_h, dst_w) = (self.0, self.1);
let (b_sz, c, src_h, src_w) = layout.shape().dims4()?;
let stride = layout.stride();
let (stride_h, stride_w) = (stride[2], stride[3]);
let src_index = layout.start_offset();
let scale_h = src_h as f64 / dst_h as f64;
let scale_w = src_w as f64 / dst_w as f64;
let mut dst = vec![T::zero(); b_sz * c * dst_h * dst_w];
let src_h_idxs = (0..dst_h)
.map(|h_idx| usize::min(src_h - 1, (h_idx as f64 * scale_h) as usize))
.collect::<Vec<_>>();
let src_w_idxs = (0..dst_w)
.map(|w_idx| usize::min(src_w - 1, (w_idx as f64 * scale_w) as usize))
.collect::<Vec<_>>();
for b_idx in 0..b_sz {
let dst = &mut dst[b_idx * c * dst_h * dst_w..];
let src_index = src_index + b_idx * stride[0];
for c_idx in 0..c {
let dst = &mut dst[c_idx * dst_h * dst_w..];
let src_index = src_index + c_idx * stride[1];
for (h_idx, src_h_idx) in src_h_idxs.iter().enumerate() {
for (w_idx, src_w_idx) in src_w_idxs.iter().enumerate() {
let src_index = src_index + src_h_idx * stride_h + src_w_idx * stride_w;
dst[h_idx * dst_w + w_idx] = src[src_index]
}
}
}
}
Ok(dst)
}
}
struct Gather<'a, I: IntDType> {
ids: &'a [I],
ids_l: &'a Layout,
dim: usize,
}
impl<'a, I: IntDType> Map1 for Gather<'a, I> {
fn f<T: WithDType>(&self, src: &[T], src_l: &Layout) -> Result<Vec<T>> {
let ids = match self.ids_l.contiguous_offsets() {
Some((a, b)) => &self.ids[a..b],
None => Err(Error::RequiresContiguous { op: "gather" }.bt())?,
};
let src = match src_l.contiguous_offsets() {
Some((a, b)) => &src[a..b],
None => Err(Error::RequiresContiguous { op: "gather" }.bt())?,
};
let dim = self.dim;
let ids_dims = self.ids_l.dims();
let src_dims = src_l.dims();
let dst_len: usize = ids_dims.iter().product();
let dst_left_len: usize = ids_dims[..dim].iter().product();
let dst_dim_len = ids_dims[dim];
let dst_right_len: usize = ids_dims[dim + 1..].iter().product();
let src_dim_len = src_dims[dim];
let src_right_len: usize = src_dims[dim + 1..].iter().product();
let mut dst = vec![T::zero(); dst_len];
for left_i in 0..dst_left_len {
let start_src_idx = left_i * src_right_len * src_dim_len;
let start_dst_idx = left_i * dst_right_len * dst_dim_len;
for i in 0..dst_dim_len {
let start_dst_idx = start_dst_idx + i * dst_right_len;
for right_i in 0..dst_right_len {
let dst_idx = start_dst_idx + right_i;
let index = ids[dst_idx].as_usize();
if index >= src_dim_len {
Err(Error::InvalidIndex {
index,
size: src_dim_len,
op: "gather",
}
.bt())?
}
let src_idx = start_src_idx + index * src_right_len + right_i;
dst[dst_idx] = src[src_idx]
}
}
}
Ok(dst)
}
}
struct IndexSelect<'a, T: IntDType> {
ids: &'a [T],
ids_l: &'a Layout,
dim: usize,
}
impl<'a, I: IntDType> Map1 for IndexSelect<'a, I> {
fn f<T: WithDType>(&self, src: &[T], layout: &Layout) -> Result<Vec<T>> {
let src = match layout.contiguous_offsets() {
Some((a, b)) => &src[a..b],
None => Err(Error::RequiresContiguous { op: "index-select" }.bt())?,
};
let dim = self.dim;
let n_ids = match self.ids_l.dims() {
[n_ids] => *n_ids,
d => Err(Error::UnexpectedNumberOfDims {
expected: 1,
got: d.len(),
shape: self.ids_l.shape().clone(),
}
.bt())?,
};
let stride_ids = self.ids_l.stride()[0];
let mut dst_dims = layout.dims().to_vec();
let src_dim = dst_dims[dim];
dst_dims[dim] = n_ids;
let dst_len: usize = dst_dims.iter().product();
let left_len: usize = dst_dims[..dim].iter().product();
let right_len: usize = dst_dims[dim + 1..].iter().product();
let mut dst = vec![T::zero(); dst_len];
for left_i in 0..left_len {
let start_src_idx = left_i * right_len * src_dim;
let start_dst_idx = left_i * right_len * n_ids;
for i in 0..n_ids {
let index = self.ids[self.ids_l.start_offset() + stride_ids * i].as_usize();
if index >= src_dim {
Err(Error::InvalidIndex {
index,
size: src_dim,
op: "index-select",
}
.bt())?
}
let start_src_idx = start_src_idx + index * right_len;
let start_dst_idx = start_dst_idx + i * right_len;
dst[start_dst_idx..start_dst_idx + right_len]
.copy_from_slice(&src[start_src_idx..start_src_idx + right_len])
}
}
Ok(dst)
}
}
struct ScatterAdd<'a, I: IntDType> {
ids: &'a [I],
ids_l: &'a Layout,
dim: usize,
}
impl<'a, I: IntDType> Map2 for ScatterAdd<'a, I> {
const OP: &'static str = "scatter-add";
fn f<T: WithDType>(&self, v1: &[T], l1: &Layout, src: &[T], src_l: &Layout) -> Result<Vec<T>> {
let dst_len = l1.shape().elem_count();
let mut dst = vec![T::zero(); dst_len];
copy_strided_src_(v1, &mut dst, 0, l1);
let src = match src_l.contiguous_offsets() {
None => Err(Error::RequiresContiguous { op: "scatter-add" }.bt())?,
Some((o1, o2)) => &src[o1..o2],
};
let dim = self.dim;
let ids_dims = self.ids_l.dims();
let dst_dims = l1.dims();
let dst_dim_len = dst_dims[dim];
let dst_right_len: usize = dst_dims[dim + 1..].iter().product();
let ids_left_len: usize = ids_dims[..dim].iter().product();
let ids_dim_len = ids_dims[dim];
let ids_right_len: usize = ids_dims[dim + 1..].iter().product();
let ids = match self.ids_l.contiguous_offsets() {
Some((a, b)) => &self.ids[a..b],
None => Err(Error::RequiresContiguous { op: "gather" }.bt())?,
};
for left_i in 0..ids_left_len {
let start_ids_idx = left_i * ids_right_len * ids_dim_len;
let start_dst_idx = left_i * dst_right_len * dst_dim_len;
for i in 0..ids_dim_len {
let start_ids_idx = start_ids_idx + i * ids_right_len;
for right_i in 0..dst_right_len {
let ids_idx = start_ids_idx + right_i;
let index = ids[ids_idx].as_usize();
if index >= dst_dim_len {
Err(Error::InvalidIndex {
index,
size: dst_dim_len,
op: "gather",
}
.bt())?
}
let dst_idx = start_dst_idx + index * dst_right_len + right_i;
dst[dst_idx] += src[ids_idx]
}
}
}
Ok(dst)
}
}
struct IndexAdd<'a, I: IntDType> {
ids: &'a [I],
dim: usize,
}
impl<'a, I: IntDType> Map2 for IndexAdd<'a, I> {
const OP: &'static str = "index-add";
// https://pytorch.org/docs/stable/generated/torch.Tensor.index_add_.html#torch.Tensor.index_add_
// v1, l1 -> self
fn f<T: WithDType>(&self, v1: &[T], l1: &Layout, src: &[T], src_l: &Layout) -> Result<Vec<T>> {
let dst_len = l1.shape().elem_count();
let mut dst = vec![T::zero(); dst_len];
copy_strided_src_(v1, &mut dst, 0, l1);
let src = match src_l.contiguous_offsets() {
None => Err(Error::RequiresContiguous { op: "index-add" }.bt())?,
Some((o1, o2)) => &src[o1..o2],
};
let dim = self.dim;
let max_idx = l1.dims()[dim];
let pre_dim = src_l.dims()[..dim].iter().product::<usize>();
let src_dim_sz = src_l.dims()[dim];
let post_dim = src_l.dims()[dim + 1..].iter().product::<usize>();
if dim == 0 {
for (src_idx, dst_idx) in self.ids.iter().enumerate() {
let dst_idx = dst_idx.as_usize();
if dst_idx >= max_idx {
Err(Error::InvalidIndex {
index: dst_idx,
op: "index-add",
size: max_idx,
})?
}
let src_idx = src_idx * post_dim;
let dst_idx = dst_idx * post_dim;
let src = &src[src_idx..src_idx + post_dim];
let dst = &mut dst[dst_idx..dst_idx + post_dim];
for (d, &s) in dst.iter_mut().zip(src.iter()) {
*d += s
}
}
} else {
for (src_idx, dst_idx) in self.ids.iter().enumerate() {
let dst_idx = dst_idx.as_usize();
if dst_idx >= max_idx {
Err(Error::InvalidIndex {
index: dst_idx,
op: "index-add",
size: max_idx,
})?
}
for pre_i in 0..pre_dim {
let pre_src_i = (pre_i * src_dim_sz + src_idx) * post_dim;
let pre_dst_i = (pre_i * max_idx + dst_idx) * post_dim;
let src = &src[pre_src_i..pre_src_i + post_dim];
let dst = &mut dst[pre_dst_i..pre_dst_i + post_dim];
for (d, &s) in dst.iter_mut().zip(src.iter()) {
*d += s
}
}
}
}
Ok(dst)
}
}
#[allow(clippy::too_many_arguments)]
fn copy2d_<T: Copy>(
src: &[T],
dst: &mut [T],
d1: usize,
d2: usize,
src_stride1: usize,
dst_stride1: usize,
src_offset: usize,
dst_offset: usize,
) {
for i1 in 0..d1 {
let dst_idx = i1 * dst_stride1 + dst_offset;
let src_idx = i1 * src_stride1 + src_offset;
let dst = &mut dst[dst_idx..dst_idx + d2];
let src = &src[src_idx..src_idx + d2];
dst.copy_from_slice(src)
}
}
fn copy_strided_src_<T: Copy>(src: &[T], dst: &mut [T], dst_offset: usize, src_l: &Layout) {
match src_l.strided_blocks() {
crate::StridedBlocks::SingleBlock { start_offset, len } => {
let to_copy = (dst.len() - dst_offset).min(len);
dst[dst_offset..dst_offset + to_copy]
.copy_from_slice(&src[start_offset..start_offset + to_copy])
}
crate::StridedBlocks::MultipleBlocks {
block_start_index,
block_len: 1,
} => {
for (dst_index, src_index) in block_start_index.enumerate() {
let dst_index = dst_index + dst_offset;
if dst_index >= dst.len() {
break;
}
dst[dst_index] = src[src_index]
}
}
crate::StridedBlocks::MultipleBlocks {
block_start_index,
block_len,
} => {
let mut dst_index = dst_offset;
for src_index in block_start_index {
let next_dst_index = dst_index + block_len;
if dst_index >= dst.len() {
break;
}
let to_copy = usize::min(block_len, dst.len() - dst_index);
dst[dst_index..dst_index + to_copy]
.copy_from_slice(&src[src_index..src_index + to_copy]);
dst_index = next_dst_index
}
}
}
}
struct Conv1D<'a>(&'a crate::conv::ParamsConv1D);
impl<'a> Map2 for Conv1D<'a> {
const OP: &'static str = "conv1d";
fn f<T: WithDType>(&self, inp: &[T], inp_l: &Layout, k: &[T], k_l: &Layout) -> Result<Vec<T>> {
let p = self.0;
let inp = &inp[inp_l.start_offset()..];
let k = &k[k_l.start_offset()..];
let (inp_s0, inp_s1, inp_s2) = crate::shape::dims3(inp_l.stride())?;
let (k_s0, k_s1, k_s2) = crate::shape::dims3(k_l.stride())?;
let l_out = p.l_out();
let dst_elems = p.c_out * l_out * p.b_size;
// The output shape is [b_size, c_out, l_out]
let dst = vec![T::zero(); dst_elems];
// TODO: Avoid making this copy if `inp` already has the appropriate layout.
let mut inp_cont = vec![T::zero(); p.b_size * p.c_in * p.l_in];
for b_idx in 0..p.b_size {
for src_l in 0..p.l_in {
for src_c_idx in 0..p.c_in {
let inp_idx = b_idx * inp_s0 + src_c_idx * inp_s1 + src_l * inp_s2;
inp_cont[b_idx * p.l_in * p.c_in + src_l * p.c_in + src_c_idx] = inp[inp_idx]
}
}
}
for offset in 0..p.k_size {
(0..p.c_out).into_par_iter().for_each(|dst_c_idx| {
let dst_idx = dst_c_idx * l_out;
let k_cont = (0..p.c_in)
.map(|c_in_idx| k[dst_c_idx * k_s0 + c_in_idx * k_s1 + offset * k_s2])
.collect::<Vec<_>>();
for b_idx in 0..p.b_size {
let dst_idx = dst_idx + b_idx * p.c_out * l_out;
for dst_l in 0..l_out {
let dst_idx = dst_idx + dst_l;
let src_l = p.stride * dst_l + offset * p.dilation;
if src_l < p.padding || src_l >= p.padding + p.l_in {
continue;
}
let src_l = src_l - p.padding;
let inp_cont = &inp_cont[b_idx * p.l_in * p.c_in + src_l * p.c_in..];
assert!(inp_cont.len() >= p.c_in);
assert!(k_cont.len() >= p.c_in);
let mut d = T::zero();
unsafe { T::vec_dot(inp_cont.as_ptr(), k_cont.as_ptr(), &mut d, p.c_in) }
let dst_p = dst.as_ptr();
// Safety: dst_idx are uniques per dst_c_idx which is used to parallelise
// the different tasks so no two threads can try to write at the same
// location.
unsafe {
let ptr = dst_p.add(dst_idx) as *mut T;
*ptr += d
}
}
}
})
}
Ok(dst)
}
}
struct Im2Col1D {
l_k: usize,
stride: usize,
dilation: usize,
padding: usize,
}
impl Im2Col1D {
fn l_out(&self, l: usize) -> usize {
(l + 2 * self.padding - self.dilation * (self.l_k - 1) - 1) / self.stride + 1
}
}
impl Map1 for Im2Col1D {
fn f<T: WithDType>(&self, vs: &[T], layout: &Layout) -> Result<Vec<T>> {
let &Self {
l_k,
stride,
dilation,
padding,
} = self;
let (b, c, l) = layout.shape().dims3()?;
let l_out = self.l_out(l);
let src = &vs[layout.start_offset()..];
let mut dst = vec![T::zero(); b * l_out * c * l_k];
let (src_s0, src_s1, src_s2) = {
let s = layout.stride();
(s[0], s[1], s[2])
};
// TODO: provide specialized kernels for the common use cases.
// - l_k = 1
// - padding = 0
// - stride = 1
// - dilation = 1
for b_idx in 0..b {
let src_idx = b_idx * src_s0;
let dst_idx = b_idx * l_out * c * l_k;
for l_idx in 0..l_out {
let dst_idx = dst_idx + l_idx * c * l_k;
for c_idx in 0..c {
let dst_idx = dst_idx + c_idx * l_k;
let src_idx = c_idx * src_s1 + src_idx;
for l_k_idx in 0..l_k {
let src_l = l_idx * stride + l_k_idx * dilation;
if padding != 0 && (src_l < padding || src_l >= l + padding) {
continue;
}
let src_l = src_l - padding;
let src_idx = src_idx + src_l * src_s2;
let dst_idx = dst_idx + l_k_idx;
dst[dst_idx] = src[src_idx]
}
}
}
}
Ok(dst)
}
}
struct Im2Col {
h_k: usize,
w_k: usize,
stride: usize,
dilation: usize,
padding: usize,
}
impl Im2Col {
fn hw_out(&self, h: usize, w: usize) -> (usize, usize) {
let h_out = (h + 2 * self.padding - self.dilation * (self.h_k - 1) - 1) / self.stride + 1;
let w_out = (w + 2 * self.padding - self.dilation * (self.w_k - 1) - 1) / self.stride + 1;
(h_out, w_out)
}
}
impl Map1 for Im2Col {
fn f<T: WithDType>(&self, vs: &[T], layout: &Layout) -> Result<Vec<T>> {
let &Self {
h_k,
w_k,
stride,
dilation,
padding,
} = self;
let (b, c, h, w) = layout.shape().dims4()?;
let (h_out, w_out) = self.hw_out(h, w);
let src = &vs[layout.start_offset()..];
let mut dst = vec![T::zero(); b * h_out * w_out * c * h_k * w_k];
let (src_s0, src_s1, src_s2, src_s3) = {
let s = layout.stride();
(s[0], s[1], s[2], s[3])
};
// TODO: provide specialized kernels for the common use cases.
// - h_k = w_k = 1
// - padding = 0
// - stride = 1
// - dilation = 1
for b_idx in 0..b {
let src_idx = b_idx * src_s0;
let dst_idx = b_idx * h_out * w_out * c * h_k * w_k;
for h_idx in 0..h_out {
let dst_idx = dst_idx + h_idx * w_out * c * h_k * w_k;
for w_idx in 0..w_out {
let dst_idx = dst_idx + w_idx * c * h_k * w_k;
for c_idx in 0..c {
let dst_idx = dst_idx + c_idx * h_k * w_k;
let src_idx = c_idx * src_s1 + src_idx;
for h_k_idx in 0..h_k {
let src_h = h_idx * stride + h_k_idx * dilation;
if padding != 0 && (src_h < padding || src_h >= h + padding) {
continue;
}
let src_h = src_h - padding;
let src_idx = src_idx + src_h * src_s2;
let dst_idx = dst_idx + h_k_idx * w_k;
for w_k_idx in 0..w_k {
let src_w = w_idx * stride + w_k_idx * dilation;
if padding != 0 && (src_w < padding || src_w >= w + padding) {
continue;
}
let src_w = src_w - padding;
let src_idx = src_idx + src_w * src_s3;
let dst_idx = dst_idx + w_k_idx;
dst[dst_idx] = src[src_idx]
}
}
}
}
}
}
Ok(dst)
}
}
struct Col2Im1D {
stride: usize,
}
impl Map1 for Col2Im1D {
fn f<T: WithDType>(&self, col: &[T], l: &Layout) -> Result<Vec<T>> {
let (b_size, l_in, c_out, k_size) = l.shape().dims4()?;
let stride = self.stride;
let l_out = (l_in - 1) * stride + k_size;
let mut im = vec![T::zero(); b_size * c_out * l_out];
let (dst_s0, dst_s1) = (c_out * l_out, l_out);
let (src_s0, src_s1, src_s2) = (c_out * k_size * l_in, c_out * k_size, k_size);
for l_in_i in 0..l_in {
for k_i in 0..k_size {
let l_out_i = l_in_i * stride + k_i;
for b_i in 0..b_size {
for c_i in 0..c_out {
let dst_idx = b_i * dst_s0 + c_i * dst_s1 + l_out_i;
let src_idx = b_i * src_s0 + l_in_i * src_s1 + c_i * src_s2 + k_i;
im[dst_idx] += col[src_idx]
}
}
}
}
Ok(im)
}
}
struct ConvTranspose1D<'a>(&'a crate::conv::ParamsConvTranspose1D);
impl<'a> Map2 for ConvTranspose1D<'a> {
const OP: &'static str = "conv_transpose1d";
fn f<T: WithDType>(&self, inp: &[T], inp_l: &Layout, k: &[T], k_l: &Layout) -> Result<Vec<T>> {
let p = self.0;
let inp = &inp[inp_l.start_offset()..];
let k = &k[k_l.start_offset()..];
let (inp_s0, inp_s1, inp_s2) = crate::shape::dims3(inp_l.stride())?;
let (k_s0, k_s1, k_s2) = crate::shape::dims3(k_l.stride())?;
let l_out = p.l_out();
// Output shape: [b_size, c_out, l_out].
let dst_elems = p.c_out * l_out * p.b_size;
let dst = vec![T::zero(); dst_elems];
let dst_s0 = p.c_out * l_out;
let dst_s1 = l_out;
let dst_s2 = 1;
// TODO: Avoid making this copy if `inp` already has the appropriate layout.
let mut inp_cont = vec![T::zero(); p.b_size * p.c_in * p.l_in];
let cont_s0 = p.l_in * p.c_in;
let cont_s1 = p.c_in;
for b_idx in 0..p.b_size {
for l_idx in 0..p.l_in {
for c_idx in 0..p.c_in {
let src_idx = b_idx * inp_s0 + c_idx * inp_s1 + l_idx * inp_s2;
let dst_idx = b_idx * cont_s0 + l_idx * cont_s1 + c_idx;
inp_cont[dst_idx] = inp[src_idx]
}
}
}
for k_idx in 0..p.k_size {
(0..p.c_out).into_par_iter().for_each(|dst_c_idx| {
let k_cont = (0..p.c_in)
.map(|c_in_idx| k[c_in_idx * k_s0 + dst_c_idx * k_s1 + k_idx * k_s2])
.collect::<Vec<_>>();
for b_idx in 0..p.b_size {
for l_idx in 0..p.l_in {
let out_idx = l_idx * p.stride + k_idx * p.dilation;
if out_idx < p.padding {
continue;
}
let out_idx = out_idx - p.padding;
if out_idx < l_out {
let inp_cont = &inp_cont[b_idx * cont_s0 + l_idx * cont_s1..];
let dst_idx = b_idx * dst_s0 + out_idx * dst_s2 + dst_c_idx * dst_s1;
let mut d = T::zero();
unsafe {
T::vec_dot(inp_cont.as_ptr(), k_cont.as_ptr(), &mut d, p.c_in)
}
let dst_p = dst.as_ptr();
// Safety: dst_idx are uniques per dst_c_idx which is used to
// parallelise the different tasks so no two threads can try to
// write at the same location.
unsafe {
let ptr = dst_p.add(dst_idx) as *mut T;
*ptr += d
}
}
}
}
})
}
Ok(dst)
}
}
struct Conv2D<'a>(&'a crate::conv::ParamsConv2D);
impl<'a> Map2 for Conv2D<'a> {
const OP: &'static str = "conv2d";
fn f<T: WithDType>(&self, inp: &[T], inp_l: &Layout, k: &[T], k_l: &Layout) -> Result<Vec<T>> {
let p = self.0;
let inp = &inp[inp_l.start_offset()..];
let (inp_s0, inp_s1, inp_s2, inp_s3) = crate::shape::dims4(inp_l.stride())?;
let k = &k[k_l.start_offset()..];
let (k_s0, k_s1, k_s2, k_s3) = crate::shape::dims4(k_l.stride())?;
let (out_h, out_w) = (p.out_h(), p.out_w());
// Output shape: [b_size, c_out, out_h, out_w].
let dst = vec![T::zero(); p.b_size * p.c_out * out_h * out_w];
// TODO: Avoid making this copy if `inp` already has the appropriate layout.
let mut inp_cont = vec![T::zero(); p.b_size * p.c_in * p.i_h * p.i_w];
let cont_s0 = p.i_h * p.i_w * p.c_in;
let cont_s1 = p.i_w * p.c_in;
let cont_s2 = p.c_in;
for b_idx in 0..p.b_size {
for h_idx in 0..p.i_h {
for w_idx in 0..p.i_w {
for c_idx in 0..p.c_in {
let src_idx =
b_idx * inp_s0 + c_idx * inp_s1 + h_idx * inp_s2 + w_idx * inp_s3;
let dst_idx = b_idx * cont_s0 + h_idx * cont_s1 + w_idx * cont_s2 + c_idx;
inp_cont[dst_idx] = inp[src_idx]
}
}
}
}
for offset_h in 0..p.k_h {
for offset_w in 0..p.k_w {
(0..p.c_out).into_par_iter().for_each(|dst_c_idx| {
let dst_idx = dst_c_idx * out_w * out_h;
let k_cont = (0..p.c_in)
.map(|c_in_idx| {
k[dst_c_idx * k_s0
+ c_in_idx * k_s1
+ offset_h * k_s2
+ offset_w * k_s3]
})
.collect::<Vec<_>>();
for b_idx in 0..p.b_size {
let dst_idx = dst_idx + b_idx * p.c_out * out_h * out_w;
for dst_h in 0..out_h {
let dst_idx = dst_idx + dst_h * out_w;
let src_h = p.stride * dst_h + offset_h * p.dilation;
if src_h < p.padding || src_h >= p.i_h + p.padding {
continue;
}
let src_h = src_h - p.padding;
for dst_w in 0..out_w {
let dst_idx = dst_idx + dst_w;
let src_w = p.stride * dst_w + offset_w * p.dilation;
if src_w < p.padding || src_w >= p.i_w + p.padding {
continue;
}
let src_w = src_w - p.padding;
let inp_cont = &inp_cont
[b_idx * cont_s0 + src_h * cont_s1 + src_w * cont_s2..];
assert!(inp_cont.len() >= p.c_in);
assert!(k_cont.len() >= p.c_in);
let mut d = T::zero();
unsafe {
T::vec_dot(inp_cont.as_ptr(), k_cont.as_ptr(), &mut d, p.c_in)
}
let dst_p = dst.as_ptr();
// Safety: dst_idx are uniques per dst_c_idx which is used to parallelise
// the different tasks so no two threads can try to write at the same
// location.
unsafe {
let ptr = dst_p.add(dst_idx) as *mut T;
*ptr += d
}
}
}
}
});
}
}
Ok(dst)
}
}
struct ConvTranspose2D<'a>(&'a crate::conv::ParamsConvTranspose2D);
impl<'a> Map2 for ConvTranspose2D<'a> {
const OP: &'static str = "conv_transpose2d";
fn f<T: WithDType>(&self, inp: &[T], inp_l: &Layout, k: &[T], k_l: &Layout) -> Result<Vec<T>> {
let p = self.0;
let inp = &inp[inp_l.start_offset()..];
let (inp_s0, inp_s1, inp_s2, inp_s3) = crate::shape::dims4(inp_l.stride())?;
let k = &k[k_l.start_offset()..];
let (k_s0, k_s1, k_s2, k_s3) = crate::shape::dims4(k_l.stride())?;
let (out_h, out_w) = (p.out_h(), p.out_w());
// Output shape: [b_size, c_out, out_h, out_w].
let dst = vec![T::zero(); p.b_size * p.c_out * out_h * out_w];
let dst_s0 = p.c_out * out_h * out_w;
let dst_s1 = out_h * out_w;
let dst_s2 = out_w;
let dst_s3 = 1;
// TODO: Avoid making this copy if `inp` already has the appropriate layout.
let mut inp_cont = vec![T::zero(); p.b_size * p.c_in * p.i_h * p.i_w];
let cont_s0 = p.i_h * p.i_w * p.c_in;
let cont_s1 = p.i_w * p.c_in;
let cont_s2 = p.c_in;
for b_idx in 0..p.b_size {
for h_idx in 0..p.i_h {
for w_idx in 0..p.i_w {
for c_idx in 0..p.c_in {
let src_idx =
b_idx * inp_s0 + c_idx * inp_s1 + h_idx * inp_s2 + w_idx * inp_s3;
let dst_idx = b_idx * cont_s0 + h_idx * cont_s1 + w_idx * cont_s2 + c_idx;
inp_cont[dst_idx] = inp[src_idx]
}
}
}
}
for k_y in 0..p.k_h {
for k_x in 0..p.k_w {
(0..p.c_out).into_par_iter().for_each(|dst_c_idx| {
let k_cont = (0..p.c_in)
.map(|c_in_idx| {
k[c_in_idx * k_s0 + dst_c_idx * k_s1 + k_y * k_s2 + k_x * k_s3]
})
.collect::<Vec<_>>();
for b_idx in 0..p.b_size {
for inp_y in 0..p.i_h {
for inp_x in 0..p.i_w {
let out_x = inp_x * p.stride + k_x * p.dilation;
let out_y = inp_y * p.stride + k_y * p.dilation;
if out_x < p.padding || out_y < p.padding {
continue;
}
let out_x = out_x - p.padding;
let out_y = out_y - p.padding;
if out_x < out_w && out_y < out_h {
let inp_cont = &inp_cont
[b_idx * cont_s0 + inp_y * cont_s1 + inp_x * cont_s2..];
let dst_idx = b_idx * dst_s0
+ out_y * dst_s2
+ out_x * dst_s3
+ dst_c_idx * dst_s1;
let mut d = T::zero();
unsafe {
T::vec_dot(
inp_cont.as_ptr(),
k_cont.as_ptr(),
&mut d,
p.c_in,
)
}
let dst_p = dst.as_ptr();
// Safety: dst_idx are uniques per dst_c_idx which is used to
// parallelise the different tasks so no two threads can try to
// write at the same location.
unsafe {
let ptr = dst_p.add(dst_idx) as *mut T;
*ptr += d
}
}
}
}
}
})
}
}
Ok(dst)
}
}
struct MatMul((usize, usize, usize, usize));
impl MatMul {
fn striding_error(&self, lhs_l: &Layout, rhs_l: &Layout, msg: &'static str) -> Error {
Error::MatMulUnexpectedStriding(Box::new(crate::error::MatMulUnexpectedStriding {
lhs_l: lhs_l.clone(),
rhs_l: rhs_l.clone(),
bmnk: self.0,
msg,
}))
.bt()
}
fn ab_skip(&self, lhs_l: &Layout, rhs_l: &Layout) -> Result<(usize, usize)> {
let lhs_stride = lhs_l.stride();
let rhs_stride = rhs_l.stride();
let rank = lhs_stride.len();
let (_b, m, n, k) = self.0;
let a_skip: usize = match lhs_stride[..rank - 2] {
[s1, stride] if s1 == stride * lhs_l.dims()[1] => stride,
[_, stride] if lhs_l.dims()[0] == 1 => stride,
[stride, _] if lhs_l.dims()[1] == 1 => stride,
[stride] => stride,
[] => m * k,
_ => Err(self.striding_error(lhs_l, rhs_l, "non-contiguous lhs"))?,
};
let b_skip: usize = match rhs_stride[..rank - 2] {
[s1, stride] if s1 == stride * rhs_l.dims()[1] => stride,
[_, stride] if rhs_l.dims()[0] == 1 => stride,
[stride, _] if rhs_l.dims()[1] == 1 => stride,
[stride] => stride,
[] => n * k,
_ => Err(self.striding_error(lhs_l, rhs_l, "non-contiguous rhs"))?,
};
Ok((a_skip, b_skip))
}
}
impl Map2 for MatMul {
const OP: &'static str = "mat_mul";
#[cfg(all(not(any(feature = "mkl", feature = "mkl-dynamic")), not(feature = "accelerate")))]
fn f<T: 'static + WithDType + num_traits::Num + Copy>(
&self,
lhs: &[T],
lhs_l: &Layout,
rhs: &[T],
rhs_l: &Layout,
) -> Result<Vec<T>> {
use gemm::{gemm, Parallelism};
match T::DTYPE {
DType::F16 | DType::F32 | DType::F64 => {}
_ => Err(Error::UnsupportedDTypeForOp(T::DTYPE, "matmul").bt())?,
}
let (b, m, n, k) = self.0;
let lhs = &lhs[lhs_l.start_offset()..];
let rhs = &rhs[rhs_l.start_offset()..];
let lhs_stride = lhs_l.stride();
let rhs_stride = rhs_l.stride();
let rank = lhs_stride.len();
let lhs_cs = lhs_stride[rank - 1];
let lhs_rs = lhs_stride[rank - 2];
let rhs_cs = rhs_stride[rank - 1];
let rhs_rs = rhs_stride[rank - 2];
let (a_skip, b_skip) = self.ab_skip(lhs_l, rhs_l)?;
let c_skip: usize = m * n;
let dst_shape: Shape = (m, n).into();
let dst_strides = dst_shape.stride_contiguous();
let dst_rs = dst_strides[0];
let dst_cs = dst_strides[1];
let mut dst = vec![T::zero(); b * m * n];
let num_threads = crate::utils::get_num_threads();
let parallelism = if num_threads > 1 {
Parallelism::Rayon(num_threads)
} else {
Parallelism::None
};
for step in 0..b {
let lhs_p = &lhs[step * a_skip..];
let rhs_p = &rhs[step * b_skip..];
let dst_p = &mut dst[step * c_skip..];
unsafe {
gemm(
/* m: usize = */ m,
/* n: usize = */ n,
/* k: usize = */ k,
/* dst: *mut T = */ dst_p.as_mut_ptr(),
/* dst_cs: isize = */ dst_cs as isize,
/* dst_rs: isize = */ dst_rs as isize,
/* read_dst: bool = */ false,
/* lhs: *const T = */ lhs_p.as_ptr(),
/* lhs_cs: isize = */ lhs_cs as isize,
/* lhs_rs: isize = */ lhs_rs as isize,
/* rhs: *const T = */ rhs_p.as_ptr(),
/* rhs_cs: isize = */ rhs_cs as isize,
/* rhs_rs: isize = */ rhs_rs as isize,
/* alpha: T = */ T::zero(),
/* beta: T = */ T::one(),
/* conj_dst: bool = */ false,
/* conj_lhs: bool = */ false,
/* conj_rhs: bool = */ false,
parallelism,
)
}
}
Ok(dst)
}
#[cfg(feature = "accelerate")]
fn f<T: 'static + WithDType + num_traits::Num + Copy>(
&self,
lhs: &[T],
lhs_l: &Layout,
rhs: &[T],
rhs_l: &Layout,
) -> Result<Vec<T>> {
let (b, m, n, k) = self.0;
let lhs = &lhs[lhs_l.start_offset()..];
let rhs = &rhs[rhs_l.start_offset()..];
let lhs_stride = lhs_l.stride();
let rhs_stride = rhs_l.stride();
let (a_skip, b_skip) = self.ab_skip(lhs_l, rhs_l)?;
let c_skip: usize = m * n;
let rhs_m1 = rhs_stride[rhs_stride.len() - 1];
let rhs_m2 = rhs_stride[rhs_stride.len() - 2];
let lhs_m1 = lhs_stride[lhs_stride.len() - 1];
let lhs_m2 = lhs_stride[lhs_stride.len() - 2];
let (lda, transa) = if (rhs_m1 == 1 || n == 1) && (rhs_m2 == n || k == 1) {
(n as i32, b'N')
} else if rhs_m1 == k && rhs_m2 == 1 {
(k as i32, b'T')
} else {
Err(self.striding_error(lhs_l, rhs_l, "non-contiguous rhs"))?
};
// The b tensor has dims batching, m, k (lhs)
let (ldb, transb) = if (lhs_m1 == 1 || k == 1) && (lhs_m2 == k || m == 1) {
(k as i32, b'N')
} else if lhs_m1 == m && lhs_m2 == 1 {
(m as i32, b'T')
} else {
Err(self.striding_error(lhs_l, rhs_l, "non-contiguous lhs"))?
};
let mut dst = vec![T::zero(); b * m * n];
match T::DTYPE {
DType::F16 => {
crate::bail!("the accelerate backend does not support f16 matmul")
}
DType::F32 => {
for step in 0..b {
let lhs_p = &lhs[step * a_skip..];
let rhs_p = &rhs[step * b_skip..];
let dst_p = &mut dst[step * c_skip..];
unsafe {
let a = rhs_p.as_ptr() as *const f32;
let b = lhs_p.as_ptr() as *const f32;
let c = dst_p.as_mut_ptr() as *mut f32;
let a = std::slice::from_raw_parts(a, a_skip);
let b = std::slice::from_raw_parts(b, b_skip);
let c = std::slice::from_raw_parts_mut(c, c_skip);
crate::accelerate::sgemm(
transa, transb, /* m= */ n as i32, /* n= */ m as i32,
/* k= */ k as i32, /* alpha= */ 1., /* a= */ a,
/* lda= */ lda, /* b= */ b, /* ldb= */ ldb,
/* beta= */ 0., /* c= */ c, /* ldc= */ n as i32,
)
}
}
}
DType::F64 => {
for step in 0..b {
let lhs_p = &lhs[step * a_skip..];
let rhs_p = &rhs[step * b_skip..];
let dst_p = &mut dst[step * c_skip..];
unsafe {
let a = rhs_p.as_ptr() as *const f64;
let b = lhs_p.as_ptr() as *const f64;
let c = dst_p.as_mut_ptr() as *mut f64;
let a = std::slice::from_raw_parts(a, a_skip);
let b = std::slice::from_raw_parts(b, b_skip);
let c = std::slice::from_raw_parts_mut(c, c_skip);
crate::accelerate::dgemm(
transa, transb, /* m= */ n as i32, /* n= */ m as i32,
/* k= */ k as i32, /* alpha= */ 1., /* a= */ a,
/* lda= */ lda, /* b= */ b, /* ldb= */ ldb,
/* beta= */ 0., /* c= */ c, /* ldc= */ n as i32,
)
}
}
}
dtype => Err(Error::UnsupportedDTypeForOp(dtype, "matmul").bt())?,
}
Ok(dst)
}
#[cfg(any(feature = "mkl", feature = "mkl-dynamic"))]
fn f<T: 'static + WithDType + num_traits::Num + Copy>(
&self,
lhs: &[T],
lhs_l: &Layout,
rhs: &[T],
rhs_l: &Layout,
) -> Result<Vec<T>> {
let (b, m, n, k) = self.0;
let lhs = &lhs[lhs_l.start_offset()..];
let rhs = &rhs[rhs_l.start_offset()..];
let lhs_stride = lhs_l.stride();
let rhs_stride = rhs_l.stride();
let (a_skip, b_skip) = self.ab_skip(lhs_l, rhs_l)?;
let c_skip: usize = m * n;
let rhs_m1 = rhs_stride[rhs_stride.len() - 1];
let rhs_m2 = rhs_stride[rhs_stride.len() - 2];
let lhs_m1 = lhs_stride[lhs_stride.len() - 1];
let lhs_m2 = lhs_stride[lhs_stride.len() - 2];
let (lda, transa) = if (rhs_m1 == 1 || n == 1) && (rhs_m2 == n || k == 1) {
(n as i32, b'N')
} else if rhs_m1 == k && rhs_m2 == 1 {
(k as i32, b'T')
} else {
Err(self.striding_error(lhs_l, rhs_l, "non-contiguous rhs"))?
};
// The b tensor has dims batching, m, k (lhs)
let (ldb, transb) = if (lhs_m1 == 1 || k == 1) && (lhs_m2 == k || m == 1) {
(k as i32, b'N')
} else if lhs_m1 == m && lhs_m2 == 1 {
(m as i32, b'T')
} else {
Err(self.striding_error(lhs_l, rhs_l, "non-contiguous lhs"))?
};
let mut dst = vec![T::zero(); b * m * n];
match T::DTYPE {
DType::F16 => {
for step in 0..b {
let lhs_p = &lhs[step * a_skip..];
let rhs_p = &rhs[step * b_skip..];
let dst_p = &mut dst[step * c_skip..];
unsafe {
let a = rhs_p.as_ptr() as *const f16;
let b = lhs_p.as_ptr() as *const f16;
let c = dst_p.as_mut_ptr() as *mut f16;
let a = std::slice::from_raw_parts(a, a_skip);
let b = std::slice::from_raw_parts(b, b_skip);
let c = std::slice::from_raw_parts_mut(c, c_skip);
crate::mkl::hgemm(
transa,
transb,
/* m= */ n as i32,
/* n= */ m as i32,
/* k= */ k as i32,
/* alpha= */ f16::ONE,
/* a= */ a,
/* lda= */ lda,
/* b= */ b,
/* ldb= */ ldb,
/* beta= */ f16::ZERO,
/* c= */ c,
/* ldc= */ n as i32,
)
}
}
}
DType::F32 => {
for step in 0..b {
let lhs_p = &lhs[step * a_skip..];
let rhs_p = &rhs[step * b_skip..];
let dst_p = &mut dst[step * c_skip..];
unsafe {
let a = rhs_p.as_ptr() as *const f32;
let b = lhs_p.as_ptr() as *const f32;
let c = dst_p.as_mut_ptr() as *mut f32;
let a = std::slice::from_raw_parts(a, a_skip);
let b = std::slice::from_raw_parts(b, b_skip);
let c = std::slice::from_raw_parts_mut(c, c_skip);
crate::mkl::sgemm(
transa, transb, /* m= */ n as i32, /* n= */ m as i32,
/* k= */ k as i32, /* alpha= */ 1., /* a= */ a,
/* lda= */ lda, /* b= */ b, /* ldb= */ ldb,
/* beta= */ 0., /* c= */ c, /* ldc= */ n as i32,
)
}
}
}
DType::F64 => {
for step in 0..b {
let lhs_p = &lhs[step * a_skip..];
let rhs_p = &rhs[step * b_skip..];
let dst_p = &mut dst[step * c_skip..];
unsafe {
let a = rhs_p.as_ptr() as *const f64;
let b = lhs_p.as_ptr() as *const f64;
let c = dst_p.as_mut_ptr() as *mut f64;
let a = std::slice::from_raw_parts(a, a_skip);
let b = std::slice::from_raw_parts(b, b_skip);
let c = std::slice::from_raw_parts_mut(c, c_skip);
crate::mkl::dgemm(
transa, transb, /* m= */ n as i32, /* n= */ m as i32,
/* k= */ k as i32, /* alpha= */ 1., /* a= */ a,
/* lda= */ lda, /* b= */ b, /* ldb= */ ldb,
/* beta= */ 0., /* c= */ c, /* ldc= */ n as i32,
)
}
}
}
dtype => Err(Error::UnsupportedDTypeForOp(dtype, "matmul").bt())?,
}
Ok(dst)
}
}
fn elu<T: num_traits::Float>(v: T, alpha: T) -> T {
if v.is_sign_positive() {
v
} else {
(v.exp() - T::one()) * alpha
}
}
impl CpuStorage {
pub fn as_slice<D: WithDType>(&self) -> Result<&[D]> {
D::cpu_storage_as_slice(self)
}
pub fn concat(storages: &[CpuStorage]) -> Result<CpuStorage> {
let storage0 = &storages[0];
let s = match storage0 {
Self::U8(_) => {
let storages = storages
.iter()
.map(|s| match s {
Self::U8(s) => Ok(s.as_slice()),
_ => crate::bail!("dtype mismatch"),
})
.collect::<Result<Vec<_>>>()?
.concat();
Self::U8(storages)
}
Self::U32(_) => {
let storages = storages
.iter()
.map(|s| match s {
Self::U32(s) => Ok(s.as_slice()),
_ => crate::bail!("dtype mismatch"),
})
.collect::<Result<Vec<_>>>()?
.concat();
Self::U32(storages)
}
Self::I64(_) => {
let storages = storages
.iter()
.map(|s| match s {
Self::I64(s) => Ok(s.as_slice()),
_ => crate::bail!("dtype mismatch"),
})
.collect::<Result<Vec<_>>>()?
.concat();
Self::I64(storages)
}
Self::BF16(_) => {
let storages = storages
.iter()
.map(|s| match s {
Self::BF16(s) => Ok(s.as_slice()),
_ => crate::bail!("dtype mismatch"),
})
.collect::<Result<Vec<_>>>()?
.concat();
Self::BF16(storages)
}
Self::F16(_) => {
let storages = storages
.iter()
.map(|s| match s {
Self::F16(s) => Ok(s.as_slice()),
_ => crate::bail!("dtype mismatch"),
})
.collect::<Result<Vec<_>>>()?
.concat();
Self::F16(storages)
}
Self::F32(_) => {
let storages = storages
.iter()
.map(|s| match s {
Self::F32(s) => Ok(s.as_slice()),
_ => crate::bail!("dtype mismatch"),
})
.collect::<Result<Vec<_>>>()?
.concat();
Self::F32(storages)
}
Self::F64(_) => {
let storages = storages
.iter()
.map(|s| match s {
Self::F64(s) => Ok(s.as_slice()),
_ => crate::bail!("dtype mismatch"),
})
.collect::<Result<Vec<_>>>()?
.concat();
Self::F64(storages)
}
};
Ok(s)
}
}
impl BackendStorage for CpuStorage {
type Device = CpuDevice;
fn dtype(&self) -> DType {
match self {
Self::U8(_) => DType::U8,
Self::U32(_) => DType::U32,
Self::I64(_) => DType::I64,
Self::BF16(_) => DType::BF16,
Self::F16(_) => DType::F16,
Self::F32(_) => DType::F32,
Self::F64(_) => DType::F64,
}
}
fn to_dtype(&self, layout: &Layout, dtype: DType) -> Result<Self> {
// TODO: find a way around the quadratic number of cases below.
match (self, dtype) {
(Self::U8(storage), DType::BF16) => {
let data = unary_map(storage, layout, |v| bf16::from_f32(v as f32));
Ok(Self::BF16(data))
}
(Self::U32(storage), DType::BF16) => {
let data = unary_map(storage, layout, |v| bf16::from_f32(v as f32));
Ok(Self::BF16(data))
}
(Self::I64(storage), DType::BF16) => {
let data = unary_map(storage, layout, |v| bf16::from_f32(v as f32));
Ok(Self::BF16(data))
}
(Self::BF16(storage), DType::BF16) => {
let data = unary_map(storage, layout, |v| v);
Ok(Self::BF16(data))
}
(Self::F16(storage), DType::BF16) => {
let data = unary_map(storage, layout, |v| bf16::from_f32(v.to_f32()));
Ok(Self::BF16(data))
}
(Self::F32(storage), DType::BF16) => {
let data = unary_map(storage, layout, bf16::from_f32);
Ok(Self::BF16(data))
}
(Self::F64(storage), DType::BF16) => {
let data = unary_map(storage, layout, bf16::from_f64);
Ok(Self::BF16(data))
}
(Self::U8(storage), DType::F16) => {
let data = unary_map(storage, layout, |v| f16::from_f32(v as f32));
Ok(Self::F16(data))
}
(Self::U32(storage), DType::F16) => {
let data = unary_map(storage, layout, |v| f16::from_f32(v as f32));
Ok(Self::F16(data))
}
(Self::I64(storage), DType::F16) => {
let data = unary_map(storage, layout, |v| f16::from_f32(v as f32));
Ok(Self::F16(data))
}
(Self::BF16(storage), DType::F16) => {
let data = unary_map(storage, layout, |v| f16::from_f32(v.to_f32()));
Ok(Self::F16(data))
}
(Self::F16(storage), DType::F16) => {
let data = unary_map(storage, layout, |v| v);
Ok(Self::F16(data))
}
(Self::F32(storage), DType::F16) => {
let data = unary_map(storage, layout, f16::from_f32);
Ok(Self::F16(data))
}
(Self::F64(storage), DType::F16) => {
let data = unary_map(storage, layout, f16::from_f64);
Ok(Self::F16(data))
}
(Self::U8(storage), DType::F32) => {
let data = unary_map(storage, layout, |v| v as f32);
Ok(Self::F32(data))
}
(Self::U32(storage), DType::F32) => {
let data = unary_map(storage, layout, |v| v as f32);
Ok(Self::F32(data))
}
(Self::I64(storage), DType::F32) => {
let data = unary_map(storage, layout, |v| v as f32);
Ok(Self::F32(data))
}
(Self::BF16(storage), DType::F32) => {
let data = unary_map(storage, layout, |v| v.to_f32());
Ok(Self::F32(data))
}
(Self::F16(storage), DType::F32) => {
let data = unary_map(storage, layout, |v| v.to_f32());
Ok(Self::F32(data))
}
(Self::F32(storage), DType::F32) => {
let data = unary_map(storage, layout, |v| v);
Ok(Self::F32(data))
}
(Self::F64(storage), DType::F32) => {
let data = unary_map(storage, layout, |v| v as f32);
Ok(Self::F32(data))
}
(Self::U8(storage), DType::U8) => {
let data = unary_map(storage, layout, |v| v);
Ok(Self::U8(data))
}
(Self::BF16(storage), DType::U8) => {
let data = unary_map(storage, layout, |v| v.to_f32() as u8);
Ok(Self::U8(data))
}
(Self::F16(storage), DType::U8) => {
let data = unary_map(storage, layout, |v| v.to_f32() as u8);
Ok(Self::U8(data))
}
(Self::F32(storage), DType::U8) => {
let data = unary_map(storage, layout, |v| v as u8);
Ok(Self::U8(data))
}
(Self::F64(storage), DType::U8) => {
let data = unary_map(storage, layout, |v| v as u8);
Ok(Self::U8(data))
}
(Self::U32(storage), DType::U8) => {
let data = unary_map(storage, layout, |v| v as u8);
Ok(Self::U8(data))
}
(Self::I64(storage), DType::U8) => {
let data = unary_map(storage, layout, |v| v as u8);
Ok(Self::U8(data))
}
(Self::U8(storage), DType::U32) => {
let data = unary_map(storage, layout, |v| v as u32);
Ok(Self::U32(data))
}
(Self::U32(storage), DType::U32) => {
let data = unary_map(storage, layout, |v| v);
Ok(Self::U32(data))
}
(Self::I64(storage), DType::U32) => {
let data = unary_map(storage, layout, |v| v as u32);
Ok(Self::U32(data))
}
(Self::BF16(storage), DType::U32) => {
let data = unary_map(storage, layout, |v| v.to_f32() as u32);
Ok(Self::U32(data))
}
(Self::F16(storage), DType::U32) => {
let data = unary_map(storage, layout, |v| v.to_f32() as u32);
Ok(Self::U32(data))
}
(Self::F32(storage), DType::U32) => {
let data = unary_map(storage, layout, |v| v as u32);
Ok(Self::U32(data))
}
(Self::F64(storage), DType::U32) => {
let data = unary_map(storage, layout, |v| v as u32);
Ok(Self::U32(data))
}
(Self::U8(storage), DType::I64) => {
let data = unary_map(storage, layout, |v| v as i64);
Ok(Self::I64(data))
}
(Self::U32(storage), DType::I64) => {
let data = unary_map(storage, layout, |v| v as i64);
Ok(Self::I64(data))
}
(Self::I64(storage), DType::I64) => {
let data = unary_map(storage, layout, |v| v);
Ok(Self::I64(data))
}
(Self::BF16(storage), DType::I64) => {
let data = unary_map(storage, layout, |v| v.to_f32() as i64);
Ok(Self::I64(data))
}
(Self::F16(storage), DType::I64) => {
let data = unary_map(storage, layout, |v| v.to_f32() as i64);
Ok(Self::I64(data))
}
(Self::F32(storage), DType::I64) => {
let data = unary_map(storage, layout, |v| v as i64);
Ok(Self::I64(data))
}
(Self::F64(storage), DType::I64) => {
let data = unary_map(storage, layout, |v| v as i64);
Ok(Self::I64(data))
}
(Self::U8(storage), DType::F64) => {
let data = unary_map(storage, layout, |v| v as f64);
Ok(Self::F64(data))
}
(Self::U32(storage), DType::F64) => {
let data = unary_map(storage, layout, |v| v as f64);
Ok(Self::F64(data))
}
(Self::I64(storage), DType::F64) => {
let data = unary_map(storage, layout, |v| v as f64);
Ok(Self::F64(data))
}
(Self::BF16(storage), DType::F64) => {
let data = unary_map(storage, layout, |v| v.to_f64());
Ok(Self::F64(data))
}
(Self::F16(storage), DType::F64) => {
let data = unary_map(storage, layout, |v| v.to_f64());
Ok(Self::F64(data))
}
(Self::F32(storage), DType::F64) => {
let data = unary_map(storage, layout, |v| v as f64);
Ok(Self::F64(data))
}
(Self::F64(storage), DType::F64) => {
let data = unary_map(storage, layout, |v| v);
Ok(Self::F64(data))
}
}
}
fn reduce_op(&self, op: ReduceOp, layout: &Layout, reduce_dims: &[usize]) -> Result<Self> {
match op {
ReduceOp::Sum => {
let src_dims = layout.dims();
let mut dst_dims = src_dims.to_vec();
for &dim in reduce_dims.iter() {
dst_dims[dim] = 1;
}
let dst_shape = Shape::from(dst_dims);
let mut reduce_dims = reduce_dims.to_vec();
// Sort the reduce_dims as they have to be processed from left to right when converting the
// indexes.
reduce_dims.sort();
let reduce_dims_and_stride: Vec<_> = reduce_dims
.iter()
.map(|&d| (src_dims[d], src_dims[d + 1..].iter().product::<usize>()))
.collect();
ReduceSum {
dst_shape: &dst_shape,
reduce_dims: &reduce_dims,
reduce_dims_and_stride,
}
.map(self, layout)
}
ReduceOp::Min | ReduceOp::ArgMin | ReduceOp::Max | ReduceOp::ArgMax => {
let reduce_dim_index = match reduce_dims {
[reduce_dim_index] => *reduce_dim_index,
_ => {
let op = match op {
ReduceOp::Min => "min",
ReduceOp::ArgMin => "argmin",
ReduceOp::Max => "max",
ReduceOp::ArgMax => "argmax",
_ => unreachable!(),
};
let dims = reduce_dims.to_vec();
Err(Error::OnlySingleDimension { op, dims })?
}
};
let (use_min, return_index) = match op {
ReduceOp::Min => (true, false),
ReduceOp::ArgMin => (true, true),
ReduceOp::Max => (false, false),
ReduceOp::ArgMax => (false, true),
_ => unreachable!(),
};
ReduceIndex {
reduce_dim_index,
use_min,
return_index,
}
.map(self, layout)
}
}
}
fn cmp(&self, op: CmpOp, rhs: &Self, lhs_l: &Layout, rhs_l: &Layout) -> Result<Self> {
Cmp(op).map(self, lhs_l, rhs, rhs_l)
}
fn affine(&self, layout: &Layout, mul: f64, add: f64) -> Result<Self> {
Affine(mul, add).map(self, layout)
}
fn avg_pool2d(
&self,
layout: &Layout,
kernel_size: (usize, usize),
stride: (usize, usize),
) -> Result<Self> {
AvgPool2D(kernel_size, stride).map(self, layout)
}
fn max_pool2d(
&self,
layout: &Layout,
kernel_size: (usize, usize),
stride: (usize, usize),
) -> Result<Self> {
MaxPool2D(kernel_size, stride).map(self, layout)
}
fn upsample_nearest1d(&self, layout: &Layout, sz: usize) -> Result<Self> {
UpsampleNearest1D(sz).map(self, layout)
}
fn upsample_nearest2d(&self, layout: &Layout, h: usize, w: usize) -> Result<Self> {
UpsampleNearest2D(h, w).map(self, layout)
}
fn powf(&self, layout: &Layout, e: f64) -> Result<Self> {
use num_traits::Float;
// TODO: Have some generic map for functions that apply on num_traits::Float elements.
match self {
Self::BF16(storage) => {
let data = unary_map(storage, layout, |v| v.powf(bf16::from_f64(e)));
Ok(Self::BF16(data))
}
Self::F16(storage) => {
let data = unary_map(storage, layout, |v| v.powf(f16::from_f64(e)));
Ok(Self::F16(data))
}
Self::F32(storage) => {
let data = unary_map(storage, layout, |v| v.powf(e as f32));
Ok(Self::F32(data))
}
Self::F64(storage) => {
let data = unary_map(storage, layout, |v| v.powf(e));
Ok(Self::F64(data))
}
Self::U8(_) => Err(Error::UnsupportedDTypeForOp(DType::U8, "elu").bt()),
Self::U32(_) => Err(Error::UnsupportedDTypeForOp(DType::U32, "elu").bt()),
Self::I64(_) => Err(Error::UnsupportedDTypeForOp(DType::I64, "elu").bt()),
}
}
fn elu(&self, layout: &Layout, alpha: f64) -> Result<Self> {
// TODO: Have some generic map for functions that apply on num_traits::Float elements.
match self {
Self::BF16(storage) => {
let data = unary_map(storage, layout, |v| elu(v, bf16::from_f64(alpha)));
Ok(Self::BF16(data))
}
Self::F16(storage) => {
let data = unary_map(storage, layout, |v| elu(v, f16::from_f64(alpha)));
Ok(Self::F16(data))
}
Self::F32(storage) => {
let data = unary_map(storage, layout, |v| elu(v, f32::from_f64(alpha)));
Ok(Self::F32(data))
}
Self::F64(storage) => {
let data = unary_map(storage, layout, |v| elu(v, alpha));
Ok(Self::F64(data))
}
Self::U8(_) => Err(Error::UnsupportedDTypeForOp(DType::U8, "elu").bt()),
Self::U32(_) => Err(Error::UnsupportedDTypeForOp(DType::U32, "elu").bt()),
Self::I64(_) => Err(Error::UnsupportedDTypeForOp(DType::I64, "elu").bt()),
}
}
fn unary_impl<B: UnaryOpT>(&self, layout: &Layout) -> Result<Self> {
match self {
Self::BF16(storage) => {
if B::BF16_VEC {
let data = unary_map_vec(storage, layout, B::bf16, B::bf16_vec);
Ok(Self::BF16(data))
} else {
let data = unary_map(storage, layout, B::bf16);
Ok(Self::BF16(data))
}
}
Self::F16(storage) => {
if B::F16_VEC {
let data = unary_map_vec(storage, layout, B::f16, B::f16_vec);
Ok(Self::F16(data))
} else {
let data = unary_map(storage, layout, B::f16);
Ok(Self::F16(data))
}
}
Self::F32(storage) => {
if B::F32_VEC {
let data = unary_map_vec(storage, layout, B::f32, B::f32_vec);
Ok(Self::F32(data))
} else {
let data = unary_map(storage, layout, B::f32);
Ok(Self::F32(data))
}
}
Self::F64(storage) => {
if B::F64_VEC {
let data = unary_map_vec(storage, layout, B::f64, B::f64_vec);
Ok(Self::F64(data))
} else {
let data = unary_map(storage, layout, B::f64);
Ok(Self::F64(data))
}
}
Self::U8(storage) => {
let data = unary_map(storage, layout, B::u8);
Ok(Self::U8(data))
}
Self::U32(storage) => {
let data = unary_map(storage, layout, B::u32);
Ok(Self::U32(data))
}
Self::I64(storage) => {
let data = unary_map(storage, layout, B::i64);
Ok(Self::I64(data))
}
}
}
fn binary_impl<B: BinaryOpT>(
&self,
rhs: &Self,
lhs_l: &Layout,
rhs_l: &Layout,
) -> Result<Self> {
match (self, rhs) {
(Self::BF16(lhs), Self::BF16(rhs)) => {
let data = if B::BF16_VEC {
binary_map_vec(lhs_l, rhs_l, lhs, rhs, B::bf16, B::bf16_vec)
} else {
binary_map(lhs_l, rhs_l, lhs, rhs, B::bf16)
};
Ok(Self::BF16(data))
}
(Self::F16(lhs), Self::F16(rhs)) => {
let data = if B::F16_VEC {
binary_map_vec(lhs_l, rhs_l, lhs, rhs, B::f16, B::f16_vec)
} else {
binary_map(lhs_l, rhs_l, lhs, rhs, B::f16)
};
Ok(Self::F16(data))
}
(Self::F32(lhs), Self::F32(rhs)) => {
let data = if B::F32_VEC {
binary_map_vec(lhs_l, rhs_l, lhs, rhs, B::f32, B::f32_vec)
} else {
binary_map(lhs_l, rhs_l, lhs, rhs, B::f32)
};
Ok(Self::F32(data))
}
(Self::F64(lhs), Self::F64(rhs)) => {
let data = if B::F64_VEC {
binary_map_vec(lhs_l, rhs_l, lhs, rhs, B::f64, B::f64_vec)
} else {
binary_map(lhs_l, rhs_l, lhs, rhs, B::f64)
};
Ok(Self::F64(data))
}
(Self::U32(lhs), Self::U32(rhs)) => {
let data = if B::U32_VEC {
binary_map_vec(lhs_l, rhs_l, lhs, rhs, B::u32, B::u32_vec)
} else {
binary_map(lhs_l, rhs_l, lhs, rhs, B::u32)
};
Ok(Self::U32(data))
}
(Self::I64(lhs), Self::I64(rhs)) => {
let data = if B::I64_VEC {
binary_map_vec(lhs_l, rhs_l, lhs, rhs, B::i64, B::i64_vec)
} else {
binary_map(lhs_l, rhs_l, lhs, rhs, B::i64)
};
Ok(Self::I64(data))
}
(Self::U8(lhs), Self::U8(rhs)) => {
let data = if B::U8_VEC {
binary_map_vec(lhs_l, rhs_l, lhs, rhs, B::u8, B::u8_vec)
} else {
binary_map(lhs_l, rhs_l, lhs, rhs, B::u8)
};
Ok(Self::U8(data))
}
_ => {
// This should be covered by the dtype check above.
Err(Error::DTypeMismatchBinaryOp {
lhs: self.dtype(),
rhs: rhs.dtype(),
op: B::NAME,
}
.bt())
}
}
}
fn copy2d(
&self,
dst: &mut Self,
d1: usize,
d2: usize,
src_s: usize,
dst_s: usize,
src_o: usize,
dst_o: usize,
) -> Result<()> {
match (self, dst) {
(Self::U8(src), Self::U8(dst)) => copy2d_(src, dst, d1, d2, src_s, dst_s, src_o, dst_o),
(Self::U32(src), Self::U32(dst)) => {
copy2d_(src, dst, d1, d2, src_s, dst_s, src_o, dst_o)
}
(Self::I64(src), Self::I64(dst)) => {
copy2d_(src, dst, d1, d2, src_s, dst_s, src_o, dst_o)
}
(Self::BF16(src), Self::BF16(dst)) => {
copy2d_(src, dst, d1, d2, src_s, dst_s, src_o, dst_o)
}
(Self::F16(src), Self::F16(dst)) => {
copy2d_(src, dst, d1, d2, src_s, dst_s, src_o, dst_o)
}
(Self::F32(src), Self::F32(dst)) => {
copy2d_(src, dst, d1, d2, src_s, dst_s, src_o, dst_o)
}
(Self::F64(src), Self::F64(dst)) => {
copy2d_(src, dst, d1, d2, src_s, dst_s, src_o, dst_o)
}
(_, dst) => {
return Err(Error::DTypeMismatchBinaryOp {
lhs: self.dtype(),
rhs: dst.dtype(),
op: "copy2d",
}
.bt());
}
}
Ok(())
}
fn copy_strided_src(&self, dst: &mut Self, dst_offset: usize, src_l: &Layout) -> Result<()> {
match (self, dst) {
(Self::U8(src), Self::U8(dst)) => copy_strided_src_(src, dst, dst_offset, src_l),
(Self::U32(src), Self::U32(dst)) => copy_strided_src_(src, dst, dst_offset, src_l),
(Self::I64(src), Self::I64(dst)) => copy_strided_src_(src, dst, dst_offset, src_l),
(Self::BF16(src), Self::BF16(dst)) => copy_strided_src_(src, dst, dst_offset, src_l),
(Self::F16(src), Self::F16(dst)) => copy_strided_src_(src, dst, dst_offset, src_l),
(Self::F32(src), Self::F32(dst)) => copy_strided_src_(src, dst, dst_offset, src_l),
(Self::F64(src), Self::F64(dst)) => copy_strided_src_(src, dst, dst_offset, src_l),
(_, dst) => {
// This should be covered by the dtype check above.
return Err(Error::DTypeMismatchBinaryOp {
lhs: self.dtype(),
rhs: dst.dtype(),
op: "copy_strided",
}
.bt());
}
}
Ok(())
}
fn where_cond(
&self,
layout: &Layout,
t: &Self,
t_l: &Layout,
f: &Self,
f_l: &Layout,
) -> Result<Self> {
match self {
Self::U8(pred) => WCond(pred, layout).map(t, t_l, f, f_l),
Self::U32(pred) => WCond(pred, layout).map(t, t_l, f, f_l),
Self::I64(pred) => WCond(pred, layout).map(t, t_l, f, f_l),
_ => Err(Error::UnsupportedDTypeForOp(self.dtype(), "where-cond")),
}
}
fn conv1d(
&self,
l: &Layout,
kernel: &Self,
kernel_l: &Layout,
params: &crate::conv::ParamsConv1D,
) -> Result<Self> {
if !USE_IM2COL_CONV1D {
return Conv1D(params).map(self, l, kernel, kernel_l);
}
let op = Im2Col1D {
l_k: params.k_size,
padding: params.padding,
stride: params.stride,
dilation: params.dilation,
};
let col = op.map(self, l)?;
let b = params.b_size;
let n = params.c_out;
let l_out = params.l_out();
let k = op.l_k * params.c_in;
let m = l_out;
let col_l = Layout::contiguous((b, m, k));
let res = if kernel_l.is_contiguous() {
let kernel_l = Layout::contiguous_with_offset((1, n, k), kernel_l.start_offset())
.transpose(1, 2)?
.broadcast_as((b, k, n))?;
col.matmul(kernel, (b, m, n, k), &col_l, &kernel_l)?
} else {
// Make the kernel contiguous if not already the case.
let mut kernel_c = unsafe {
self.device()
.alloc_uninit(kernel_l.shape(), kernel.dtype())?
};
kernel.copy_strided_src(&mut kernel_c, 0, kernel_l)?;
let kernel_l = Layout::contiguous_with_offset((1, n, k), kernel_l.start_offset())
.transpose(1, 2)?
.broadcast_as((b, k, n))?;
col.matmul(kernel, (b, m, n, k), &col_l, &kernel_l)?
};
let res_l = Layout::contiguous((b, l_out, params.c_out)).transpose(1, 2)?;
let mut res_t = unsafe { self.device().alloc_uninit(res_l.shape(), res.dtype())? };
res.copy_strided_src(&mut res_t, 0, &res_l)?;
Ok(res_t)
}
fn conv_transpose1d(
&self,
l: &Layout,
kernel: &Self,
kernel_l: &Layout,
params: &crate::conv::ParamsConvTranspose1D,
) -> Result<Self> {
let can_use_col2im = kernel_l.is_contiguous()
&& params.dilation == 1
&& params.padding == 0
&& params.output_padding == 0;
if USE_IM2COL_CONV1D_TR && can_use_col2im {
let (b_size, c_in, l_in) = l.shape().dims3()?;
let (c_in2, c_out, k_size) = kernel_l.shape().dims3()?;
if !kernel_l.is_contiguous() {
crate::bail!(
"convtr1d: the second argument (kernel) has to be contiguous {kernel_l:?}"
)
}
if c_in != c_in2 {
crate::bail!(
"convtr1d: shape mismatch on c_in {:?} {:?}",
l.shape(),
kernel_l.shape()
)
}
let col = {
// This merges the last two dimensions of the kernel together.
let kernel_l_mm = Layout::new(
(b_size, c_in, k_size * c_out).into(),
vec![0, k_size * c_out, 1],
kernel_l.start_offset(),
);
self.matmul(
kernel,
(
b_size,
/* m */ l_in,
/* n */ c_out * k_size,
/* k */ c_in,
),
&l.transpose(1, 2)?,
&kernel_l_mm,
)?
};
let col_l = Layout::contiguous((b_size, l_in, c_out, k_size));
Col2Im1D {
stride: params.stride,
}
.map(&col, &col_l)
} else {
ConvTranspose1D(params).map(self, l, kernel, kernel_l)
}
}
fn conv2d(
&self,
l: &Layout,
kernel: &Self,
kernel_l: &Layout,
params: &crate::conv::ParamsConv2D,
) -> Result<Self> {
if !USE_IM2COL_CONV2D {
return Conv2D(params).map(self, l, kernel, kernel_l);
}
let op = Im2Col {
h_k: params.k_h,
w_k: params.k_w,
padding: params.padding,
stride: params.stride,
dilation: params.dilation,
};
let col = op.map(self, l)?;
let b = params.b_size;
let n = params.c_out;
let (h_out, w_out) = (params.out_h(), params.out_w());
let k = op.h_k * op.w_k * params.c_in;
let m = h_out * w_out;
let col_l = Layout::contiguous((b, m, k));
let res = if kernel_l.is_contiguous() {
let kernel_l = Layout::contiguous_with_offset((1, n, k), kernel_l.start_offset())
.transpose(1, 2)?
.broadcast_as((b, k, n))?;
col.matmul(kernel, (b, m, n, k), &col_l, &kernel_l)?
} else {
// Make the kernel contiguous if not already the case.
let mut kernel_c = unsafe {
self.device()
.alloc_uninit(kernel_l.shape(), kernel.dtype())?
};
kernel.copy_strided_src(&mut kernel_c, 0, kernel_l)?;
let kernel_l = Layout::contiguous_with_offset((1, n, k), kernel_l.start_offset())
.transpose(1, 2)?
.broadcast_as((b, k, n))?;
col.matmul(kernel, (b, m, n, k), &col_l, &kernel_l)?
};
let res_l = Layout::contiguous((b, h_out, w_out, params.c_out))
.transpose(1, 2)?
.transpose(1, 3)?;
let mut res_t = unsafe { self.device().alloc_uninit(res_l.shape(), res.dtype())? };
res.copy_strided_src(&mut res_t, 0, &res_l)?;
Ok(res_t)
}
fn conv_transpose2d(
&self,
l: &Layout,
kernel: &Self,
kernel_l: &Layout,
params: &crate::conv::ParamsConvTranspose2D,
) -> Result<Self> {
ConvTranspose2D(params).map(self, l, kernel, kernel_l)
}
fn index_select(&self, ids: &Self, l: &Layout, ids_l: &Layout, dim: usize) -> Result<Self> {
match ids {
Self::U8(ids) => IndexSelect { ids, ids_l, dim }.map(self, l),
Self::U32(ids) => IndexSelect { ids, ids_l, dim }.map(self, l),
Self::I64(ids) => IndexSelect { ids, ids_l, dim }.map(self, l),
_ => Err(Error::UnsupportedDTypeForOp(self.dtype(), "index-select").bt()),
}
}
fn gather(&self, l: &Layout, ids: &Self, ids_l: &Layout, dim: usize) -> Result<Self> {
match ids {
Self::U8(ids) => Gather { ids, ids_l, dim }.map(self, l),
Self::U32(ids) => Gather { ids, ids_l, dim }.map(self, l),
Self::I64(ids) => Gather { ids, ids_l, dim }.map(self, l),
_ => Err(Error::UnsupportedDTypeForOp(self.dtype(), "gather").bt()),
}
}
fn scatter_add(
&self,
l: &Layout,
ids: &Self,
ids_l: &Layout,
src: &Self,
src_l: &Layout,
dim: usize,
) -> Result<Self> {
match ids {
Self::U8(ids) => ScatterAdd { ids, ids_l, dim }.map(self, l, src, src_l),
Self::U32(ids) => ScatterAdd { ids, ids_l, dim }.map(self, l, src, src_l),
Self::I64(ids) => ScatterAdd { ids, ids_l, dim }.map(self, l, src, src_l),
_ => Err(Error::UnsupportedDTypeForOp(self.dtype(), "scatter-add").bt()),
}
}
fn index_add(
&self,
l: &Layout,
ids: &Self,
ids_l: &Layout,
src: &Self,
src_l: &Layout,
dim: usize,
) -> Result<Self> {
match ids {
Self::U8(ids) => {
let ids = match ids_l.contiguous_offsets() {
Some((a, b)) => &ids[a..b],
None => Err(Error::RequiresContiguous { op: "index-add" }.bt())?,
};
IndexAdd { ids, dim }.map(self, l, src, src_l)
}
Self::U32(ids) => {
let ids = match ids_l.contiguous_offsets() {
Some((a, b)) => &ids[a..b],
None => Err(Error::RequiresContiguous { op: "index-add" }.bt())?,
};
IndexAdd { ids, dim }.map(self, l, src, src_l)
}
Self::I64(ids) => {
let ids = match ids_l.contiguous_offsets() {
Some((a, b)) => &ids[a..b],
None => Err(Error::RequiresContiguous { op: "index-add" }.bt())?,
};
IndexAdd { ids, dim }.map(self, l, src, src_l)
}
_ => Err(Error::UnsupportedDTypeForOp(self.dtype(), "index-add").bt()),
}
}
fn matmul(
&self,
rhs: &Self,
bmnk: (usize, usize, usize, usize),
lhs_l: &Layout,
rhs_l: &Layout,
) -> Result<Self> {
MatMul(bmnk).map(self, lhs_l, rhs, rhs_l)
}
fn device(&self) -> &Self::Device {
&CpuDevice
}
fn try_clone(&self, _: &Layout) -> Result<Self> {
Ok(self.clone())
}
fn to_cpu_storage(&self) -> Result<CpuStorage> {
Ok(self.clone())
}
}
impl BackendDevice for CpuDevice {
type Storage = CpuStorage;
fn location(&self) -> crate::DeviceLocation {
crate::DeviceLocation::Cpu
}
fn same_device(&self, _: &Self) -> bool {
true
}
fn storage_from_cpu_storage(&self, s: &CpuStorage) -> Result<Self::Storage> {
Ok(s.clone())
}
fn storage_from_cpu_storage_owned(&self, s: CpuStorage) -> Result<Self::Storage> {
Ok(s)
}
fn new(_: usize) -> Result<Self> {
Ok(Self)
}
fn set_seed(&self, _seed: u64) -> Result<()> {
crate::bail!("cannot seed the CPU rng with set_seed")
}
fn rand_uniform(&self, shape: &Shape, dtype: DType, min: f64, max: f64) -> Result<CpuStorage> {
use rand::prelude::*;
let elem_count = shape.elem_count();
let mut rng = rand::thread_rng();
match dtype {
DType::U8 | DType::U32 | DType::I64 => {
Err(Error::UnsupportedDTypeForOp(dtype, "rand_uniform").bt())
}
DType::BF16 => {
let mut data = Vec::with_capacity(elem_count);
let uniform =
rand::distr::Uniform::new(bf16::from_f64(min), bf16::from_f64(max)).map_err(Error::wrap)?;;
for _i in 0..elem_count {
data.push(rng.sample::<bf16, _>(uniform))
}
Ok(CpuStorage::BF16(data))
}
DType::F16 => {
let mut data = Vec::with_capacity(elem_count);
let uniform =
rand::distr::Uniform::new(f16::from_f64(min), f16::from_f64(max)).map_err(Error::wrap)?;
for _i in 0..elem_count {
data.push(rng.sample::<f16, _>(uniform))
}
Ok(CpuStorage::F16(data))
}
DType::F32 => {
let mut data = Vec::with_capacity(elem_count);
let uniform = rand::distr::Uniform::new(min as f32, max as f32).map_err(Error::wrap)?;
for _i in 0..elem_count {
data.push(rng.sample::<f32, _>(uniform))
}
Ok(CpuStorage::F32(data))
}
DType::F64 => {
let mut data = Vec::with_capacity(elem_count);
let uniform = rand::distr::Uniform::new(min, max).map_err(Error::wrap)?;
for _i in 0..elem_count {
data.push(rng.sample::<f64, _>(uniform))
}
Ok(CpuStorage::F64(data))
}
}
}
fn rand_normal(&self, shape: &Shape, dtype: DType, mean: f64, std: f64) -> Result<CpuStorage> {
use rand::prelude::*;
let elem_count = shape.elem_count();
let mut rng = rand::thread_rng();
match dtype {
DType::U8 | DType::U32 | DType::I64 => {
Err(Error::UnsupportedDTypeForOp(dtype, "rand_normal").bt())
}
DType::BF16 => {
let mut data = Vec::with_capacity(elem_count);
let normal = rand_distr::Normal::new(bf16::from_f64(mean), bf16::from_f64(std))
.map_err(Error::wrap)?;
for _i in 0..elem_count {
data.push(normal.sample(&mut rng))
}
Ok(CpuStorage::BF16(data))
}
DType::F16 => {
let mut data = Vec::with_capacity(elem_count);
let normal = rand_distr::Normal::new(f16::from_f64(mean), f16::from_f64(std))
.map_err(Error::wrap)?;
for _i in 0..elem_count {
data.push(normal.sample(&mut rng))
}
Ok(CpuStorage::F16(data))
}
DType::F32 => {
let mut data = Vec::with_capacity(elem_count);
let normal =
rand_distr::Normal::new(mean as f32, std as f32).map_err(Error::wrap)?;
for _i in 0..elem_count {
data.push(normal.sample(&mut rng))
}
Ok(CpuStorage::F32(data))
}
DType::F64 => {
let mut data = Vec::with_capacity(elem_count);
let normal = rand_distr::Normal::new(mean, std).map_err(Error::wrap)?;
for _i in 0..elem_count {
data.push(normal.sample(&mut rng))
}
Ok(CpuStorage::F64(data))
}
}
}
#[allow(clippy::uninit_vec)]
unsafe fn alloc_uninit(&self, shape: &Shape, dtype: DType) -> Result<CpuStorage> {
let elem_count = shape.elem_count();
// The code below is highly unsafe but hopefully not directly unsound as we only consider
// types that are Copy, not Drop, and for which all bit patterns are proper values.
// It's still pretty risky, see the following for more details:
// https://github.com/rust-lang/rust-clippy/issues/4483
let storage = match dtype {
DType::U8 => {
let mut v = Vec::with_capacity(elem_count);
v.set_len(elem_count);
CpuStorage::U8(v)
}
DType::U32 => {
let mut v = Vec::with_capacity(elem_count);
v.set_len(elem_count);
CpuStorage::U32(v)
}
DType::I64 => {
let mut v = Vec::with_capacity(elem_count);
v.set_len(elem_count);
CpuStorage::I64(v)
}
DType::BF16 => {
let mut v = Vec::with_capacity(elem_count);
v.set_len(elem_count);
CpuStorage::BF16(v)
}
DType::F16 => {
let mut v = Vec::with_capacity(elem_count);
v.set_len(elem_count);
CpuStorage::F16(v)
}
DType::F32 => {
let mut v = Vec::with_capacity(elem_count);
v.set_len(elem_count);
CpuStorage::F32(v)
}
DType::F64 => {
let mut v = Vec::with_capacity(elem_count);
v.set_len(elem_count);
CpuStorage::F64(v)
}
};
Ok(storage)
}
fn ones_impl(&self, shape: &Shape, dtype: DType) -> Result<CpuStorage> {
let elem_count = shape.elem_count();
let storage = match dtype {
DType::U8 => CpuStorage::U8(vec![1u8; elem_count]),
DType::U32 => CpuStorage::U32(vec![1u32; elem_count]),
DType::I64 => CpuStorage::I64(vec![1i64; elem_count]),
DType::BF16 => CpuStorage::BF16(vec![bf16::ONE; elem_count]),
DType::F16 => CpuStorage::F16(vec![f16::ONE; elem_count]),
DType::F32 => CpuStorage::F32(vec![1f32; elem_count]),
DType::F64 => CpuStorage::F64(vec![1f64; elem_count]),
};
Ok(storage)
}
fn zeros_impl(&self, shape: &Shape, dtype: DType) -> Result<CpuStorage> {
let elem_count = shape.elem_count();
let storage = match dtype {
DType::U8 => CpuStorage::U8(vec![0u8; elem_count]),
DType::U32 => CpuStorage::U32(vec![0u32; elem_count]),
DType::I64 => CpuStorage::I64(vec![0i64; elem_count]),
DType::BF16 => CpuStorage::BF16(vec![bf16::ZERO; elem_count]),
DType::F16 => CpuStorage::F16(vec![f16::ZERO; elem_count]),
DType::F32 => CpuStorage::F32(vec![0f32; elem_count]),
DType::F64 => CpuStorage::F64(vec![0f64; elem_count]),
};
Ok(storage)
}
}
#[macro_export]
macro_rules! map_dtype {
($name:expr, $storage:ident, $fn:expr, ($($dtypes:ident),+)) => {
match $storage {
$(CpuStorage::$dtypes(__e) => CpuStorage::$dtypes($fn(__e)),)*
s => Err(Error::UnsupportedDTypeForOp(s.dtype(), $name).bt())?,
}
};
}
/// Helper functions to write CPU kernels.
use crate::backend::BackendStorage;
use crate::{Error, Layout, Result, WithDType};
type C = super::CpuStorage;
pub trait Map1 {
fn f<T: WithDType>(&self, vs: &[T], layout: &Layout) -> Result<Vec<T>>;
fn map(&self, vs: &C, layout: &Layout) -> Result<C> {
match vs {
C::U8(vs) => Ok(C::U8(self.f(vs, layout)?)),
C::U32(vs) => Ok(C::U32(self.f(vs, layout)?)),
C::I64(vs) => Ok(C::I64(self.f(vs, layout)?)),
C::BF16(vs) => Ok(C::BF16(self.f(vs, layout)?)),
C::F16(vs) => Ok(C::F16(self.f(vs, layout)?)),
C::F32(vs) => Ok(C::F32(self.f(vs, layout)?)),
C::F64(vs) => Ok(C::F64(self.f(vs, layout)?)),
}
}
}
pub trait Map1Any {
fn f<T: WithDType, W: Fn(Vec<T>) -> C>(&self, vs: &[T], layout: &Layout, wrap: W) -> Result<C>;
fn map(&self, vs: &C, layout: &Layout) -> Result<C> {
match vs {
C::U8(vs) => Ok(self.f(vs, layout, C::U8)?),
C::U32(vs) => Ok(self.f(vs, layout, C::U32)?),
C::I64(vs) => Ok(self.f(vs, layout, C::I64)?),
C::BF16(vs) => Ok(self.f(vs, layout, C::BF16)?),
C::F16(vs) => Ok(self.f(vs, layout, C::F16)?),
C::F32(vs) => Ok(self.f(vs, layout, C::F32)?),
C::F64(vs) => Ok(self.f(vs, layout, C::F64)?),
}
}
}
pub trait Map2 {
const OP: &'static str;
fn f<T: WithDType>(&self, v1: &[T], l1: &Layout, v2: &[T], l2: &Layout) -> Result<Vec<T>>;
fn map(&self, v1: &C, l1: &Layout, v2: &C, l2: &Layout) -> Result<C> {
match (v1, v2) {
(C::U8(v1), C::U8(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
(C::U32(v1), C::U32(v2)) => Ok(C::U32(self.f(v1, l1, v2, l2)?)),
(C::I64(v1), C::I64(v2)) => Ok(C::I64(self.f(v1, l1, v2, l2)?)),
(C::BF16(v1), C::BF16(v2)) => Ok(C::BF16(self.f(v1, l1, v2, l2)?)),
(C::F16(v1), C::F16(v2)) => Ok(C::F16(self.f(v1, l1, v2, l2)?)),
(C::F32(v1), C::F32(v2)) => Ok(C::F32(self.f(v1, l1, v2, l2)?)),
(C::F64(v1), C::F64(v2)) => Ok(C::F64(self.f(v1, l1, v2, l2)?)),
_ => Err(Error::DTypeMismatchBinaryOp {
lhs: v1.dtype(),
rhs: v2.dtype(),
op: Self::OP,
}
.bt()),
}
}
}
pub trait Map2U8 {
const OP: &'static str;
fn f<T: WithDType>(&self, v1: &[T], l1: &Layout, v2: &[T], l2: &Layout) -> Result<Vec<u8>>;
fn map(&self, v1: &C, l1: &Layout, v2: &C, l2: &Layout) -> Result<C> {
match (v1, v2) {
(C::U8(v1), C::U8(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
(C::U32(v1), C::U32(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
(C::I64(v1), C::I64(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
(C::BF16(v1), C::BF16(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
(C::F16(v1), C::F16(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
(C::F32(v1), C::F32(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
(C::F64(v1), C::F64(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
_ => Err(Error::DTypeMismatchBinaryOp {
lhs: v1.dtype(),
rhs: v2.dtype(),
op: Self::OP,
}
.bt()),
}
}
}
pub fn binary_map<T: Copy, U: Copy, F: FnMut(T, T) -> U>(
lhs_l: &Layout,
rhs_l: &Layout,
lhs: &[T],
rhs: &[T],
mut f: F,
) -> Vec<U> {
match (lhs_l.contiguous_offsets(), rhs_l.contiguous_offsets()) {
(Some((o_l1, o_l2)), Some((o_r1, o_r2))) => lhs[o_l1..o_l2]
.iter()
.zip(rhs[o_r1..o_r2].iter())
.map(|(&l, &r)| f(l, r))
.collect(),
(Some((o_l1, o_l2)), None) => {
// TODO: Maybe we want to avoid going through the layout twice.
match rhs_l.offsets_b() {
Some(ob) => {
let mut i_in_block = 0;
let mut i_right_broadcast = 0;
lhs[o_l1..o_l2]
.iter()
.map(|&l| {
let r = unsafe { rhs.get_unchecked(i_in_block + ob.start) };
i_right_broadcast += 1;
if i_right_broadcast >= ob.right_broadcast {
i_in_block += 1;
i_right_broadcast = 0;
}
if i_in_block >= ob.len {
i_in_block = 0
}
f(l, *r)
})
.collect()
}
None => lhs_l
.strided_index()
.zip(rhs_l.strided_index())
.map(|(lhs_i, rhs_i)| f(lhs[lhs_i], rhs[rhs_i]))
.collect(),
}
}
(None, Some((o_r1, o_r2))) => {
// TODO: Maybe we want to avoid going through the layout twice.
match lhs_l.offsets_b() {
Some(ob) => {
let mut i_in_block = 0;
let mut i_right_broadcast = 0;
rhs[o_r1..o_r2]
.iter()
.map(|&r| {
let l = unsafe { lhs.get_unchecked(i_in_block + ob.start) };
i_right_broadcast += 1;
if i_right_broadcast >= ob.right_broadcast {
i_in_block += 1;
i_right_broadcast = 0;
}
if i_in_block >= ob.len {
i_in_block = 0
}
f(*l, r)
})
.collect()
}
None => lhs_l
.strided_index()
.zip(rhs_l.strided_index())
.map(|(lhs_i, rhs_i)| f(lhs[lhs_i], rhs[rhs_i]))
.collect(),
}
}
_ => lhs_l
.strided_index()
.zip(rhs_l.strided_index())
.map(|(lhs_i, rhs_i)| f(lhs[lhs_i], rhs[rhs_i]))
.collect(),
}
}
// Similar to binary_map but with vectorized variants.
pub fn binary_map_vec<T: Copy, F: FnMut(T, T) -> T, FV: FnMut(&[T], &[T], &mut [T])>(
lhs_l: &Layout,
rhs_l: &Layout,
lhs: &[T],
rhs: &[T],
mut f: F,
mut f_vec: FV,
) -> Vec<T> {
let el_count = lhs_l.shape().elem_count();
match (lhs_l.contiguous_offsets(), rhs_l.contiguous_offsets()) {
(Some((o_l1, o_l2)), Some((o_r1, o_r2))) => {
let mut ys: Vec<T> = Vec::with_capacity(el_count);
let ys_to_set = ys.spare_capacity_mut();
let ys_to_set = unsafe { std::mem::transmute::<_, &mut [T]>(ys_to_set) };
f_vec(&lhs[o_l1..o_l2], &rhs[o_r1..o_r2], ys_to_set);
// SAFETY: values are all set by f_vec.
unsafe { ys.set_len(el_count) };
ys
}
(Some((o_l1, o_l2)), None) => match rhs_l.offsets_b() {
Some(ob) if ob.right_broadcast == 1 => {
let rhs = &rhs[ob.start..ob.start + ob.len];
let mut ys: Vec<T> = Vec::with_capacity(el_count);
let ys_to_set = ys.spare_capacity_mut();
let ys_to_set = unsafe { std::mem::transmute::<_, &mut [T]>(ys_to_set) };
let mut dst_i = 0;
for src_i in (o_l1..o_l2).step_by(ob.len) {
f_vec(
&lhs[src_i..src_i + ob.len],
rhs,
&mut ys_to_set[dst_i..dst_i + ob.len],
);
dst_i += ob.len;
}
// SAFETY: values are all set by f_vec.
unsafe { ys.set_len(el_count) };
ys
}
Some(ob) => {
let rhs = &rhs[ob.start..ob.start + ob.len];
let mut ys = lhs[o_l1..o_l2].to_vec();
for idx_l in 0..ob.left_broadcast {
let start = idx_l * ob.len * ob.right_broadcast;
for (i, &r) in rhs.iter().enumerate() {
let start = start + i * ob.right_broadcast;
for v in ys[start..start + ob.right_broadcast].iter_mut() {
*v = f(*v, r)
}
}
}
ys
}
None => lhs_l
.strided_index()
.zip(rhs_l.strided_index())
.map(|(lhs_i, rhs_i)| f(lhs[lhs_i], rhs[rhs_i]))
.collect(),
},
(None, Some((o_r1, o_r2))) => match lhs_l.offsets_b() {
Some(ob) if ob.right_broadcast == 1 => {
let lhs = &lhs[ob.start..ob.start + ob.len];
let mut ys: Vec<T> = Vec::with_capacity(el_count);
let ys_to_set = ys.spare_capacity_mut();
let ys_to_set = unsafe { std::mem::transmute::<_, &mut [T]>(ys_to_set) };
let mut dst_i = 0;
for src_i in (o_r1..o_r2).step_by(ob.len) {
f_vec(
lhs,
&rhs[src_i..src_i + ob.len],
&mut ys_to_set[dst_i..dst_i + ob.len],
);
dst_i += ob.len;
}
// SAFETY: values are all set by f_vec.
unsafe { ys.set_len(el_count) };
ys
}
Some(ob) => {
let lhs = &lhs[ob.start..ob.start + ob.len];
let mut ys = rhs[o_r1..o_r2].to_vec();
for idx_l in 0..ob.left_broadcast {
let start = idx_l * ob.len * ob.right_broadcast;
for (i, &l) in lhs.iter().enumerate() {
let start = start + i * ob.right_broadcast;
for v in ys[start..start + ob.right_broadcast].iter_mut() {
*v = f(l, *v)
}
}
}
ys
}
None => lhs_l
.strided_index()
.zip(rhs_l.strided_index())
.map(|(lhs_i, rhs_i)| f(lhs[lhs_i], rhs[rhs_i]))
.collect(),
},
_ => lhs_l
.strided_index()
.zip(rhs_l.strided_index())
.map(|(lhs_i, rhs_i)| f(lhs[lhs_i], rhs[rhs_i]))
.collect(),
}
}
pub fn unary_map<T: Copy, U: Copy, F: FnMut(T) -> U>(
vs: &[T],
layout: &Layout,
mut f: F,
) -> Vec<U> {
match layout.strided_blocks() {
crate::StridedBlocks::SingleBlock { start_offset, len } => vs
[start_offset..start_offset + len]
.iter()
.map(|&v| f(v))
.collect(),
crate::StridedBlocks::MultipleBlocks {
block_start_index,
block_len,
} => {
let mut result = Vec::with_capacity(layout.shape().elem_count());
// Specialize the case where block_len is one to avoid the second loop.
if block_len == 1 {
for index in block_start_index {
let v = unsafe { vs.get_unchecked(index) };
result.push(f(*v))
}
} else {
for index in block_start_index {
for offset in 0..block_len {
let v = unsafe { vs.get_unchecked(index + offset) };
result.push(f(*v))
}
}
}
result
}
}
}
pub fn unary_map_vec<T: Copy, U: Copy, F: FnMut(T) -> U, FV: FnMut(&[T], &mut [U])>(
vs: &[T],
layout: &Layout,
mut f: F,
mut f_vec: FV,
) -> Vec<U> {
match layout.strided_blocks() {
crate::StridedBlocks::SingleBlock { start_offset, len } => {
let mut ys: Vec<U> = Vec::with_capacity(len);
let ys_to_set = ys.spare_capacity_mut();
let ys_to_set = unsafe { std::mem::transmute::<_, &mut [U]>(ys_to_set) };
f_vec(&vs[start_offset..start_offset + len], ys_to_set);
// SAFETY: values are all set by f_vec.
unsafe { ys.set_len(len) };
ys
}
crate::StridedBlocks::MultipleBlocks {
block_start_index,
block_len,
} => {
let el_count = layout.shape().elem_count();
// Specialize the case where block_len is one to avoid the second loop.
if block_len == 1 {
let mut result = Vec::with_capacity(el_count);
for index in block_start_index {
let v = unsafe { vs.get_unchecked(index) };
result.push(f(*v))
}
result
} else {
let mut ys: Vec<U> = Vec::with_capacity(el_count);
let ys_to_set = ys.spare_capacity_mut();
let ys_to_set = unsafe { std::mem::transmute::<_, &mut [U]>(ys_to_set) };
let mut dst_index = 0;
for src_index in block_start_index {
let vs = &vs[src_index..src_index + block_len];
let ys = &mut ys_to_set[dst_index..dst_index + block_len];
f_vec(vs, ys);
dst_index += block_len;
}
// SAFETY: values are all set by f_vec.
unsafe { ys.set_len(el_count) };
ys
}
}
}
}
use crate::WithDType;
use cudarc;
use cudarc::cudnn::safe::{Conv2dForward, Cudnn};
use cudarc::driver::{CudaSlice, CudaView, DeviceRepr, ValidAsZeroBits};
use std::cell::RefCell;
use std::collections::HashMap;
use std::sync::Arc;
// The cudnn handles are stored per thread here rather than on the CudaDevice as they are neither
// send nor sync.
thread_local! {
static CUDNN: RefCell<HashMap<crate::cuda_backend::DeviceId, Arc<Cudnn>>> = HashMap::new().into();
}
impl From<cudarc::cudnn::CudnnError> for crate::Error {
fn from(err: cudarc::cudnn::CudnnError) -> Self {
crate::Error::wrap(err)
}
}
impl From<cudarc::driver::DriverError> for crate::Error {
fn from(err: cudarc::driver::DriverError) -> Self {
crate::Error::wrap(err)
}
}
pub(crate) fn launch_conv2d<
T: DeviceRepr + WithDType + ValidAsZeroBits + cudarc::cudnn::CudnnDataType,
>(
src: &CudaView<T>,
src_l: &crate::Layout,
filter: &CudaView<T>,
dst: &mut CudaSlice<T>,
params: &crate::conv::ParamsConv2D,
dev: &crate::cuda_backend::CudaDevice,
) -> crate::Result<()> {
use crate::conv::CudnnFwdAlgo as CandleAlgo;
use cudarc::cudnn::sys::cudnnConvolutionFwdAlgo_t as A;
let device_id = dev.id();
let cudnn = CUDNN.with(|cudnn| {
if let Some(cudnn) = cudnn.borrow().get(&device_id) {
return Ok(cudnn.clone());
}
let c = Cudnn::new(dev.cuda_device());
if let Ok(c) = &c {
cudnn.borrow_mut().insert(device_id, c.clone());
}
c
})?;
let conv = cudnn.create_conv2d::<T>(
/* pad */ [params.padding as i32, params.padding as i32],
/* stride */ [params.stride as i32, params.stride as i32],
/* dilation */ [params.dilation as i32, params.dilation as i32],
cudarc::cudnn::sys::cudnnConvolutionMode_t::CUDNN_CROSS_CORRELATION,
)?;
let x_shape = [
params.b_size as i32,
params.c_in as i32,
params.i_h as i32,
params.i_w as i32,
];
// Note that `src` already starts at the proper offset.
let x = if src_l.is_contiguous() {
cudnn.create_4d_tensor(
cudarc::cudnn::sys::cudnnTensorFormat_t::CUDNN_TENSOR_NCHW,
x_shape,
)?
} else {
let s = src_l.stride();
cudnn.create_4d_tensor_ex(
x_shape,
[s[0] as i32, s[1] as i32, s[2] as i32, s[3] as i32],
)?
};
let w = cudnn.create_4d_filter(
cudarc::cudnn::sys::cudnnTensorFormat_t::CUDNN_TENSOR_NCHW,
[
params.c_out as i32,
params.c_in as i32,
params.k_h as i32,
params.k_w as i32,
],
)?;
let (w_out, h_out) = (params.out_w() as i32, params.out_h() as i32);
let y = cudnn.create_4d_tensor(
cudarc::cudnn::sys::cudnnTensorFormat_t::CUDNN_TENSOR_NCHW,
[params.b_size as i32, params.c_out as i32, h_out, w_out],
)?;
let conv2d = Conv2dForward {
conv: &conv,
x: &x,
w: &w,
y: &y,
};
let alg = match params.cudnn_fwd_algo {
None => conv2d.pick_algorithm()?,
Some(CandleAlgo::ImplicitGemm) => A::CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM,
Some(CandleAlgo::ImplicitPrecompGemm) => {
A::CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM
}
Some(CandleAlgo::Gemm) => A::CUDNN_CONVOLUTION_FWD_ALGO_GEMM,
Some(CandleAlgo::Direct) => A::CUDNN_CONVOLUTION_FWD_ALGO_DIRECT,
Some(CandleAlgo::Fft) => A::CUDNN_CONVOLUTION_FWD_ALGO_FFT,
Some(CandleAlgo::FftTiling) => A::CUDNN_CONVOLUTION_FWD_ALGO_FFT_TILING,
Some(CandleAlgo::Winograd) => A::CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD,
Some(CandleAlgo::WinogradNonFused) => A::CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED,
Some(CandleAlgo::Count) => A::CUDNN_CONVOLUTION_FWD_ALGO_COUNT,
};
let workspace_size = conv2d.get_workspace_size(alg)?;
let mut workspace = dev.cuda_device().alloc_zeros::<u8>(workspace_size)?;
unsafe {
conv2d.launch::<CudaSlice<u8>, _, _, _>(
alg,
Some(&mut workspace),
(T::one(), T::zero()),
src,
filter,
dst,
)?;
}
Ok(())
}
use crate::backend::BackendDevice;
use crate::{CpuStorage, DType, Layout, Result, Shape};
pub use candle_kernels as kernels;
pub use cudarc;
use cudarc::driver::{CudaFunction, LaunchAsync, LaunchConfig};
use half::{bf16, f16};
use std::sync::{Arc, Mutex};
use super::{CudaError, CudaStorage, CudaStorageSlice, WrapErr};
/// Unique identifier for cuda devices.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub struct DeviceId(usize);
impl DeviceId {
fn new() -> Self {
// https://users.rust-lang.org/t/idiomatic-rust-way-to-generate-unique-id/33805
use std::sync::atomic;
static COUNTER: atomic::AtomicUsize = atomic::AtomicUsize::new(1);
Self(COUNTER.fetch_add(1, atomic::Ordering::Relaxed))
}
}
struct CudaRng(cudarc::curand::CudaRng);
unsafe impl Send for CudaRng {}
#[derive(Clone)]
pub struct CudaDevice {
id: DeviceId,
device: Arc<cudarc::driver::CudaDevice>,
pub(crate) blas: Arc<cudarc::cublas::CudaBlas>,
curand: Arc<Mutex<CudaRng>>,
}
impl std::fmt::Debug for CudaDevice {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "CudaDevice({:?})", self.id)
}
}
impl std::ops::Deref for CudaDevice {
type Target = Arc<cudarc::driver::CudaDevice>;
fn deref(&self) -> &Self::Target {
&self.device
}
}
impl CudaDevice {
pub fn cuda_device(&self) -> Arc<cudarc::driver::CudaDevice> {
self.device.clone()
}
pub fn id(&self) -> DeviceId {
self.id
}
fn const_impl(&self, v: f64, shape: &Shape, dtype: DType) -> Result<CudaStorage> {
let elem_count = shape.elem_count();
let cfg = LaunchConfig::for_num_elems(elem_count as u32);
let slice = match dtype {
DType::U8 => {
// SAFETY: Set later by running the fill kernel.
let data = unsafe { self.alloc::<u8>(elem_count) }.w()?;
//let func = self.get_or_load_func("fill_u8", kernels::FILL)?;
let func = self.get_or_load_func_bin("fill_u8", kernels::FILL)?;
let params = (&data, v as u8, elem_count);
unsafe { func.launch(cfg, params) }.w()?;
CudaStorageSlice::U8(data)
}
DType::U32 => {
// SAFETY: Set later by running the fill kernel.
let data = unsafe { self.alloc::<u32>(elem_count) }.w()?;
//let func = self.get_or_load_func("fill_u32", kernels::FILL)?;
let func = self.get_or_load_func_bin("fill_u32", kernels::FILL)?;
let params = (&data, v as u32, elem_count);
unsafe { func.launch(cfg, params) }.w()?;
CudaStorageSlice::U32(data)
}
DType::I64 => {
// SAFETY: Set later by running the fill kernel.
let data = unsafe { self.alloc::<i64>(elem_count) }.w()?;
//let func = self.get_or_load_func("fill_i64", kernels::FILL)?;
let func = self.get_or_load_func_bin("fill_i64", kernels::FILL)?;
let params = (&data, v as i64, elem_count);
unsafe { func.launch(cfg, params) }.w()?;
CudaStorageSlice::I64(data)
}
DType::BF16 => {
// SAFETY: Set later by running the fill kernel.
let data = unsafe { self.alloc::<bf16>(elem_count) }.w()?;
//let func = self.get_or_load_func("fill_bf16", kernels::FILL)?;
let func = self.get_or_load_func_bin("fill_i64", kernels::FILL)?;
let params = (&data, bf16::from_f64(v), elem_count);
unsafe { func.launch(cfg, params) }.w()?;
CudaStorageSlice::BF16(data)
}
DType::F16 => {
// SAFETY: Set later by running the fill kernel.
let data = unsafe { self.alloc::<f16>(elem_count) }.w()?;
//let func = self.get_or_load_func("fill_f16", kernels::FILL)?;
let func = self.get_or_load_func_bin("fill_f16", kernels::FILL)?;
let params = (&data, f16::from_f64(v), elem_count);
unsafe { func.launch(cfg, params) }.w()?;
CudaStorageSlice::F16(data)
}
DType::F32 => {
// SAFETY: Set later by running the fill kernel.
let data = unsafe { self.alloc::<f32>(elem_count) }.w()?;
//let func = self.get_or_load_func("fill_f32", kernels::FILL)?;
let func = self.get_or_load_func_bin("fill_f32", kernels::FILL)?;
let params = (&data, v as f32, elem_count);
unsafe { func.launch(cfg, params) }.w()?;
CudaStorageSlice::F32(data)
}
DType::F64 => {
// SAFETY: Set later by running the fill kernel.
let data = unsafe { self.alloc::<f64>(elem_count) }.w()?;
//let func = self.get_or_load_func("fill_f64", kernels::FILL)?;
let func = self.get_or_load_func_bin("fill_f64", kernels::FILL)?;
let params = (&data, v, elem_count);
unsafe { func.launch(cfg, params) }.w()?;
CudaStorageSlice::F64(data)
}
};
Ok(CudaStorage {
slice,
device: self.clone(),
})
}
pub fn get_or_load_func(&self, module_name: &str, ptx: &'static str) -> Result<CudaFunction> {
if !self.has_func(module_name, module_name) {
// Leaking the string here is a bit sad but we need a &'static str and this is only
// done once per kernel name.
let static_module_name = Box::leak(module_name.to_string().into_boxed_str());
self.load_ptx(ptx.into(), module_name, &[static_module_name])
.map_err(|cuda| CudaError::Load {
cuda,
module_name: module_name.to_string(),
})
.w()?;
}
self.get_func(module_name, module_name)
// Clippy recommends this `ok_or` rather than `ok_or_else` so hopefully the compiler is
// able to only build the error value if needed.
.ok_or(CudaError::MissingKernel {
module_name: module_name.to_string(),
})
.w()
}
pub fn get_or_load_func_bin(&self, module_name: &str, ptx: &[u8]) -> Result<CudaFunction> {
if !self.has_func(module_name, module_name) {
// Leaking the string here is a bit sad but we need a &'static str and this is only
// done once per kernel name.
let static_module_name = Box::leak(module_name.to_string().into_boxed_str());
self.load_ptx_bin(ptx, module_name, &[static_module_name])
.map_err(|cuda| CudaError::Load {
cuda,
module_name: module_name.to_string(),
})
.w()?;
}
self.get_func(module_name, module_name)
// Clippy recommends this `ok_or` rather than `ok_or_else` so hopefully the compiler is
// able to only build the error value if needed.
.ok_or(CudaError::MissingKernel {
module_name: module_name.to_string(),
})
.w()
}
}
impl BackendDevice for CudaDevice {
type Storage = CudaStorage;
fn new(ordinal: usize) -> Result<Self> {
let device = cudarc::driver::CudaDevice::new(ordinal).w()?;
let blas = cudarc::cublas::CudaBlas::new(device.clone()).w()?;
let curand = cudarc::curand::CudaRng::new(299792458, device.clone()).w()?;
Ok(Self {
id: DeviceId::new(),
device,
blas: Arc::new(blas),
curand: Arc::new(Mutex::new(CudaRng(curand))),
})
}
fn set_seed(&self, seed: u64) -> Result<()> {
// We do not call set_seed but instead create a new curand object. This ensures that the
// state will be identical and the same random numbers will be generated.
let mut curand = self.curand.lock().unwrap();
curand.0 = cudarc::curand::CudaRng::new(seed, self.device.clone()).w()?;
Ok(())
}
fn location(&self) -> crate::DeviceLocation {
crate::DeviceLocation::Cuda {
gpu_id: self.device.ordinal(),
}
}
fn same_device(&self, rhs: &Self) -> bool {
self.id == rhs.id
}
fn zeros_impl(&self, shape: &Shape, dtype: DType) -> Result<CudaStorage> {
let elem_count = shape.elem_count();
let slice = match dtype {
DType::U8 => {
let data = self.alloc_zeros::<u8>(elem_count).w()?;
CudaStorageSlice::U8(data)
}
DType::U32 => {
let data = self.alloc_zeros::<u32>(elem_count).w()?;
CudaStorageSlice::U32(data)
}
DType::I64 => {
let data = self.alloc_zeros::<i64>(elem_count).w()?;
CudaStorageSlice::I64(data)
}
DType::BF16 => {
let data = self.alloc_zeros::<bf16>(elem_count).w()?;
CudaStorageSlice::BF16(data)
}
DType::F16 => {
let data = self.alloc_zeros::<f16>(elem_count).w()?;
CudaStorageSlice::F16(data)
}
DType::F32 => {
let data = self.alloc_zeros::<f32>(elem_count).w()?;
CudaStorageSlice::F32(data)
}
DType::F64 => {
let data = self.alloc_zeros::<f64>(elem_count).w()?;
CudaStorageSlice::F64(data)
}
};
Ok(CudaStorage {
slice,
device: self.clone(),
})
}
fn rand_uniform(&self, shape: &Shape, dtype: DType, lo: f64, up: f64) -> Result<CudaStorage> {
let elem_count = shape.elem_count();
let curand = self.curand.lock().unwrap();
let slice = match dtype {
// TODO: Add support for F16 and BF16 though this is likely to require some upstream
// cudarc changes.
DType::U8 | DType::U32 | DType::I64 | DType::F16 | DType::BF16 => {
Err(CudaError::UnsupportedDtype {
dtype,
op: "rand_uniform",
})
.w()?
}
DType::F32 => {
let mut data = unsafe { self.alloc::<f32>(elem_count) }.w()?;
curand.0.fill_with_uniform(&mut data).w()?;
CudaStorageSlice::F32(data)
}
DType::F64 => {
let mut data = unsafe { self.alloc::<f64>(elem_count) }.w()?;
curand.0.fill_with_uniform(&mut data).w()?;
CudaStorageSlice::F64(data)
}
};
let slice = if lo == 0. && up == 1.0 {
slice
} else {
use super::utils::Map1;
let layout = Layout::contiguous(shape);
super::Affine(up - lo, lo).map(&slice, self, &layout)?
};
Ok(CudaStorage {
slice,
device: self.clone(),
})
}
fn rand_normal(&self, shape: &Shape, dtype: DType, mean: f64, std: f64) -> Result<CudaStorage> {
// TODO: Add support for F16 and BF16 though this is likely to require some upstream
// cudarc changes.
let elem_count = shape.elem_count();
let curand = self.curand.lock().unwrap();
// curand can only generate an odd number of values.
// https://github.com/huggingface/candle/issues/734
let elem_count_round = if elem_count % 2 == 1 {
elem_count + 1
} else {
elem_count
};
let slice = match dtype {
DType::U8 | DType::U32 | DType::I64 | DType::F16 | DType::BF16 => {
Err(CudaError::UnsupportedDtype {
dtype,
op: "rand_normal",
})
.w()?
}
DType::F32 => {
let mut data = unsafe { self.alloc::<f32>(elem_count_round) }.w()?;
curand
.0
.fill_with_normal(&mut data, mean as f32, std as f32)
.w()?;
CudaStorageSlice::F32(data)
}
DType::F64 => {
let mut data = unsafe { self.alloc::<f64>(elem_count_round) }.w()?;
curand.0.fill_with_normal(&mut data, mean, std).w()?;
CudaStorageSlice::F64(data)
}
};
Ok(CudaStorage {
slice,
device: self.clone(),
})
}
fn ones_impl(&self, shape: &Shape, dtype: DType) -> Result<CudaStorage> {
self.const_impl(1., shape, dtype)
}
unsafe fn alloc_uninit(&self, shape: &Shape, dtype: DType) -> Result<Self::Storage> {
let elem_count = shape.elem_count();
let slice = match dtype {
DType::U8 => {
let data = self.alloc::<u8>(elem_count).w()?;
CudaStorageSlice::U8(data)
}
DType::U32 => {
let data = self.alloc::<u32>(elem_count).w()?;
CudaStorageSlice::U32(data)
}
DType::I64 => {
let data = self.alloc::<i64>(elem_count).w()?;
CudaStorageSlice::I64(data)
}
DType::BF16 => {
let data = self.alloc::<bf16>(elem_count).w()?;
CudaStorageSlice::BF16(data)
}
DType::F16 => {
let data = self.alloc::<f16>(elem_count).w()?;
CudaStorageSlice::F16(data)
}
DType::F32 => {
let data = self.alloc::<f32>(elem_count).w()?;
CudaStorageSlice::F32(data)
}
DType::F64 => {
let data = self.alloc::<f64>(elem_count).w()?;
CudaStorageSlice::F64(data)
}
};
Ok(CudaStorage {
slice,
device: self.clone(),
})
}
fn storage_from_cpu_storage(&self, storage: &CpuStorage) -> Result<CudaStorage> {
let slice = match storage {
CpuStorage::U8(storage) => {
let data = self.htod_sync_copy(storage).w()?;
CudaStorageSlice::U8(data)
}
CpuStorage::U32(storage) => {
let data = self.htod_sync_copy(storage).w()?;
CudaStorageSlice::U32(data)
}
CpuStorage::I64(storage) => {
let data = self.htod_sync_copy(storage).w()?;
CudaStorageSlice::I64(data)
}
CpuStorage::BF16(storage) => {
let data = self.htod_sync_copy(storage).w()?;
CudaStorageSlice::BF16(data)
}
CpuStorage::F16(storage) => {
let data = self.htod_sync_copy(storage).w()?;
CudaStorageSlice::F16(data)
}
CpuStorage::F32(storage) => {
let data = self.htod_sync_copy(storage).w()?;
CudaStorageSlice::F32(data)
}
CpuStorage::F64(storage) => {
let data = self.htod_sync_copy(storage).w()?;
CudaStorageSlice::F64(data)
}
};
Ok(CudaStorage {
slice,
device: self.clone(),
})
}
fn storage_from_cpu_storage_owned(&self, storage: CpuStorage) -> Result<CudaStorage> {
let slice = match storage {
CpuStorage::U8(storage) => {
let data = self.htod_copy(storage).w()?;
CudaStorageSlice::U8(data)
}
CpuStorage::U32(storage) => {
let data = self.htod_copy(storage).w()?;
CudaStorageSlice::U32(data)
}
CpuStorage::I64(storage) => {
let data = self.htod_copy(storage).w()?;
CudaStorageSlice::I64(data)
}
CpuStorage::BF16(storage) => {
let data = self.htod_copy(storage).w()?;
CudaStorageSlice::BF16(data)
}
CpuStorage::F16(storage) => {
let data = self.htod_copy(storage).w()?;
CudaStorageSlice::F16(data)
}
CpuStorage::F32(storage) => {
let data = self.htod_copy(storage).w()?;
CudaStorageSlice::F32(data)
}
CpuStorage::F64(storage) => {
let data = self.htod_copy(storage).w()?;
CudaStorageSlice::F64(data)
}
};
Ok(CudaStorage {
slice,
device: self.clone(),
})
}
}
use crate::{DType, Layout};
/// cudarc related errors
#[derive(thiserror::Error, Debug)]
pub enum CudaError {
#[error(transparent)]
Cuda(#[from] cudarc::driver::DriverError),
#[error(transparent)]
Compiler(#[from] cudarc::nvrtc::CompileError),
#[error(transparent)]
Cublas(#[from] cudarc::cublas::result::CublasError),
#[error(transparent)]
Curand(#[from] cudarc::curand::result::CurandError),
#[error("missing kernel '{module_name}'")]
MissingKernel { module_name: String },
#[error("unsupported dtype {dtype:?} for {op}")]
UnsupportedDtype { dtype: DType, op: &'static str },
#[error("internal error '{0}'")]
InternalError(&'static str),
#[error("matmul is only supported for contiguous tensors lstride: {lhs_stride:?} rstride: {rhs_stride:?} mnk: {mnk:?}")]
MatMulNonContiguous {
lhs_stride: Layout,
rhs_stride: Layout,
mnk: (usize, usize, usize),
},
#[error("{msg}, expected: {expected:?}, got: {got:?}")]
UnexpectedDType {
msg: &'static str,
expected: DType,
got: DType,
},
#[error("{cuda} when loading {module_name}")]
Load {
cuda: cudarc::driver::DriverError,
module_name: String,
},
}
impl From<CudaError> for crate::Error {
fn from(val: CudaError) -> Self {
crate::Error::Cuda(Box::new(val)).bt()
}
}
pub trait WrapErr<O> {
fn w(self) -> std::result::Result<O, crate::Error>;
}
impl<O, E: Into<CudaError>> WrapErr<O> for std::result::Result<O, E> {
fn w(self) -> std::result::Result<O, crate::Error> {
self.map_err(|e| crate::Error::Cuda(Box::new(e.into())).bt())
}
}
use crate::backend::{BackendDevice, BackendStorage};
use crate::op::{BinaryOpT, CmpOp, ReduceOp, UnaryOpT};
use crate::{CpuStorage, DType, Layout, Result, Shape, WithDType};
pub use candle_kernels as kernels;
pub use cudarc;
use cudarc::cublas::{Gemm, GemmConfig, StridedBatchedConfig};
use cudarc::driver::{
CudaSlice, DevicePtr, DeviceRepr, DeviceSlice, LaunchAsync, LaunchConfig, ValidAsZeroBits,
};
use half::{bf16, f16};
#[cfg(feature = "cudnn")]
pub mod cudnn;
mod device;
mod error;
mod utils;
pub use device::{CudaDevice, DeviceId};
pub use error::{CudaError, WrapErr};
pub use utils::{Map1, Map1Any, Map2, Map2Any, Map2InPlace, S};
enum SlicePtrOrNull<T> {
Ptr(CudaSlice<T>),
Null,
}
unsafe impl<T: DeviceRepr> DeviceRepr for &SlicePtrOrNull<T> {
fn as_kernel_param(&self) -> *mut std::ffi::c_void {
match self {
SlicePtrOrNull::Ptr(slice) => slice.as_kernel_param(),
SlicePtrOrNull::Null => 0usize.as_kernel_param(),
}
}
}
impl SlicePtrOrNull<usize> {
fn params_from_layout(dev: &CudaDevice, l: &Layout) -> Result<Self> {
let ds = if l.is_contiguous() {
SlicePtrOrNull::Null
} else {
SlicePtrOrNull::Ptr(dev.htod_copy([l.dims(), l.stride()].concat()).w()?)
};
Ok(ds)
}
}
#[derive(Debug)]
pub enum CudaStorageSlice {
U8(CudaSlice<u8>),
U32(CudaSlice<u32>),
I64(CudaSlice<i64>),
BF16(CudaSlice<bf16>),
F16(CudaSlice<f16>),
F32(CudaSlice<f32>),
F64(CudaSlice<f64>),
}
struct Clone;
impl Map1 for Clone {
fn f<T: DeviceRepr>(
&self,
s: &CudaSlice<T>,
_: &CudaDevice,
_: &Layout,
) -> Result<CudaSlice<T>> {
s.try_clone().w()
}
}
pub fn kernel_name<T: WithDType>(root: &str) -> String {
let dtype = T::DTYPE.as_str();
format!("{root}_{dtype}")
}
struct Affine(f64, f64);
impl Map1 for Affine {
fn f<T: DeviceRepr + WithDType>(
&self,
src: &CudaSlice<T>,
dev: &CudaDevice,
layout: &Layout,
) -> Result<CudaSlice<T>> {
let shape = layout.shape();
let dims = shape.dims();
let el = shape.elem_count();
let cfg = LaunchConfig::for_num_elems(el as u32);
let ds = SlicePtrOrNull::params_from_layout(dev, layout)?;
let src = &src.slice(layout.start_offset()..);
//let func = dev.get_or_load_func(&kernel_name::<T>("affine"), kernels::AFFINE)?;
let func = dev.get_or_load_func_bin(&kernel_name::<T>("affine"), kernels::AFFINE)?;
// SAFETY: Set later by running the kernel.
let out = unsafe { dev.alloc::<T>(el) }.w()?;
let params = (
el,
dims.len(),
&ds,
src,
&out,
T::from_f64(self.0),
T::from_f64(self.1),
);
// SAFETY: ffi.
unsafe { func.launch(cfg, params) }.w()?;
Ok(out)
}
}
struct Elu(f64);
impl Map1 for Elu {
fn f<T: DeviceRepr + WithDType>(
&self,
src: &CudaSlice<T>,
dev: &CudaDevice,
layout: &Layout,
) -> Result<CudaSlice<T>> {
let shape = layout.shape();
let dims = shape.dims();
let el = shape.elem_count();
let cfg = LaunchConfig::for_num_elems(el as u32);
let ds = SlicePtrOrNull::params_from_layout(dev, layout)?;
let src = &src.slice(layout.start_offset()..);
//let func = dev.get_or_load_func(&kernel_name::<T>("uelu"), kernels::UNARY)?;
let func = dev.get_or_load_func_bin(&kernel_name::<T>("uelu"), kernels::UNARY)?;
// SAFETY: Set later by running the kernel.
let out = unsafe { dev.alloc::<T>(el) }.w()?;
let params = (el, dims.len(), &ds, T::from_f64(self.0), src, &out);
// SAFETY: ffi.
unsafe { func.launch(cfg, params) }.w()?;
Ok(out)
}
}
struct Im2Col1D {
l_k: usize,
stride: usize,
dilation: usize,
padding: usize,
}
impl Im2Col1D {
fn l_out(&self, l: usize) -> usize {
(l + 2 * self.padding - self.dilation * (self.l_k - 1) - 1) / self.stride + 1
}
}
impl Map1 for Im2Col1D {
fn f<T: DeviceRepr + WithDType>(
&self,
src: &CudaSlice<T>,
dev: &CudaDevice,
layout: &Layout,
) -> Result<CudaSlice<T>> {
let shape = layout.shape();
let dims = shape.dims();
let l_out = self.l_out(dims[2]);
let dst_el = dims[0] * l_out * dims[1] * self.l_k;
let cfg = LaunchConfig::for_num_elems(dst_el as u32);
let ds = dev.htod_copy([dims, layout.stride()].concat()).w()?;
let src = &src.slice(layout.start_offset()..);
//let func = dev.get_or_load_func(&kernel_name::<T>("im2col1d"), kernels::CONV)?;
let func = dev.get_or_load_func_bin(&kernel_name::<T>("im2col1d"), kernels::CONV)?;
// SAFETY: Set later by running the kernel.
let dst = unsafe { dev.alloc::<T>(dst_el) }.w()?;
let params = (
dst_el,
l_out,
self.l_k,
self.stride,
self.padding,
self.dilation,
&ds,
src,
&dst,
);
// SAFETY: ffi.
unsafe { func.launch(cfg, params) }.w()?;
Ok(dst)
}
}
struct Im2Col {
h_k: usize,
w_k: usize,
stride: usize,
dilation: usize,
padding: usize,
}
impl Im2Col {
fn hw_out(&self, h: usize, w: usize) -> (usize, usize) {
let h_out = (h + 2 * self.padding - self.dilation * (self.h_k - 1) - 1) / self.stride + 1;
let w_out = (w + 2 * self.padding - self.dilation * (self.w_k - 1) - 1) / self.stride + 1;
(h_out, w_out)
}
}
impl Map1 for Im2Col {
fn f<T: DeviceRepr + WithDType>(
&self,
src: &CudaSlice<T>,
dev: &CudaDevice,
layout: &Layout,
) -> Result<CudaSlice<T>> {
let shape = layout.shape();
let dims = shape.dims();
let (h_out, w_out) = self.hw_out(dims[2], dims[3]);
let dst_el = dims[0] * h_out * w_out * dims[1] * self.h_k * self.w_k;
let cfg = LaunchConfig::for_num_elems(dst_el as u32);
let ds = dev.htod_copy([dims, layout.stride()].concat()).w()?;
let src = &src.slice(layout.start_offset()..);
//let func = dev.get_or_load_func(&kernel_name::<T>("im2col"), kernels::CONV)?;
let func = dev.get_or_load_func_bin(&kernel_name::<T>("im2col"), kernels::CONV)?;
// SAFETY: Set later by running the kernel.
let dst = unsafe { dev.alloc::<T>(dst_el) }.w()?;
let params = (
dst_el,
h_out,
w_out,
self.h_k,
self.w_k,
self.stride,
self.padding,
self.dilation,
&ds,
src,
&dst,
);
// SAFETY: ffi.
unsafe { func.launch(cfg, params) }.w()?;
Ok(dst)
}
}
struct Powf(f64);
impl Map1 for Powf {
fn f<T: DeviceRepr + WithDType>(
&self,
src: &CudaSlice<T>,
dev: &CudaDevice,
layout: &Layout,
) -> Result<CudaSlice<T>> {
let shape = layout.shape();
let dims = shape.dims();
let el = shape.elem_count();
let cfg = LaunchConfig::for_num_elems(el as u32);
let ds = SlicePtrOrNull::params_from_layout(dev, layout)?;
let src = &src.slice(layout.start_offset()..);
//let func = dev.get_or_load_func(&kernel_name::<T>("upowf"), kernels::UNARY)?;
let func = dev.get_or_load_func_bin(&kernel_name::<T>("upowf"), kernels::UNARY)?;
// SAFETY: Set later by running the kernel.
let out = unsafe { dev.alloc::<T>(el) }.w()?;
let params = (el, dims.len(), &ds, T::from_f64(self.0), src, &out);
// SAFETY: ffi.
unsafe { func.launch(cfg, params) }.w()?;
Ok(out)
}
}
struct Sum<'a>(&'a [usize]);
impl<'a> Map1 for Sum<'a> {
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits>(
&self,
src: &CudaSlice<T>,
dev: &CudaDevice,
layout: &Layout,
) -> Result<CudaSlice<T>> {
let shape = layout.shape();
let src_dims = shape.dims();
let el = shape.elem_count();
let mut dst_el = el;
for &sum_dim in self.0.iter() {
dst_el /= src_dims[sum_dim];
}
let mut sum_dims = self.0.to_vec();
// Sort the sum_dims as they have to be processed from left to right when converting the
// indexes.
sum_dims.sort();
let sum_dims_l: Vec<usize> = sum_dims.iter().map(|&d| src_dims[d]).collect();
let sum_dims_s: Vec<usize> = sum_dims
.iter()
.map(|&d| src_dims[d + 1..].iter().product::<usize>())
.collect();
let cfg = LaunchConfig::for_num_elems(el as u32);
let ds = dev
.htod_copy([src_dims, layout.stride(), &sum_dims_l, &sum_dims_s].concat())
.w()?;
let src = &src.slice(layout.start_offset()..);
//let func = dev.get_or_load_func(&kernel_name::<T>("sum"), kernels::REDUCE)?;
let func = dev.get_or_load_func_bin(&kernel_name::<T>("sum"), kernels::REDUCE)?;
let out = dev.alloc_zeros::<T>(dst_el).w()?;
let params = (el, src_dims.len(), sum_dims.len(), &ds, src, &out);
// SAFETY: ffi.
unsafe { func.launch(cfg, params) }.w()?;
Ok(out)
}
}
struct FastReduce<'a>(&'a [usize], ReduceOp);
impl<'a> Map1Any for FastReduce<'a> {
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits, W: Fn(CudaSlice<T>) -> S>(
&self,
src: &CudaSlice<T>,
dev: &CudaDevice,
layout: &Layout,
wrap: W,
) -> Result<S> {
let src_stride = layout.stride();
let src_dims = layout.shape().dims();
let src_el: usize = src_dims.iter().product();
// Source dims and strides with the sum dims at the end.
let mut dims = vec![];
let mut stride = vec![];
let mut dst_el: usize = 1;
for (dim_idx, &d) in src_dims.iter().enumerate() {
if !self.0.contains(&dim_idx) {
dst_el *= d;
dims.push(d);
stride.push(src_stride[dim_idx]);
}
}
for &dim_idx in self.0.iter() {
dims.push(src_dims[dim_idx]);
stride.push(src_stride[dim_idx]);
}
let el_to_sum_per_block = src_el / dst_el;
// The reduction loop requires the shared array to be properly initialized and for
// this we want the number of threads to be a power of two.
let block_dim = usize::min(1024, el_to_sum_per_block).next_power_of_two();
let cfg = LaunchConfig {
// TODO: Maybe use grid_y if the output is too large?
// TODO: Specialized implementation when reducing on no or all dimensions or when
// reducing only aggregate a small number of elements together.
grid_dim: (dst_el as u32, 1, 1),
block_dim: (block_dim as u32, 1, 1),
shared_mem_bytes: 0,
};
let ds = dev
.htod_copy([dims.as_slice(), stride.as_slice()].concat())
.w()?;
let src = &src.slice(layout.start_offset()..);
let (name, check_empty, return_index) = match self.1 {
ReduceOp::Sum => ("fast_sum", false, false),
ReduceOp::Min => ("fast_min", true, false),
ReduceOp::Max => ("fast_max", true, false),
ReduceOp::ArgMin => ("fast_argmin", true, true),
ReduceOp::ArgMax => ("fast_argmax", true, true),
};
if check_empty && layout.shape().elem_count() == 0 {
Err(crate::Error::EmptyTensor { op: "reduce" }.bt())?
}
//let func = dev.get_or_load_func(&kernel_name::<T>(name), kernels::REDUCE)?;
let func = dev.get_or_load_func_bin(&kernel_name::<T>(name), kernels::REDUCE)?;
if return_index {
// SAFETY: filled in by the follow up kernel.
let out = unsafe { dev.alloc::<u32>(dst_el) }.w()?;
let params = (src_el, el_to_sum_per_block, src_dims.len(), &ds, src, &out);
// SAFETY: ffi.
unsafe { func.launch(cfg, params) }.w()?;
Ok(S::U32(out))
} else {
// SAFETY: filled in by the follow up kernel.
let out = unsafe { dev.alloc::<T>(dst_el) }.w()?;
let params = (src_el, el_to_sum_per_block, src_dims.len(), &ds, src, &out);
// SAFETY: ffi.
unsafe { func.launch(cfg, params) }.w()?;
Ok(wrap(out))
}
}
}
impl<U: UnaryOpT> Map1 for U {
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits>(
&self,
src: &CudaSlice<T>,
dev: &CudaDevice,
layout: &Layout,
) -> Result<CudaSlice<T>> {
let shape = layout.shape();
let dims = shape.dims();
let el_count = shape.elem_count();
let cfg = LaunchConfig::for_num_elems(el_count as u32);
let ds = SlicePtrOrNull::params_from_layout(dev, layout)?;
let src = &src.slice(layout.start_offset()..);
//let func = dev.get_or_load_func(&kernel_name::<T>(U::KERNEL), kernels::UNARY)?;
let func = dev.get_or_load_func_bin(&kernel_name::<T>(U::KERNEL), kernels::UNARY)?;
// SAFETY: Set later by running the kernel.
let out = unsafe { dev.alloc::<T>(el_count) }.w()?;
let params = (el_count, dims.len(), &ds, src, &out);
// SAFETY: ffi.
unsafe { func.launch(cfg, params) }.w()?;
Ok(out)
}
}
struct IndexSelect<'a>(&'a CudaStorage, &'a Layout, usize);
impl<'a> Map1 for IndexSelect<'a> {
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits>(
&self,
src: &CudaSlice<T>,
dev: &CudaDevice,
src_l: &Layout,
) -> Result<CudaSlice<T>> {
let ids_l = &self.1;
let (name, ids) = match &self.0.slice {
CudaStorageSlice::U32(slice) => {
("is_u32", *slice.slice(ids_l.start_offset()..).device_ptr())
}
CudaStorageSlice::U8(slice) => {
("is_u8", *slice.slice(ids_l.start_offset()..).device_ptr())
}
CudaStorageSlice::I64(slice) => {
("is_i64", *slice.slice(ids_l.start_offset()..).device_ptr())
}
_ => Err(CudaError::UnexpectedDType {
msg: "index_select ids should be u8 or u32",
expected: DType::U32,
got: self.0.dtype(),
})
.w()?,
};
let ids_shape = ids_l.shape();
let ids_dims = ids_shape.dims();
let ds = dev.htod_copy([ids_dims, ids_l.stride()].concat()).w()?;
let src = match src_l.contiguous_offsets() {
Some((o1, o2)) => src.slice(o1..o2),
None => Err(crate::Error::RequiresContiguous { op: "index-select" }.bt())?,
};
let left_size: usize = src_l.dims()[..self.2].iter().product();
let right_size: usize = src_l.dims()[self.2 + 1..].iter().product();
let src_dim_size = src_l.dims()[self.2];
let ids_dim_size = ids_shape.elem_count();
let dst_el = ids_shape.elem_count() * left_size * right_size;
let cfg = LaunchConfig::for_num_elems(dst_el as u32);
//let func = dev.get_or_load_func(&kernel_name::<T>(name), kernels::INDEXING)?;
let func = dev.get_or_load_func_bin(&kernel_name::<T>(name), kernels::INDEXING)?;
// SAFETY: Set later by running the kernel.
let out = unsafe { dev.alloc::<T>(dst_el) }.w()?;
let params = (
dst_el,
ids_dims.len(),
&ds,
ids,
&src,
&out,
left_size,
src_dim_size,
ids_dim_size,
right_size,
);
// SAFETY: ffi.
unsafe { func.launch(cfg, params) }.w()?;
Ok(out)
}
}
struct Gather<'a>(&'a CudaStorage, &'a Layout, usize);
impl<'a> Map1 for Gather<'a> {
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits>(
&self,
src: &CudaSlice<T>,
dev: &CudaDevice,
src_l: &Layout,
) -> Result<CudaSlice<T>> {
let ids = &self.0;
let ids_l = &self.1;
let dim = self.2;
let (ids_o1, ids_o2) = match ids_l.contiguous_offsets() {
Some(o12) => o12,
None => Err(crate::Error::RequiresContiguous { op: "gather" }.bt())?,
};
let (name, ids) = match &ids.slice {
CudaStorageSlice::U32(slice) => {
("gather_u32", *slice.slice(ids_o1..ids_o2).device_ptr())
}
CudaStorageSlice::U8(slice) => ("gather_u8", *slice.slice(ids_o1..ids_o2).device_ptr()),
CudaStorageSlice::I64(slice) => {
("gather_i64", *slice.slice(ids_o1..ids_o2).device_ptr())
}
_ => Err(CudaError::UnexpectedDType {
msg: "gather ids should be u8/u32/i64",
expected: DType::U32,
got: ids.dtype(),
})?,
};
let el = ids_l.shape().elem_count();
let cfg = LaunchConfig::for_num_elems(el as u32);
let src = match src_l.contiguous_offsets() {
Some((o1, o2)) => src.slice(o1..o2),
None => Err(crate::Error::RequiresContiguous { op: "gather" }.bt())?,
};
let left_sz: usize = src_l.dims()[..dim].iter().product();
let right_sz: usize = src_l.dims()[dim + 1..].iter().product();
let src_dim_sz = src_l.dims()[dim];
let ids_dim_sz = ids_l.dims()[dim];
//let func = dev.get_or_load_func(&kernel_name::<T>(name), kernels::INDEXING)?;
let func = dev.get_or_load_func_bin(&kernel_name::<T>(name), kernels::INDEXING)?;
// SAFETY: Set later by running the kernel.
let out = unsafe { dev.alloc::<T>(el) }.w()?;
let params = (
el, ids, &src, &out, left_sz, src_dim_sz, ids_dim_sz, right_sz,
);
// SAFETY: ffi.
unsafe { func.launch(cfg, params) }.w()?;
Ok(out)
}
}
struct IndexAdd<'a>(&'a CudaStorage, &'a Layout, usize);
impl<'a> Map2InPlace for IndexAdd<'a> {
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits>(
&self,
dst: &mut CudaSlice<T>,
dst_shape: &Shape,
src: &CudaSlice<T>,
src_l: &Layout,
dev: &CudaDevice,
) -> Result<()> {
let ids = &self.0;
let ids_l = &self.1;
let dim = self.2;
let (ids_o1, ids_o2) = match ids_l.contiguous_offsets() {
Some(o12) => o12,
None => Err(crate::Error::RequiresContiguous { op: "index-add" }.bt())?,
};
let (name, ids) = match &ids.slice {
CudaStorageSlice::U32(slice) => ("ia_u32", *slice.slice(ids_o1..ids_o2).device_ptr()),
CudaStorageSlice::I64(slice) => ("ia_i64", *slice.slice(ids_o1..ids_o2).device_ptr()),
CudaStorageSlice::U8(slice) => ("ia_u8", *slice.slice(ids_o1..ids_o2).device_ptr()),
_ => Err(CudaError::UnexpectedDType {
msg: "index-add ids should be u8/u32/i64",
expected: DType::U32,
got: ids.dtype(),
})?,
};
let src = match src_l.contiguous_offsets() {
Some((o1, o2)) => src.slice(o1..o2),
None => Err(crate::Error::RequiresContiguous { op: "index-add" }.bt())?,
};
let left_sz: usize = src_l.dims()[..dim].iter().product();
let right_sz: usize = src_l.dims()[dim + 1..].iter().product();
let src_dim_sz = src_l.dims()[dim];
let dst_dim_sz = dst_shape.dims()[dim];
let ids_dim_sz = ids_l.dims()[0];
let cfg = LaunchConfig::for_num_elems((left_sz * right_sz) as u32);
//let func = dev.get_or_load_func(&kernel_name::<T>(name), kernels::INDEXING)?;
let func = dev.get_or_load_func_bin(&kernel_name::<T>(name), kernels::INDEXING)?;
// SAFETY: Set later by running the kernel.
let params = (
ids, ids_dim_sz, &src, dst, left_sz, src_dim_sz, dst_dim_sz, right_sz,
);
// SAFETY: ffi.
unsafe { func.launch(cfg, params) }.w()?;
Ok(())
}
}
struct ScatterAdd<'a>(&'a CudaStorage, &'a Layout, usize);
impl<'a> Map2InPlace for ScatterAdd<'a> {
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits>(
&self,
dst: &mut CudaSlice<T>,
dst_shape: &Shape,
src: &CudaSlice<T>,
src_l: &Layout,
dev: &CudaDevice,
) -> Result<()> {
let ids = &self.0;
let ids_l = &self.1;
let dim = self.2;
let (ids_o1, ids_o2) = match ids_l.contiguous_offsets() {
Some(o12) => o12,
None => Err(crate::Error::RequiresContiguous { op: "scatter-add" }.bt())?,
};
let (name, ids) = match &ids.slice {
CudaStorageSlice::U32(slice) => ("sa_u32", *slice.slice(ids_o1..ids_o2).device_ptr()),
CudaStorageSlice::I64(slice) => ("sa_i64", *slice.slice(ids_o1..ids_o2).device_ptr()),
CudaStorageSlice::U8(slice) => ("sa_u8", *slice.slice(ids_o1..ids_o2).device_ptr()),
_ => Err(CudaError::UnexpectedDType {
msg: "scatter-add ids should be u8/u32/i64",
expected: DType::U32,
got: ids.dtype(),
})?,
};
let src = match src_l.contiguous_offsets() {
Some((o1, o2)) => src.slice(o1..o2),
None => Err(crate::Error::RequiresContiguous { op: "scatter-add" }.bt())?,
};
let left_sz: usize = src_l.dims()[..dim].iter().product();
let right_sz: usize = src_l.dims()[dim + 1..].iter().product();
let src_dim_sz = src_l.dims()[dim];
let dst_dim_sz = dst_shape.dims()[dim];
let cfg = LaunchConfig::for_num_elems((left_sz * right_sz) as u32);
//let func = dev.get_or_load_func(&kernel_name::<T>(name), kernels::INDEXING)?;
let func = dev.get_or_load_func_bin(&kernel_name::<T>(name), kernels::INDEXING)?;
// SAFETY: Set later by running the kernel.
let params = (ids, &src, dst, left_sz, src_dim_sz, dst_dim_sz, right_sz);
// SAFETY: ffi.
unsafe { func.launch(cfg, params) }.w()?;
Ok(())
}
}
struct Conv1D<'a>(&'a crate::conv::ParamsConv1D);
impl<'a> Map2 for Conv1D<'a> {
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits>(
&self,
inp: &CudaSlice<T>,
inp_l: &Layout,
k: &CudaSlice<T>,
k_l: &Layout,
dev: &CudaDevice,
) -> Result<CudaSlice<T>> {
// Kernel shape: (c_out, c_in_k, k_size)
// Input shape: (b_size, c_in, l_in) or (c_in, l_in)
let p = &self.0;
let inp = &inp.slice(inp_l.start_offset()..);
let k = &k.slice(k_l.start_offset()..);
let shape = inp_l.shape();
let dims = shape.dims();
let el = shape.elem_count();
let l_out = p.l_out();
let dst_el = p.c_out * l_out * p.b_size;
let cfg = LaunchConfig::for_num_elems(dst_el as u32);
//let func = dev.get_or_load_func(&kernel_name::<T>("conv1d"), kernels::CONV)?;
let func = dev.get_or_load_func_bin(&kernel_name::<T>("conv1d"), kernels::CONV)?;
// SAFETY: Set later by running the kernel.
let out = unsafe { dev.alloc::<T>(dst_el) }.w()?;
let ds = if dims.len() == 3 {
[dims, inp_l.stride(), k_l.dims(), k_l.stride()].concat()
} else if dims.len() == 2 {
[&[1], dims, &[1], inp_l.stride(), k_l.dims(), k_l.stride()].concat()
} else {
crate::bail!("unexpected input shape for conv1d {dims:?}")
};
let ds = dev.htod_copy(ds).w()?;
let params = (
el, l_out, p.stride, p.padding, p.dilation, &ds, inp, k, &out,
);
// SAFETY: ffi.
unsafe { func.launch(cfg, params) }.w()?;
Ok(out)
}
}
struct Conv2D<'a>(&'a crate::conv::ParamsConv2D);
impl<'a> Map2 for Conv2D<'a> {
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits>(
&self,
inp: &CudaSlice<T>,
inp_l: &Layout,
k: &CudaSlice<T>,
k_l: &Layout,
dev: &CudaDevice,
) -> Result<CudaSlice<T>> {
// Kernel shape: (c_out, c_in_k, h_k, w_k)
// Input shape: (b_size, c_in, h_in, w_in)
let p = &self.0;
let (out_w, out_h) = (p.out_w(), p.out_h());
let dst_el = p.c_out * out_w * out_h * p.b_size;
let inp = &inp.slice(inp_l.start_offset()..);
let k = &k.slice(k_l.start_offset()..);
let shape = inp_l.shape();
let dims = shape.dims();
let el = shape.elem_count();
// SAFETY: Set later by running the kernel.
let out = unsafe { dev.alloc::<T>(dst_el) }.w()?;
let cfg = LaunchConfig::for_num_elems(dst_el as u32);
//let func = dev.get_or_load_func(&kernel_name::<T>("conv2d"), kernels::CONV)?;
let func = dev.get_or_load_func_bin(&kernel_name::<T>("conv2d"), kernels::CONV)?;
let ds = if dims.len() == 4 {
[dims, inp_l.stride(), k_l.dims(), k_l.stride()].concat()
} else {
crate::bail!("unexpected input shape for conv2d {dims:?}")
};
let ds = dev.htod_copy(ds).w()?;
let params = (
el, out_w, out_h, p.stride, p.padding, p.dilation, &ds, inp, k, &out,
);
// SAFETY: ffi.
unsafe { func.launch(cfg, params) }.w()?;
Ok(out)
}
}
struct ConvTranspose1D<'a>(&'a crate::conv::ParamsConvTranspose1D);
impl<'a> Map2 for ConvTranspose1D<'a> {
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits>(
&self,
inp: &CudaSlice<T>,
inp_l: &Layout,
k: &CudaSlice<T>,
k_l: &Layout,
dev: &CudaDevice,
) -> Result<CudaSlice<T>> {
// Kernel shape: (c_in_k, c_out, l_k)
// Input shape: (b_size, c_in, l_in)
let p = &self.0;
let l_out = p.l_out();
let dst_el = p.c_out * l_out * p.b_size;
let inp = &inp.slice(inp_l.start_offset()..);
let k = &k.slice(k_l.start_offset()..);
let shape = inp_l.shape();
let dims = shape.dims();
let el = shape.elem_count();
// SAFETY: Set later by running the kernel.
let out = unsafe { dev.alloc::<T>(dst_el) }.w()?;
let cfg = LaunchConfig::for_num_elems(dst_el as u32);
//let func = dev.get_or_load_func(&kernel_name::<T>("conv_transpose1d"), kernels::CONV)?;
let func = dev.get_or_load_func_bin(&kernel_name::<T>("conv_transpose1d"), kernels::CONV)?;
let ds = if dims.len() == 3 {
[dims, inp_l.stride(), k_l.dims(), k_l.stride()].concat()
} else {
crate::bail!("unexpected input shape for conv_transpose1d {dims:?}")
};
let ds = dev.htod_copy(ds).w()?;
let params = (
el,
l_out,
p.stride,
p.padding,
p.output_padding,
p.dilation,
&ds,
inp,
k,
&out,
);
// SAFETY: ffi.
unsafe { func.launch(cfg, params) }.w()?;
Ok(out)
}
}
struct ConvTranspose2D<'a>(&'a crate::conv::ParamsConvTranspose2D);
impl<'a> Map2 for ConvTranspose2D<'a> {
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits>(
&self,
inp: &CudaSlice<T>,
inp_l: &Layout,
k: &CudaSlice<T>,
k_l: &Layout,
dev: &CudaDevice,
) -> Result<CudaSlice<T>> {
// Kernel shape: (c_in_k, c_out, h_k, w_k)
// Input shape: (b_size, c_in, h_in, w_in)
let p = &self.0;
let (out_w, out_h) = (p.out_w(), p.out_h());
let dst_el = p.c_out * out_w * out_h * p.b_size;
let inp = &inp.slice(inp_l.start_offset()..);
let k = &k.slice(k_l.start_offset()..);
let shape = inp_l.shape();
let dims = shape.dims();
let el = shape.elem_count();
// SAFETY: Set later by running the kernel.
let out = unsafe { dev.alloc::<T>(dst_el) }.w()?;
let cfg = LaunchConfig::for_num_elems(dst_el as u32);
//let func = dev.get_or_load_func(&kernel_name::<T>("conv_transpose2d"), kernels::CONV)?;
let func = dev.get_or_load_func_bin(&kernel_name::<T>("conv_transpose2d"), kernels::CONV)?;
let ds = if dims.len() == 4 {
[dims, inp_l.stride(), k_l.dims(), k_l.stride()].concat()
} else {
crate::bail!("unexpected input shape for conv_transpose2d {dims:?}")
};
let ds = dev.htod_copy(ds).w()?;
let params = (
el,
out_w,
out_h,
p.stride,
p.padding,
p.output_padding,
p.dilation,
&ds,
inp,
k,
&out,
);
// SAFETY: ffi.
unsafe { func.launch(cfg, params) }.w()?;
Ok(out)
}
}
enum PoolOp {
Max,
Avg,
}
struct Pool2D {
w_k: usize,
h_k: usize,
w_stride: usize,
h_stride: usize,
op: PoolOp,
}
impl Map1 for Pool2D {
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits>(
&self,
inp: &CudaSlice<T>,
dev: &CudaDevice,
inp_l: &Layout,
) -> Result<CudaSlice<T>> {
// Input shape: (b_size, c, h, w)
let inp = &inp.slice(inp_l.start_offset()..);
let shape = inp_l.shape();
let dims = shape.dims();
let ds = if dims.len() == 4 {
[dims, inp_l.stride()].concat()
} else {
crate::bail!("unexpected input shape for pool {dims:?}")
};
let el = shape.elem_count();
let out_w = (dims[2] - self.w_k) / self.w_stride + 1;
let out_h = (dims[3] - self.h_k) / self.h_stride + 1;
let dst_el = out_w * out_h * dims[0] * dims[1];
let cfg = LaunchConfig::for_num_elems(dst_el as u32);
let kname = match self.op {
PoolOp::Max => "max_pool2d",
PoolOp::Avg => "avg_pool2d",
};
//let func = dev.get_or_load_func(&kernel_name::<T>(kname), kernels::CONV)?;
let func = dev.get_or_load_func_bin(&kernel_name::<T>("conv_transpose2d"), kernels::CONV)?;
// SAFETY: Set later by running the kernel.
let out = unsafe { dev.alloc::<T>(dst_el) }.w()?;
let ds = dev.htod_copy(ds).w()?;
let params = (
el,
self.w_k,
self.h_k,
self.w_stride,
self.h_stride,
&ds,
inp,
&out,
);
// SAFETY: ffi.
unsafe { func.launch(cfg, params) }.w()?;
Ok(out)
}
}
struct UpsampleNearest2D(usize, usize);
impl Map1 for UpsampleNearest2D {
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits>(
&self,
inp: &CudaSlice<T>,
dev: &CudaDevice,
inp_l: &Layout,
) -> Result<CudaSlice<T>> {
// Input shape: (b_size, c, h, w)
let inp = &inp.slice(inp_l.start_offset()..);
let shape = inp_l.shape();
let dims = shape.dims();
let ds = if dims.len() == 4 {
[dims, inp_l.stride()].concat()
} else {
crate::bail!("unexpected input shape for upsample {dims:?}")
};
let (out_w, out_h) = (self.0, self.1);
let dst_el = out_w * out_h * dims[0] * dims[1];
let cfg = LaunchConfig::for_num_elems(dst_el as u32);
//let func = dev.get_or_load_func(&kernel_name::<T>("upsample_nearest2d"), kernels::CONV)?;
let func = dev.get_or_load_func_bin(&kernel_name::<T>("upsample_nearest2d"), kernels::CONV)?;
// SAFETY: Set later by running the kernel.
let out = unsafe { dev.alloc::<T>(dst_el) }.w()?;
let ds = dev.htod_copy(ds).w()?;
let scale_w = dims[2] as f64 / out_w as f64;
let scale_h = dims[3] as f64 / out_h as f64;
let params = (out_w, out_h, scale_w, scale_h, &ds, inp, &out);
// SAFETY: ffi.
unsafe { func.launch(cfg, params) }.w()?;
Ok(out)
}
}
struct WhereCond<'a>(&'a CudaStorage, &'a Layout);
impl<'a> Map2 for WhereCond<'a> {
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits>(
&self,
t: &CudaSlice<T>,
layout_t: &Layout,
f: &CudaSlice<T>,
layout_f: &Layout,
dev: &CudaDevice,
) -> Result<CudaSlice<T>> {
let ids_l = &self.1;
let (ids, name) = match &self.0.slice {
CudaStorageSlice::U8(slice) => {
let ptr = *slice.slice(ids_l.start_offset()..).device_ptr();
(ptr, "where_u8")
}
CudaStorageSlice::U32(slice) => {
let ptr = *slice.slice(ids_l.start_offset()..).device_ptr();
(ptr, "where_u32")
}
CudaStorageSlice::I64(slice) => {
let ptr = *slice.slice(ids_l.start_offset()..).device_ptr();
(ptr, "where_i64")
}
_ => Err(CudaError::UnexpectedDType {
msg: "where conditions should be u8/u32/i64",
expected: DType::U32,
got: self.0.dtype(),
})
.w()?,
};
let shape = ids_l.shape();
let dims = shape.dims();
let el = shape.elem_count();
let cfg = LaunchConfig::for_num_elems(el as u32);
let ds = dev
.htod_copy([dims, ids_l.stride(), layout_t.stride(), layout_f.stride()].concat())
.w()?;
let t = &t.slice(layout_t.start_offset()..);
let f = &f.slice(layout_f.start_offset()..);
//let func = dev.get_or_load_func(&kernel_name::<T>(name), kernels::TERNARY)?;
let func = dev.get_or_load_func_bin(&kernel_name::<T>(name), kernels::TERNARY)?;
// SAFETY: Set later by running the kernel.
let out = unsafe { dev.alloc::<T>(el) }.w()?;
let params = (el, dims.len(), &ds, ids, t, f, &out);
// SAFETY: ffi
unsafe { func.launch(cfg, params) }.w()?;
Ok(out)
}
}
impl<U: crate::op::BinaryOpT> Map2 for U {
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits>(
&self,
lhs: &CudaSlice<T>,
lhs_l: &Layout,
rhs: &CudaSlice<T>,
rhs_l: &Layout,
dev: &CudaDevice,
) -> Result<CudaSlice<T>> {
let shape = lhs_l.shape();
let dims = shape.dims();
let elem_count = shape.elem_count();
let cfg = LaunchConfig::for_num_elems(elem_count as u32);
let dims_and_strides = if lhs_l.is_contiguous() && rhs_l.is_contiguous() {
SlicePtrOrNull::Null
} else {
SlicePtrOrNull::Ptr(
dev.htod_copy([dims, lhs_l.stride(), rhs_l.stride()].concat())
.w()?,
)
};
let lhs = &lhs.slice(lhs_l.start_offset()..);
let rhs = &rhs.slice(rhs_l.start_offset()..);
//let func = dev.get_or_load_func(&kernel_name::<T>(U::KERNEL), kernels::BINARY)?;
let func = dev.get_or_load_func_bin(&kernel_name::<T>(U::KERNEL), kernels::BINARY)?;
// SAFETY: Set later by running the kernel.
let out = unsafe { dev.alloc::<T>(elem_count) }.w()?;
let params = (elem_count, dims.len(), &dims_and_strides, lhs, rhs, &out);
// SAFETY: ffi
unsafe { func.launch(cfg, params) }.w()?;
Ok(out)
}
}
struct Cmp(CmpOp);
impl Map2Any for Cmp {
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits>(
&self,
lhs: &CudaSlice<T>,
lhs_l: &Layout,
rhs: &CudaSlice<T>,
rhs_l: &Layout,
dev: &CudaDevice,
) -> Result<S> {
let shape = lhs_l.shape();
let dims = shape.dims();
let elem_count = shape.elem_count();
let cfg = LaunchConfig::for_num_elems(elem_count as u32);
let dims_and_strides = if lhs_l.is_contiguous() && rhs_l.is_contiguous() {
SlicePtrOrNull::Null
} else {
SlicePtrOrNull::Ptr(
dev.htod_copy([dims, lhs_l.stride(), rhs_l.stride()].concat())
.w()?,
)
};
let lhs = &lhs.slice(lhs_l.start_offset()..);
let rhs = &rhs.slice(rhs_l.start_offset()..);
let name = match self.0 {
CmpOp::Eq => "eq",
CmpOp::Ne => "ne",
CmpOp::Lt => "lt",
CmpOp::Le => "le",
CmpOp::Gt => "gt",
CmpOp::Ge => "ge",
};
//let func = dev.get_or_load_func(&kernel_name::<T>(name), kernels::BINARY)?;
let func = dev.get_or_load_func_bin(&kernel_name::<T>(name), kernels::BINARY)?;
// SAFETY: Set later by running the kernel.
let out = unsafe { dev.alloc::<u8>(elem_count) }.w()?;
let params = (elem_count, dims.len(), &dims_and_strides, lhs, rhs, &out);
// SAFETY: ffi
unsafe { func.launch(cfg, params) }.w()?;
Ok(S::U8(out))
}
}
fn slice_src_and_dst<'a, T>(
src: &'a CudaSlice<T>,
src_l: &Layout,
dst: &'a mut CudaSlice<T>,
dst_offset: usize,
) -> (
cudarc::driver::CudaView<'a, T>,
cudarc::driver::CudaViewMut<'a, T>,
) {
let src_offset = src_l.start_offset();
let to_copy = dst
.len()
.saturating_sub(dst_offset)
.min(src.len().saturating_sub(src_offset));
let src = src.slice(src_offset..src_offset + to_copy);
let dst = dst.slice_mut(dst_offset..dst_offset + to_copy);
(src, dst)
}
#[derive(Debug)]
pub struct CudaStorage {
pub slice: CudaStorageSlice,
pub device: CudaDevice,
}
pub trait CudaDType: Sized {
fn as_cuda_slice(s: &CudaStorage) -> Result<&CudaSlice<Self>>;
fn wrap_cuda_slice(s: CudaSlice<Self>, dev: CudaDevice) -> CudaStorage;
}
macro_rules! cuda_dtype {
($ty:ty, $dtype:ident) => {
impl CudaDType for $ty {
fn as_cuda_slice(s: &CudaStorage) -> Result<&CudaSlice<Self>> {
match &s.slice {
CudaStorageSlice::$dtype(data) => Ok(&data),
_ => Err(crate::Error::UnexpectedDType {
expected: DType::$dtype,
got: s.dtype(),
msg: "unexpected dtype",
}
.bt()),
}
}
fn wrap_cuda_slice(slice: CudaSlice<Self>, device: CudaDevice) -> CudaStorage {
let slice = CudaStorageSlice::$dtype(slice);
CudaStorage { slice, device }
}
}
};
}
cuda_dtype!(u8, U8);
cuda_dtype!(u32, U32);
cuda_dtype!(i64, I64);
cuda_dtype!(f16, F16);
cuda_dtype!(bf16, BF16);
cuda_dtype!(f32, F32);
cuda_dtype!(f64, F64);
impl CudaStorage {
pub fn wrap_cuda_slice<T: CudaDType>(slice: CudaSlice<T>, device: CudaDevice) -> CudaStorage {
T::wrap_cuda_slice(slice, device)
}
pub fn as_cuda_slice<T: CudaDType>(&self) -> Result<&CudaSlice<T>> {
T::as_cuda_slice(self)
}
}
fn gemm_config<T>(
alpha: T,
beta: T,
(b, m, n, k): (usize, usize, usize, usize),
lhs_l: &Layout,
rhs_l: &Layout,
) -> Result<StridedBatchedConfig<T>> {
// https://docs.nvidia.com/cuda/cublas/index.html#cublas-t-gemm
use cudarc::cublas::sys::cublasOperation_t;
let lhs_stride = lhs_l.stride();
let rhs_stride = rhs_l.stride();
let rhs_m1 = rhs_stride[rhs_stride.len() - 1];
let rhs_m2 = rhs_stride[rhs_stride.len() - 2];
let lhs_m1 = lhs_stride[lhs_stride.len() - 1];
let lhs_m2 = lhs_stride[lhs_stride.len() - 2];
// The a tensor has dims batching, k, n (rhs)
// We also allow for the case where the stride on the minor dimension is not as expected but
// there is a single element.
let (lda, transa) = if (rhs_m1 == 1 || n == 1) && (rhs_m2 == n || k == 1) {
(n as i32, cublasOperation_t::CUBLAS_OP_N)
} else if (rhs_m1 == k || n == 1) && (rhs_m2 == 1 || k == 1) {
(k as i32, cublasOperation_t::CUBLAS_OP_T)
} else {
Err(CudaError::MatMulNonContiguous {
lhs_stride: lhs_l.clone(),
rhs_stride: rhs_l.clone(),
mnk: (m, n, k),
})?
};
// The b tensor has dims batching, m, k (lhs)
// We also allow for the case where the stride on the minor dimension is not as expected but
// there is a single element.
let (ldb, transb) = if (lhs_m1 == 1 || k == 1) && (lhs_m2 == k || m == 1) {
(k as i32, cublasOperation_t::CUBLAS_OP_N)
} else if (lhs_m1 == m || k == 1) && (lhs_m2 == 1 || m == 1) {
(m as i32, cublasOperation_t::CUBLAS_OP_T)
} else {
Err(CudaError::MatMulNonContiguous {
lhs_stride: lhs_l.clone(),
rhs_stride: rhs_l.clone(),
mnk: (m, n, k),
})?
};
// The setup below was copied from:
// https://github.com/lebedov/scikit-cuda/blob/7e7300474286019c917a6c8a4bca59405c64fbce/tests/test_cublas.py#L531
let gemm = GemmConfig {
alpha,
beta,
m: n as i32,
n: m as i32,
k: k as i32,
lda,
ldb,
ldc: n as i32,
transa,
transb,
};
let stride_b: usize = match lhs_stride[..lhs_stride.len() - 2] {
[s1, stride] if s1 == stride * lhs_l.dims()[1] => stride,
[_, stride] if lhs_l.dims()[0] == 1 => stride,
[stride, _] if lhs_l.dims()[1] == 1 => stride,
[stride] => stride,
[] => m * k,
_ => Err(CudaError::MatMulNonContiguous {
lhs_stride: lhs_l.clone(),
rhs_stride: rhs_l.clone(),
mnk: (m, n, k),
})?,
};
let stride_a: usize = match rhs_stride[..rhs_stride.len() - 2] {
[s1, stride] if s1 == stride * rhs_l.dims()[1] => stride,
[_, stride] if rhs_l.dims()[0] == 1 => stride,
[stride, _] if rhs_l.dims()[1] == 1 => stride,
[stride] => stride,
[] => n * k,
_ => Err(CudaError::MatMulNonContiguous {
lhs_stride: lhs_l.clone(),
rhs_stride: rhs_l.clone(),
mnk: (m, n, k),
})?,
};
Ok(StridedBatchedConfig {
batch_size: b as i32,
gemm,
stride_a: stride_a as i64,
stride_b: stride_b as i64,
stride_c: (m * n) as i64,
})
}
impl BackendStorage for CudaStorage {
type Device = CudaDevice;
fn try_clone(&self, layout: &Layout) -> Result<Self> {
let slice = Clone.map(&self.slice, self.device(), layout)?;
let device = self.device.clone();
Ok(Self { slice, device })
}
fn dtype(&self) -> DType {
match self.slice {
CudaStorageSlice::U8(_) => DType::U8,
CudaStorageSlice::U32(_) => DType::U32,
CudaStorageSlice::I64(_) => DType::I64,
CudaStorageSlice::BF16(_) => DType::BF16,
CudaStorageSlice::F16(_) => DType::F16,
CudaStorageSlice::F32(_) => DType::F32,
CudaStorageSlice::F64(_) => DType::F64,
}
}
fn device(&self) -> &CudaDevice {
&self.device
}
fn to_dtype(&self, layout: &Layout, dtype: DType) -> Result<Self> {
let shape = layout.shape();
let dims = shape.dims();
let el = shape.elem_count();
let cfg = LaunchConfig::for_num_elems(el as u32);
let dev = self.device();
let ds = SlicePtrOrNull::params_from_layout(dev, layout)?;
let start_o = layout.start_offset();
// This returns an i64 rather than a &i64, this is useful to get around some temporary
// lifetime issue and is safe as long as self.slice does not go out of scope before inp
// is used.
let inp = match &self.slice {
CudaStorageSlice::U8(inp) => *inp.slice(start_o..).device_ptr(),
CudaStorageSlice::U32(inp) => *inp.slice(start_o..).device_ptr(),
CudaStorageSlice::I64(inp) => *inp.slice(start_o..).device_ptr(),
CudaStorageSlice::BF16(inp) => *inp.slice(start_o..).device_ptr(),
CudaStorageSlice::F16(inp) => *inp.slice(start_o..).device_ptr(),
CudaStorageSlice::F32(inp) => *inp.slice(start_o..).device_ptr(),
CudaStorageSlice::F64(inp) => *inp.slice(start_o..).device_ptr(),
};
let inp = &inp;
let kernel_name = format!("cast_{}_{}", self.dtype().as_str(), dtype.as_str());
//let func = dev.get_or_load_func(&kernel_name, kernels::CAST)?;
let func = dev.get_or_load_func_bin(&kernel_name, kernels::CAST)?;
let slice = match dtype {
DType::U8 => {
let out = unsafe { dev.alloc::<u8>(el) }.w()?;
let params = (el, dims.len(), &ds, *inp, &out);
unsafe { func.launch(cfg, params) }.w()?;
CudaStorageSlice::U8(out)
}
DType::U32 => {
let out = unsafe { dev.alloc::<u32>(el) }.w()?;
let params = (el, dims.len(), &ds, *inp, &out);
unsafe { func.launch(cfg, params) }.w()?;
CudaStorageSlice::U32(out)
}
DType::I64 => {
let out = unsafe { dev.alloc::<i64>(el) }.w()?;
let params = (el, dims.len(), &ds, *inp, &out);
unsafe { func.launch(cfg, params) }.w()?;
CudaStorageSlice::I64(out)
}
DType::BF16 => {
let out = unsafe { dev.alloc::<bf16>(el) }.w()?;
let params = (el, dims.len(), &ds, *inp, &out);
unsafe { func.launch(cfg, params) }.w()?;
CudaStorageSlice::BF16(out)
}
DType::F16 => {
let out = unsafe { dev.alloc::<f16>(el) }.w()?;
let params = (el, dims.len(), &ds, *inp, &out);
unsafe { func.launch(cfg, params) }.w()?;
CudaStorageSlice::F16(out)
}
DType::F32 => {
let out = unsafe { dev.alloc::<f32>(el) }.w()?;
let params = (el, dims.len(), &ds, *inp, &out);
unsafe { func.launch(cfg, params) }.w()?;
CudaStorageSlice::F32(out)
}
DType::F64 => {
let out = unsafe { dev.alloc::<f64>(el) }.w()?;
let params = (el, dims.len(), &ds, *inp, &out);
unsafe { func.launch(cfg, params) }.w()?;
CudaStorageSlice::F64(out)
}
};
Ok(Self {
slice,
device: dev.clone(),
})
}
fn affine(&self, layout: &Layout, mul: f64, add: f64) -> Result<Self> {
let device = self.device().clone();
let slice = Affine(mul, add).map(&self.slice, &device, layout)?;
Ok(Self { slice, device })
}
fn powf(&self, layout: &Layout, e: f64) -> Result<Self> {
let device = self.device().clone();
let slice = Powf(e).map(&self.slice, &device, layout)?;
Ok(Self { slice, device })
}
fn elu(&self, layout: &Layout, alpha: f64) -> Result<Self> {
let device = self.device().clone();
let slice = Elu(alpha).map(&self.slice, &device, layout)?;
Ok(Self { slice, device })
}
fn reduce_op(&self, op: ReduceOp, layout: &Layout, sum_dims: &[usize]) -> Result<Self> {
let device = self.device().clone();
let slice = FastReduce(sum_dims, op).map(&self.slice, &device, layout)?;
Ok(Self { slice, device })
}
fn cmp(&self, op: CmpOp, rhs: &Self, lhs_l: &Layout, rhs_l: &Layout) -> Result<Self> {
let device = self.device().clone();
let slice = Cmp(op).map(&self.slice, lhs_l, &rhs.slice, rhs_l, &device)?;
Ok(Self { slice, device })
}
fn unary_impl<U: UnaryOpT>(&self, layout: &Layout) -> Result<Self> {
let device = self.device().clone();
let slice = U::V.map(&self.slice, &device, layout)?;
Ok(Self { slice, device })
}
fn binary_impl<B: BinaryOpT>(
&self,
rhs: &Self,
lhs_l: &Layout,
rhs_l: &Layout,
) -> Result<Self> {
let device = self.device().clone();
let slice = B::V.map(&self.slice, lhs_l, &rhs.slice, rhs_l, &device)?;
Ok(Self { slice, device })
}
fn to_cpu_storage(&self) -> Result<CpuStorage> {
match &self.slice {
CudaStorageSlice::U8(slice) => {
let dev = slice.device();
let cpu_storage = dev.dtoh_sync_copy(slice).w()?;
Ok(CpuStorage::U8(cpu_storage))
}
CudaStorageSlice::U32(slice) => {
let dev = slice.device();
let cpu_storage = dev.dtoh_sync_copy(slice).w()?;
Ok(CpuStorage::U32(cpu_storage))
}
CudaStorageSlice::I64(slice) => {
let dev = slice.device();
let cpu_storage = dev.dtoh_sync_copy(slice).w()?;
Ok(CpuStorage::I64(cpu_storage))
}
CudaStorageSlice::BF16(slice) => {
let dev = slice.device();
let cpu_storage = dev.dtoh_sync_copy(slice).w()?;
Ok(CpuStorage::BF16(cpu_storage))
}
CudaStorageSlice::F16(slice) => {
let dev = slice.device();
let cpu_storage = dev.dtoh_sync_copy(slice).w()?;
Ok(CpuStorage::F16(cpu_storage))
}
CudaStorageSlice::F32(slice) => {
let dev = slice.device();
let cpu_storage = dev.dtoh_sync_copy(slice).w()?;
Ok(CpuStorage::F32(cpu_storage))
}
CudaStorageSlice::F64(slice) => {
let dev = slice.device();
let cpu_storage = dev.dtoh_sync_copy(slice).w()?;
Ok(CpuStorage::F64(cpu_storage))
}
}
}
fn where_cond(
&self,
layout: &Layout,
t: &Self,
t_l: &Layout,
f: &Self,
f_l: &Layout,
) -> Result<Self> {
let device = self.device().clone();
let slice = WhereCond(self, layout).map(&t.slice, t_l, &f.slice, f_l, &device)?;
Ok(Self { slice, device })
}
fn conv1d(
&self,
l: &Layout,
kernel: &Self,
kernel_l: &Layout,
params: &crate::conv::ParamsConv1D,
) -> Result<Self> {
const USE_IM2COL_CONV1D: bool = true;
let device = self.device().clone();
if !USE_IM2COL_CONV1D {
let slice = Conv1D(params).map(&self.slice, l, &kernel.slice, kernel_l, &device)?;
return Ok(Self { slice, device });
}
let col = Im2Col1D {
l_k: params.k_size,
stride: params.stride,
dilation: params.dilation,
padding: params.padding,
}
.map(&self.slice, &device, l)?;
let col = Self { slice: col, device };
let l_out = params.l_out();
let b = params.b_size;
let n = params.c_out;
let k = params.k_size * params.c_in;
let m = l_out;
let col_l = Layout::contiguous((b, m, k));
let res = if kernel_l.is_contiguous() {
let kernel_l = Layout::contiguous_with_offset((1, n, k), kernel_l.start_offset())
.transpose(1, 2)?
.broadcast_as((b, k, n))?;
col.matmul(kernel, (b, m, n, k), &col_l, &kernel_l)?
} else {
// Make the kernel contiguous if not already the case.
let mut kernel_c = unsafe {
self.device()
.alloc_uninit(kernel_l.shape(), kernel.dtype())?
};
kernel.copy_strided_src(&mut kernel_c, 0, kernel_l)?;
let kernel_l = Layout::contiguous_with_offset((1, n, k), kernel_l.start_offset())
.transpose(1, 2)?
.broadcast_as((b, k, n))?;
col.matmul(kernel, (b, m, n, k), &col_l, &kernel_l)?
};
let res_l = Layout::contiguous((b, l_out, n)).transpose(1, 2)?;
let mut res_t = unsafe { self.device().alloc_uninit(res_l.shape(), res.dtype())? };
res.copy_strided_src(&mut res_t, 0, &res_l)?;
Ok(res_t)
}
fn conv_transpose1d(
&self,
l: &Layout,
kernel: &Self,
kernel_l: &Layout,
params: &crate::conv::ParamsConvTranspose1D,
) -> Result<Self> {
let device = self.device().clone();
let slice =
ConvTranspose1D(params).map(&self.slice, l, &kernel.slice, kernel_l, &device)?;
Ok(Self { slice, device })
}
#[cfg(not(feature = "cudnn"))]
fn conv2d(
&self,
l: &Layout,
kernel: &Self,
kernel_l: &Layout,
params: &crate::conv::ParamsConv2D,
) -> Result<Self> {
const USE_IM2COL_CONV2D: bool = true;
let device = self.device().clone();
if !USE_IM2COL_CONV2D {
let slice = Conv2D(params).map(&self.slice, l, &kernel.slice, kernel_l, &device)?;
return Ok(Self { slice, device });
}
let col = Im2Col {
h_k: params.k_h,
w_k: params.k_w,
stride: params.stride,
dilation: params.dilation,
padding: params.padding,
}
.map(&self.slice, &device, l)?;
let col = Self { slice: col, device };
let h_out = params.out_h();
let w_out = params.out_w();
let b = params.b_size;
let n = params.c_out;
let k = params.k_h * params.k_w * params.c_in;
let m = h_out * w_out;
let col_l = Layout::contiguous((b, m, k));
let res = if kernel_l.is_contiguous() {
let kernel_l = Layout::contiguous_with_offset((1, n, k), kernel_l.start_offset())
.transpose(1, 2)?
.broadcast_as((b, k, n))?;
col.matmul(kernel, (b, m, n, k), &col_l, &kernel_l)?
} else {
// Make the kernel contiguous if not already the case.
let mut kernel_c = unsafe {
self.device()
.alloc_uninit(kernel_l.shape(), kernel.dtype())?
};
kernel.copy_strided_src(&mut kernel_c, 0, kernel_l)?;
let kernel_l = Layout::contiguous_with_offset((1, n, k), kernel_l.start_offset())
.transpose(1, 2)?
.broadcast_as((b, k, n))?;
col.matmul(kernel, (b, m, n, k), &col_l, &kernel_l)?
};
let res_l = Layout::contiguous((b, h_out, w_out, n))
.transpose(1, 2)?
.transpose(1, 3)?;
let mut res_t = unsafe { self.device().alloc_uninit(res_l.shape(), res.dtype())? };
res.copy_strided_src(&mut res_t, 0, &res_l)?;
Ok(res_t)
}
#[cfg(feature = "cudnn")]
fn conv2d(
&self,
inp_l: &Layout,
kernel: &Self,
kernel_l: &Layout,
params: &crate::conv::ParamsConv2D,
) -> Result<Self> {
let device = self.device().clone();
if !kernel_l.is_contiguous() {
let slice = Conv2D(params).map(&self.slice, inp_l, &kernel.slice, kernel_l, &device)?;
return Ok(Self { slice, device });
}
let (out_w, out_h) = (params.out_w(), params.out_h());
let dst_el = params.c_out * out_w * out_h * params.b_size;
let slice = match (&self.slice, &kernel.slice) {
(S::U8(inp), S::U8(k)) => {
let inp = &inp.slice(inp_l.start_offset()..);
let k = &k.slice(kernel_l.start_offset()..);
let mut out = unsafe { device.alloc::<u8>(dst_el) }.w()?;
crate::cudnn::launch_conv2d::<u8>(inp, inp_l, k, &mut out, params, &device)
.map_err(crate::Error::wrap)?;
S::U8(out)
}
(S::BF16(inp), S::BF16(k)) => {
let inp = &inp.slice(inp_l.start_offset()..);
let k = &k.slice(kernel_l.start_offset()..);
let mut out = unsafe { device.alloc::<bf16>(dst_el) }.w()?;
crate::cudnn::launch_conv2d::<bf16>(inp, inp_l, k, &mut out, params, &device)
.map_err(crate::Error::wrap)?;
S::BF16(out)
}
(S::F16(inp), S::F16(k)) => {
let inp = &inp.slice(inp_l.start_offset()..);
let k = &k.slice(kernel_l.start_offset()..);
let mut out = unsafe { device.alloc::<f16>(dst_el) }.w()?;
crate::cudnn::launch_conv2d::<f16>(inp, inp_l, k, &mut out, params, &device)
.map_err(crate::Error::wrap)?;
S::F16(out)
}
(S::F32(inp), S::F32(k)) => {
let inp = &inp.slice(inp_l.start_offset()..);
let k = &k.slice(kernel_l.start_offset()..);
let mut out = unsafe { device.alloc::<f32>(dst_el) }.w()?;
crate::cudnn::launch_conv2d::<f32>(inp, inp_l, k, &mut out, params, &device)
.map_err(crate::Error::wrap)?;
S::F32(out)
}
(S::F64(inp), S::F64(k)) => {
let inp = &inp.slice(inp_l.start_offset()..);
let k = &k.slice(kernel_l.start_offset()..);
let mut out = unsafe { device.alloc::<f64>(dst_el) }.w()?;
crate::cudnn::launch_conv2d::<f64>(inp, inp_l, k, &mut out, params, &device)
.map_err(crate::Error::wrap)?;
S::F64(out)
}
(S::U32(_), S::U32(_)) => Err(CudaError::InternalError("conv2d does not support u32"))?,
(S::I64(_), S::I64(_)) => Err(CudaError::InternalError("conv2d does not support i64"))?,
_ => Err(CudaError::InternalError("dtype mismatch in conv2d"))?,
};
Ok(Self { slice, device })
}
fn conv_transpose2d(
&self,
l: &Layout,
kernel: &Self,
kernel_l: &Layout,
params: &crate::conv::ParamsConvTranspose2D,
) -> Result<Self> {
let device = self.device().clone();
let slice =
ConvTranspose2D(params).map(&self.slice, l, &kernel.slice, kernel_l, &device)?;
Ok(Self { slice, device })
}
fn avg_pool2d(&self, l: &Layout, k: (usize, usize), stride: (usize, usize)) -> Result<Self> {
let device = self.device().clone();
let slice = Pool2D {
w_k: k.0,
h_k: k.1,
w_stride: stride.0,
h_stride: stride.1,
op: PoolOp::Avg,
}
.map(&self.slice, &device, l)?;
Ok(Self { slice, device })
}
fn max_pool2d(&self, l: &Layout, k: (usize, usize), stride: (usize, usize)) -> Result<Self> {
let device = self.device().clone();
let slice = Pool2D {
w_k: k.0,
h_k: k.1,
w_stride: stride.0,
h_stride: stride.1,
op: PoolOp::Max,
}
.map(&self.slice, &device, l)?;
Ok(Self { slice, device })
}
fn upsample_nearest1d(&self, _: &Layout, _out_sz: usize) -> Result<Self> {
crate::bail!("upsample-nearest1d is not supported on cuda")
}
fn upsample_nearest2d(&self, l: &Layout, out_w: usize, out_h: usize) -> Result<Self> {
let device = self.device().clone();
let slice = UpsampleNearest2D(out_w, out_h).map(&self.slice, &device, l)?;
Ok(Self { slice, device })
}
fn index_select(&self, ids: &Self, l: &Layout, ids_l: &Layout, dim: usize) -> Result<Self> {
let device = self.device().clone();
let slice = IndexSelect(ids, ids_l, dim).map(&self.slice, &device, l)?;
Ok(Self { slice, device })
}
fn gather(&self, l: &Layout, ids: &Self, ids_l: &Layout, dim: usize) -> Result<Self> {
let device = self.device().clone();
let slice = Gather(ids, ids_l, dim).map(&self.slice, &device, l)?;
Ok(Self { slice, device })
}
fn scatter_add(
&self,
l: &Layout,
ids: &Self,
ids_l: &Layout,
src: &Self,
src_l: &Layout,
dim: usize,
) -> Result<Self> {
let device = self.device().clone();
let mut acc = unsafe { device.alloc_uninit(l.shape(), self.dtype())? };
self.copy_strided_src(&mut acc, 0, l)?;
ScatterAdd(ids, ids_l, dim).map(&mut acc.slice, l.shape(), &src.slice, src_l, &device)?;
Ok(acc)
}
fn index_add(
&self,
l: &Layout,
ids: &Self,
ids_l: &Layout,
src: &Self,
src_l: &Layout,
dim: usize,
) -> Result<Self> {
let device = self.device().clone();
let mut acc = unsafe { device.alloc_uninit(l.shape(), self.dtype())? };
self.copy_strided_src(&mut acc, 0, l)?;
IndexAdd(ids, ids_l, dim).map(&mut acc.slice, l.shape(), &src.slice, src_l, &device)?;
Ok(acc)
}
fn matmul(
&self,
rhs: &Self,
(b, m, n, k): (usize, usize, usize, usize),
lhs_l: &Layout,
rhs_l: &Layout,
) -> Result<Self> {
let elem_count = b * m * n;
let dev = &self.device;
let slice = match (&self.slice, &rhs.slice) {
(CudaStorageSlice::BF16(lhs), CudaStorageSlice::BF16(rhs)) => {
let lhs = &lhs.slice(lhs_l.start_offset()..);
let rhs = &rhs.slice(rhs_l.start_offset()..);
let cfg = gemm_config(bf16::ONE, bf16::ZERO, (b, m, n, k), lhs_l, rhs_l)?;
let mut out = unsafe { dev.alloc::<bf16>(elem_count) }.w()?;
unsafe {
self.device
.blas
.gemm_strided_batched(cfg, rhs, lhs, &mut out)
}
.w()?;
CudaStorageSlice::BF16(out)
}
(CudaStorageSlice::F16(lhs), CudaStorageSlice::F16(rhs)) => {
let lhs = &lhs.slice(lhs_l.start_offset()..);
let rhs = &rhs.slice(rhs_l.start_offset()..);
let cfg = gemm_config(f16::ONE, f16::ZERO, (b, m, n, k), lhs_l, rhs_l)?;
let mut out = unsafe { dev.alloc::<f16>(elem_count) }.w()?;
unsafe {
self.device
.blas
.gemm_strided_batched(cfg, rhs, lhs, &mut out)
}
.w()?;
CudaStorageSlice::F16(out)
}
(CudaStorageSlice::F32(lhs), CudaStorageSlice::F32(rhs)) => {
let lhs = &lhs.slice(lhs_l.start_offset()..);
let rhs = &rhs.slice(rhs_l.start_offset()..);
let cfg = gemm_config(1., 0., (b, m, n, k), lhs_l, rhs_l)?;
let mut out = unsafe { dev.alloc::<f32>(elem_count) }.w()?;
unsafe {
self.device
.blas
.gemm_strided_batched(cfg, rhs, lhs, &mut out)
}
.w()?;
CudaStorageSlice::F32(out)
}
(CudaStorageSlice::F64(lhs), CudaStorageSlice::F64(rhs)) => {
let lhs = &lhs.slice(lhs_l.start_offset()..);
let rhs = &rhs.slice(rhs_l.start_offset()..);
let cfg = gemm_config(1., 0., (b, m, n, k), lhs_l, rhs_l)?;
let mut out = unsafe { dev.alloc::<f64>(elem_count) }.w()?;
unsafe {
self.device
.blas
.gemm_strided_batched(cfg, rhs, lhs, &mut out)
}
.w()?;
CudaStorageSlice::F64(out)
}
_ => Err(CudaError::InternalError("dtype mismatch in matmul op"))?,
};
let device = dev.clone();
Ok(Self { slice, device })
}
fn copy2d(
&self,
dst: &mut Self,
d1: usize,
d2: usize,
src_s: usize,
dst_s: usize,
src_o: usize,
dst_o: usize,
) -> Result<()> {
let dev = &self.device;
let d1 = d1 as u32;
let d2 = d2 as u32;
// Nothing to copy so we exit early to avoid launching a kernel and some potential invalid
// argument with a null pointer.
if d1 == 0 || d2 == 0 {
return Ok(());
}
let dst_s = dst_s as u32;
let src_s = src_s as u32;
let (src, dst, kname) = match (&self.slice, &mut dst.slice) {
(S::U8(s), S::U8(d)) => (
*s.slice(src_o..).device_ptr(),
*d.slice(dst_o..).device_ptr(),
"copy2d_u8",
),
(S::U32(s), S::U32(d)) => (
*s.slice(src_o..).device_ptr(),
*d.slice(dst_o..).device_ptr(),
"copy2d_u32",
),
(S::I64(s), S::I64(d)) => (
*s.slice(src_o..).device_ptr(),
*d.slice(dst_o..).device_ptr(),
"copy2d_i64",
),
(S::BF16(s), S::BF16(d)) => (
*s.slice(src_o..).device_ptr(),
*d.slice(dst_o..).device_ptr(),
"copy2d_bf16",
),
(S::F16(s), S::F16(d)) => (
*s.slice(src_o..).device_ptr(),
*d.slice(dst_o..).device_ptr(),
"copy2d_f16",
),
(S::F32(s), S::F32(d)) => (
*s.slice(src_o..).device_ptr(),
*d.slice(dst_o..).device_ptr(),
"copy2d_f32",
),
(S::F64(s), S::F64(d)) => (
*s.slice(src_o..).device_ptr(),
*d.slice(dst_o..).device_ptr(),
"copy2d_f64",
),
_ => Err(CudaError::InternalError("dtype mismatch in copy2d"))?,
};
//let func = dev.get_or_load_func(kname, kernels::FILL)?;
let func = dev.get_or_load_func_bin(kname, kernels::FILL)?;
let cfg = LaunchConfig::for_num_elems(d1 * d2);
let params = (src, dst, d1, d2, src_s, dst_s);
// SAFETY: ffi.
unsafe { func.launch(cfg, params) }.w()?;
Ok(())
}
fn copy_strided_src(&self, dst: &mut Self, dst_offset: usize, src_l: &Layout) -> Result<()> {
let src_shape = src_l.shape();
let dims = src_shape.dims();
let el_count = src_shape.elem_count();
if el_count == 0 {
return Ok(());
}
let cfg = LaunchConfig::for_num_elems(el_count as u32);
let dev = &self.device;
let ds = SlicePtrOrNull::params_from_layout(dev, src_l)?;
match (&self.slice, &mut dst.slice) {
(CudaStorageSlice::BF16(src), CudaStorageSlice::BF16(dst)) => {
let (src, mut dst) = slice_src_and_dst(src, src_l, dst, dst_offset);
if src_l.is_contiguous() {
dev.dtod_copy(&src, &mut dst).w()?
} else {
//let func = dev.get_or_load_func("ucopy_bf16", kernels::UNARY)?;
let func = dev.get_or_load_func_bin("ucopy_bf16", kernels::UNARY)?;
// SAFETY: Set later by running the kernel.
let params = (el_count, dims.len(), &ds, &src, &mut dst);
// SAFETY: ffi.
unsafe { func.launch(cfg, params) }.w()?
}
}
(CudaStorageSlice::F16(src), CudaStorageSlice::F16(dst)) => {
let (src, mut dst) = slice_src_and_dst(src, src_l, dst, dst_offset);
if src_l.is_contiguous() {
dev.dtod_copy(&src, &mut dst).w()?
} else {
//let func = dev.get_or_load_func("ucopy_f16", kernels::UNARY)?;
let func = dev.get_or_load_func_bin("ucopy_f16", kernels::UNARY)?;
// SAFETY: Set later by running the kernel.
let params = (el_count, dims.len(), &ds, &src, &mut dst);
// SAFETY: ffi.
unsafe { func.launch(cfg, params) }.w()?
}
}
(CudaStorageSlice::F32(src), CudaStorageSlice::F32(dst)) => {
let (src, mut dst) = slice_src_and_dst(src, src_l, dst, dst_offset);
if src_l.is_contiguous() {
dev.dtod_copy(&src, &mut dst).w()?
} else {
//let func = dev.get_or_load_func("ucopy_f32", kernels::UNARY)?;
let func = dev.get_or_load_func_bin("ucopy_f32", kernels::UNARY)?;
// SAFETY: Set later by running the kernel.
let params = (el_count, dims.len(), &ds, &src, &mut dst);
// SAFETY: ffi.
unsafe { func.launch(cfg, params) }.w()?
}
}
(CudaStorageSlice::U8(src), CudaStorageSlice::U8(dst)) => {
let (src, mut dst) = slice_src_and_dst(src, src_l, dst, dst_offset);
if src_l.is_contiguous() {
dev.dtod_copy(&src, &mut dst).w()?
} else {
//let func = dev.get_or_load_func("ucopy_u8", kernels::UNARY)?;
let func = dev.get_or_load_func_bin("ucopy_u8", kernels::UNARY)?;
// SAFETY: Set later by running the kernel.
let params = (el_count, dims.len(), &ds, &src, &mut dst);
// SAFETY: ffi.
unsafe { func.launch(cfg, params) }.w()?
}
}
(CudaStorageSlice::U32(src), CudaStorageSlice::U32(dst)) => {
let (src, mut dst) = slice_src_and_dst(src, src_l, dst, dst_offset);
if src_l.is_contiguous() {
dev.dtod_copy(&src, &mut dst).w()?
} else {
//let func = dev.get_or_load_func("ucopy_u32", kernels::UNARY)?;
let func = dev.get_or_load_func_bin("ucopy_u32", kernels::UNARY)?;
// SAFETY: Set later by running the kernel.
let params = (el_count, dims.len(), &ds, &src, &mut dst);
// SAFETY: ffi.
unsafe { func.launch(cfg, params) }.w()?
}
}
(CudaStorageSlice::I64(src), CudaStorageSlice::I64(dst)) => {
let (src, mut dst) = slice_src_and_dst(src, src_l, dst, dst_offset);
if src_l.is_contiguous() {
dev.dtod_copy(&src, &mut dst).w()?
} else {
//let func = dev.get_or_load_func("ucopy_i64", kernels::UNARY)?;
let func = dev.get_or_load_func_bin("ucopy_i64", kernels::UNARY)?;
// SAFETY: Set later by running the kernel.
let params = (el_count, dims.len(), &ds, &src, &mut dst);
// SAFETY: ffi.
unsafe { func.launch(cfg, params) }.w()?
}
}
(CudaStorageSlice::F64(src), CudaStorageSlice::F64(dst)) => {
let (src, mut dst) = slice_src_and_dst(src, src_l, dst, dst_offset);
if src_l.is_contiguous() {
dev.dtod_copy(&src, &mut dst).w()?
} else {
//let func = dev.get_or_load_func("ucopy_f64", kernels::UNARY)?;
let func = dev.get_or_load_func_bin("ucopy_f64", kernels::UNARY)?;
// SAFETY: Set later by running the kernel.
let params = (el_count, dims.len(), &ds, &src, &mut dst);
// SAFETY: ffi.
unsafe { func.launch(cfg, params) }.w()?;
}
}
_ => Err(CudaError::InternalError(
"dtype mismatch in copy_strided op",
))?,
}
Ok(())
}
}
/// Helper functions to plug cuda kernels in candle.
use crate::{Layout, Result, Shape, WithDType};
pub use cudarc;
use cudarc::driver::{CudaSlice, DeviceRepr, ValidAsZeroBits};
use super::{CudaDevice, CudaError, WrapErr};
pub type S = super::CudaStorageSlice;
pub trait Map1 {
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits>(
&self,
src: &CudaSlice<T>,
dev: &CudaDevice,
layout: &Layout,
) -> Result<CudaSlice<T>>;
fn map(&self, s: &S, d: &CudaDevice, l: &Layout) -> Result<S> {
let out = match s {
S::U8(s) => S::U8(self.f(s, d, l)?),
S::U32(s) => S::U32(self.f(s, d, l)?),
S::I64(s) => S::I64(self.f(s, d, l)?),
S::BF16(s) => S::BF16(self.f(s, d, l)?),
S::F16(s) => S::F16(self.f(s, d, l)?),
S::F32(s) => S::F32(self.f(s, d, l)?),
S::F64(s) => S::F64(self.f(s, d, l)?),
};
Ok(out)
}
}
pub trait Map2 {
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits>(
&self,
src1: &CudaSlice<T>,
layout1: &Layout,
src2: &CudaSlice<T>,
layout2: &Layout,
dev: &CudaDevice,
) -> Result<CudaSlice<T>>;
fn map(&self, s1: &S, l1: &Layout, s2: &S, l2: &Layout, d: &CudaDevice) -> Result<S> {
let out = match (s1, s2) {
(S::U8(s1), S::U8(s2)) => S::U8(self.f(s1, l1, s2, l2, d)?),
(S::U32(s1), S::U32(s2)) => S::U32(self.f(s1, l1, s2, l2, d)?),
(S::I64(s1), S::I64(s2)) => S::I64(self.f(s1, l1, s2, l2, d)?),
(S::BF16(s1), S::BF16(s2)) => S::BF16(self.f(s1, l1, s2, l2, d)?),
(S::F16(s1), S::F16(s2)) => S::F16(self.f(s1, l1, s2, l2, d)?),
(S::F32(s1), S::F32(s2)) => S::F32(self.f(s1, l1, s2, l2, d)?),
(S::F64(s1), S::F64(s2)) => S::F64(self.f(s1, l1, s2, l2, d)?),
_ => Err(CudaError::InternalError("dtype mismatch in binary op"))?,
};
Ok(out)
}
}
pub trait Map2InPlace {
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits>(
&self,
dst: &mut CudaSlice<T>,
dst_shape: &Shape,
src: &CudaSlice<T>,
src_l: &Layout,
dev: &CudaDevice,
) -> Result<()>;
fn map(
&self,
dst: &mut S,
dst_s: &Shape,
src: &S,
src_l: &Layout,
d: &CudaDevice,
) -> Result<()> {
match (dst, src) {
(S::U8(dst), S::U8(src)) => self.f(dst, dst_s, src, src_l, d),
(S::U32(dst), S::U32(src)) => self.f(dst, dst_s, src, src_l, d),
(S::I64(dst), S::I64(src)) => self.f(dst, dst_s, src, src_l, d),
(S::BF16(dst), S::BF16(src)) => self.f(dst, dst_s, src, src_l, d),
(S::F16(dst), S::F16(src)) => self.f(dst, dst_s, src, src_l, d),
(S::F32(dst), S::F32(src)) => self.f(dst, dst_s, src, src_l, d),
(S::F64(dst), S::F64(src)) => self.f(dst, dst_s, src, src_l, d),
_ => Err(CudaError::InternalError("dtype mismatch in binary op"))?,
}
}
}
pub trait Map1Any {
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits, W: Fn(CudaSlice<T>) -> S>(
&self,
src: &CudaSlice<T>,
dev: &CudaDevice,
layout: &Layout,
wrap: W,
) -> Result<S>;
fn map(&self, s: &S, d: &CudaDevice, l: &Layout) -> Result<S> {
let out = match s {
S::U8(s) => self.f(s, d, l, S::U8)?,
S::U32(s) => self.f(s, d, l, S::U32)?,
S::I64(s) => self.f(s, d, l, S::I64)?,
S::BF16(s) => self.f(s, d, l, S::BF16)?,
S::F16(s) => self.f(s, d, l, S::F16)?,
S::F32(s) => self.f(s, d, l, S::F32)?,
S::F64(s) => self.f(s, d, l, S::F64)?,
};
Ok(out)
}
}
pub trait Map2Any {
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits>(
&self,
src1: &CudaSlice<T>,
layout1: &Layout,
src2: &CudaSlice<T>,
layout2: &Layout,
dev: &CudaDevice,
) -> Result<S>;
fn map(&self, s1: &S, l1: &Layout, s2: &S, l2: &Layout, d: &CudaDevice) -> Result<S> {
let out = match (s1, s2) {
(S::U8(s1), S::U8(s2)) => self.f(s1, l1, s2, l2, d)?,
(S::U32(s1), S::U32(s2)) => self.f(s1, l1, s2, l2, d)?,
(S::I64(s1), S::I64(s2)) => self.f(s1, l1, s2, l2, d)?,
(S::BF16(s1), S::BF16(s2)) => self.f(s1, l1, s2, l2, d)?,
(S::F16(s1), S::F16(s2)) => self.f(s1, l1, s2, l2, d)?,
(S::F32(s1), S::F32(s2)) => self.f(s1, l1, s2, l2, d)?,
(S::F64(s1), S::F64(s2)) => self.f(s1, l1, s2, l2, d)?,
_ => Err(CudaError::InternalError("dtype mismatch in binary op")).w()?,
};
Ok(out)
}
}
use crate::op::{BackpropOp, Op};
use crate::tensor::from_storage;
use crate::{CpuStorage, CudaStorage, Layout, MetalStorage, Result, Shape, Tensor};
use std::sync::Arc;
/// Unary ops that can be defined in user-land.
pub trait CustomOp1 {
// Box<dyn> does not support const yet, so use a function to get the name.
fn name(&self) -> &'static str;
/// The forward pass, as run on a cpu device. Note that the storage can use arbitrary strides,
/// offsets etc so the associated layout should be used to access it.
fn cpu_fwd(&self, storage: &CpuStorage, layout: &Layout) -> Result<(CpuStorage, Shape)>;
/// The forward pass, as run on a gpu device. Note that the storage can use arbitrary strides,
/// offsets etc so the associated layout should be used to access it.
fn cuda_fwd(&self, _storage: &CudaStorage, _layout: &Layout) -> Result<(CudaStorage, Shape)> {
Err(crate::Error::Cuda(
format!("no cuda implementation for {}", self.name()).into(),
))
}
/// The forward pass, as run on a metal gpu device. Note that the storage can use arbitrary strides,
/// offsets etc so the associated layout should be used to access it.
fn metal_fwd(
&self,
_storage: &MetalStorage,
_layout: &Layout,
) -> Result<(MetalStorage, Shape)> {
Err(crate::Error::Metal(
format!("no metal implementation for {}", self.name()).into(),
))
}
/// This function takes as argument the argument `arg` used in the forward pass, the result
/// produced by the forward operation `res` and the gradient of the result `grad_res`.
/// The function should return the gradient of the argument.
fn bwd(&self, _arg: &Tensor, _res: &Tensor, _grad_res: &Tensor) -> Result<Option<Tensor>> {
Err(crate::Error::BackwardNotSupported { op: self.name() })
}
}
pub trait CustomOp2 {
fn name(&self) -> &'static str;
/// The forward pass, as run on a cpu device. Note that the storage can use arbitrary strides,
/// offsets etc so the associated layout should be used to access it.
fn cpu_fwd(
&self,
s1: &CpuStorage,
l1: &Layout,
s2: &CpuStorage,
l2: &Layout,
) -> Result<(CpuStorage, Shape)>;
/// The forward pass, as run on a gpu device. Note that the storage can use arbitrary strides,
/// offsets etc so the associated layout should be used to access it.
fn cuda_fwd(
&self,
_: &CudaStorage,
_: &Layout,
_: &CudaStorage,
_: &Layout,
) -> Result<(CudaStorage, Shape)> {
Err(crate::Error::Cuda(
format!("no cuda implementation for {}", self.name()).into(),
))
}
/// The forward pass, as run on a metal gpu device. Note that the storage can use arbitrary strides,
/// offsets etc so the associated layout should be used to access it.
fn metal_fwd(
&self,
_: &MetalStorage,
_: &Layout,
_: &MetalStorage,
_: &Layout,
) -> Result<(MetalStorage, Shape)> {
Err(crate::Error::Metal(
format!("no metal implementation for {}", self.name()).into(),
))
}
fn bwd(
&self,
_arg1: &Tensor,
_arg2: &Tensor,
_res: &Tensor,
_grad_res: &Tensor,
) -> Result<(Option<Tensor>, Option<Tensor>)> {
Err(crate::Error::BackwardNotSupported { op: self.name() })
}
}
pub trait CustomOp3 {
fn name(&self) -> &'static str;
/// The forward pass, as run on a cpu device. Note that the storage can use arbitrary strides,
/// offsets etc so the associated layout should be used to access it.
fn cpu_fwd(
&self,
s1: &CpuStorage,
l1: &Layout,
s2: &CpuStorage,
l2: &Layout,
s3: &CpuStorage,
l3: &Layout,
) -> Result<(CpuStorage, Shape)>;
/// The forward pass, as run on a gpu device. Note that the storage can use arbitrary strides,
/// offsets etc so the associated layout should be used to access it.
fn cuda_fwd(
&self,
_: &CudaStorage,
_: &Layout,
_: &CudaStorage,
_: &Layout,
_: &CudaStorage,
_: &Layout,
) -> Result<(CudaStorage, Shape)> {
Err(crate::Error::Cuda(
format!("no cuda implementation for {}", self.name()).into(),
))
}
/// The forward pass, as run on a metal gpu device. Note that the storage can use arbitrary strides,
/// offsets etc so the associated layout should be used to access it.
fn metal_fwd(
&self,
_: &MetalStorage,
_: &Layout,
_: &MetalStorage,
_: &Layout,
_: &MetalStorage,
_: &Layout,
) -> Result<(MetalStorage, Shape)> {
Err(crate::Error::Metal(
format!("no metal implementation for {}", self.name()).into(),
))
}
fn bwd(
&self,
_arg1: &Tensor,
_arg2: &Tensor,
_arg3: &Tensor,
_res: &Tensor,
_grad_res: &Tensor,
) -> Result<(Option<Tensor>, Option<Tensor>, Option<Tensor>)> {
Err(crate::Error::BackwardNotSupported { op: self.name() })
}
}
impl Tensor {
/// Applies a unary custom op without backward support
pub fn apply_op1_no_bwd<C: CustomOp1>(&self, c: &C) -> Result<Self> {
let (storage, shape) = self.storage().apply_op1(self.layout(), c)?;
Ok(from_storage(storage, shape, BackpropOp::none(), false))
}
/// Applies a binary custom op without backward support
pub fn apply_op2_no_bwd<C: CustomOp2>(&self, rhs: &Self, c: &C) -> Result<Self> {
let (storage, shape) =
self.storage()
.apply_op2(self.layout(), &rhs.storage(), rhs.layout(), c)?;
Ok(from_storage(storage, shape, BackpropOp::none(), false))
}
/// Applies a ternary custom op without backward support
pub fn apply_op3_no_bwd<C: CustomOp3>(&self, t2: &Self, t3: &Self, c: &C) -> Result<Self> {
let (storage, shape) = self.storage().apply_op3(
self.layout(),
&t2.storage(),
t2.layout(),
&t3.storage(),
t3.layout(),
c,
)?;
Ok(from_storage(storage, shape, BackpropOp::none(), false))
}
/// Applies a unary custom op.
pub fn apply_op1_arc(&self, c: Arc<Box<dyn CustomOp1 + Send + Sync>>) -> Result<Self> {
let (storage, shape) = self
.storage()
.apply_op1(self.layout(), c.as_ref().as_ref())?;
let op = BackpropOp::new1(self, |s| Op::CustomOp1(s, c.clone()));
Ok(from_storage(storage, shape, op, false))
}
pub fn apply_op1<C: 'static + CustomOp1 + Send + Sync>(&self, c: C) -> Result<Self> {
self.apply_op1_arc(Arc::new(Box::new(c)))
}
/// Applies a binary custom op.
pub fn apply_op2_arc(
&self,
rhs: &Self,
c: Arc<Box<dyn CustomOp2 + Send + Sync>>,
) -> Result<Self> {
let (storage, shape) = self.storage().apply_op2(
self.layout(),
&rhs.storage(),
rhs.layout(),
c.as_ref().as_ref(),
)?;
let op = BackpropOp::new2(self, rhs, |t1, t2| Op::CustomOp2(t1, t2, c.clone()));
Ok(from_storage(storage, shape, op, false))
}
pub fn apply_op2<C: 'static + CustomOp2 + Send + Sync>(&self, r: &Self, c: C) -> Result<Self> {
self.apply_op2_arc(r, Arc::new(Box::new(c)))
}
/// Applies a ternary custom op.
pub fn apply_op3_arc(
&self,
t2: &Self,
t3: &Self,
c: Arc<Box<dyn CustomOp3 + Send + Sync>>,
) -> Result<Self> {
//println!("apply_op3_arc 11");
let (storage, shape) = self.storage().apply_op3(
self.layout(),
&t2.storage(),
t2.layout(),
&t3.storage(),
t3.layout(),
c.as_ref().as_ref(),
)?;
//println!("apply_op3_arc 22");
let op = BackpropOp::new3(self, t2, t3, |t1, t2, t3| {
Op::CustomOp3(t1, t2, t3, c.clone())
});
//println!("apply_op3_arc 33");
Ok(from_storage(storage, shape, op, false))
}
pub fn apply_op3<C: 'static + CustomOp3 + Send + Sync>(
&self,
t2: &Self,
t3: &Self,
c: C,
) -> Result<Self> {
//println!("apply_op3 11");
self.apply_op3_arc(t2, t3, Arc::new(Box::new(c)))
}
}
// In place ops.
/// Unary ops that can be defined in user-land.
/// These ops work in place and as such back-prop is unsupported.
pub trait InplaceOp1 {
// Box<dyn> does not support const yet, so use a function to get the name.
fn name(&self) -> &'static str;
/// The forward pass, as run on a cpu device. Note that the storage can use arbitrary strides,
/// offsets etc so the associated layout should be used to access it.
fn cpu_fwd(&self, storage: &mut CpuStorage, layout: &Layout) -> Result<()>;
/// The forward pass, as run on a gpu device. Note that the storage can use arbitrary strides,
/// offsets etc so the associated layout should be used to access it.
fn cuda_fwd(&self, _storage: &mut CudaStorage, _layout: &Layout) -> Result<()> {
Err(crate::Error::Cuda(
format!("no cuda implementation for {}", self.name()).into(),
))
}
/// The forward pass, as run on a metal gpu device. Note that the storage can use arbitrary strides,
/// offsets etc so the associated layout should be used to access it.
fn metal_fwd(&self, _storage: &mut MetalStorage, _layout: &Layout) -> Result<()> {
Err(crate::Error::Metal(
format!("no metal implementation for {}", self.name()).into(),
))
}
}
pub trait InplaceOp2 {
fn name(&self) -> &'static str;
/// The forward pass, as run on a cpu device. Note that the storage can use arbitrary strides,
/// offsets etc so the associated layout should be used to access it.
fn cpu_fwd(&self, s1: &mut CpuStorage, l1: &Layout, s2: &CpuStorage, l2: &Layout)
-> Result<()>;
/// The forward pass, as run on a gpu device. Note that the storage can use arbitrary strides,
/// offsets etc so the associated layout should be used to access it.
fn cuda_fwd(&self, _: &mut CudaStorage, _: &Layout, _: &CudaStorage, _: &Layout) -> Result<()> {
Err(crate::Error::Cuda(
format!("no cuda implementation for {}", self.name()).into(),
))
}
/// The forward pass, as run on a metal gpu device. Note that the storage can use arbitrary strides,
/// offsets etc so the associated layout should be used to access it.
fn metal_fwd(
&self,
_: &mut MetalStorage,
_: &Layout,
_: &MetalStorage,
_: &Layout,
) -> Result<()> {
Err(crate::Error::Metal(
format!("no metal implementation for {}", self.name()).into(),
))
}
}
pub trait InplaceOp3 {
fn name(&self) -> &'static str;
/// The forward pass, as run on a cpu device. Note that the storage can use arbitrary strides,
/// offsets etc so the associated layout should be used to access it.
fn cpu_fwd(
&self,
s1: &mut CpuStorage,
l1: &Layout,
s2: &CpuStorage,
l2: &Layout,
s3: &CpuStorage,
l3: &Layout,
) -> Result<()>;
/// The forward pass, as run on a gpu device. Note that the storage can use arbitrary strides,
/// offsets etc so the associated layout should be used to access it.
fn cuda_fwd(
&self,
_: &mut CudaStorage,
_: &Layout,
_: &CudaStorage,
_: &Layout,
_: &CudaStorage,
_: &Layout,
) -> Result<()> {
Err(crate::Error::Cuda(
format!("no cuda implementation for {}", self.name()).into(),
))
}
/// The forward pass, as run on a metal gpu device. Note that the storage can use arbitrary strides,
/// offsets etc so the associated layout should be used to access it.
fn metal_fwd(
&self,
_: &mut MetalStorage,
_: &Layout,
_: &MetalStorage,
_: &Layout,
_: &MetalStorage,
_: &Layout,
) -> Result<()> {
Err(crate::Error::Metal(
format!("no metal implementation for {}", self.name()).into(),
))
}
}
impl Tensor {
/// Applies a unary custom op in place.
pub fn inplace_op1<C: InplaceOp1>(&self, c: &C) -> Result<()> {
self.storage_mut().inplace_op1(self.layout(), c)
}
/// Applies a unary custom op in place (for the first tensor).
pub fn inplace_op2<C: InplaceOp2>(&self, rhs: &Self, c: &C) -> Result<()> {
self.storage_mut()
.inplace_op2(self.layout(), &rhs.storage(), rhs.layout(), c)
}
/// Applies a ternary custom op in place (for the first tensor).
pub fn inplace_op3<C: InplaceOp3>(&self, t2: &Self, t3: &Self, c: &C) -> Result<()> {
self.storage_mut().inplace_op3(
self.layout(),
&t2.storage(),
t2.layout(),
&t3.storage(),
t3.layout(),
c,
)
}
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment