#include #include #include #include #include #include void MIGraphXSamplesUsage(char *programName) { printf("Usage : %s \n", programName); printf("index:\n"); printf("\t 0) YOLOX sample.\n"); } void Sample_YOLOX(); int main(int argc, char *argv[]) { if (argc < 2 || argc > 2) { MIGraphXSamplesUsage(argv[0]); return -1; } if (!strncmp(argv[1], "-h", 2)) { MIGraphXSamplesUsage(argv[0]); return 0; } switch (*argv[1]) { case '0': { Sample_YOLOX(); break; } case '1': { break; } default: { MIGraphXSamplesUsage(argv[0]); break; } } return 0; } void Sample_YOLOX() { // 创建YOLOX检测器 migraphxSamples::DetectorYOLOX detector; migraphxSamples::InitializationParameterOfDetector initParamOfDetectorYOLOX; initParamOfDetectorYOLOX.configFilePath = CONFIG_FILE; migraphxSamples::ErrorCode errorCode = detector.Initialize(initParamOfDetectorYOLOX, false); if (errorCode != migraphxSamples::SUCCESS) { LOG_ERROR(stdout, "fail to initialize detector!\n"); exit(-1); } LOG_INFO(stdout, "succeed to initialize detector\n"); // 读取测试图片 cv::Mat srcImage = cv::imread("../Resource/Images/image_test.jpg", 1); // 静态推理固定尺寸 std::vector inputShape = {1, 3, 640, 640}; // 推理 std::vector predictions; double time1 = cv::getTickCount(); detector.Detect(srcImage, inputShape, predictions, false); double time2 = cv::getTickCount(); double elapsedTime = (time2 - time1) * 1000 / cv::getTickFrequency(); LOG_INFO(stdout, "inference time:%f ms\n", elapsedTime); // 获取推理结果 LOG_INFO(stdout, "========== Detection Results ==========\n"); for (int i = 0; i < predictions.size(); ++i) { migraphxSamples::ResultOfDetection result = predictions[i]; cv::rectangle(srcImage, result.boundingBox, cv::Scalar(0, 255, 255), 2); std::string label = cv::format("%.2f", result.confidence); label = result.className + " " + label; int left = predictions[i].boundingBox.x; int top = predictions[i].boundingBox.y; int baseLine; cv::Size labelSize = cv::getTextSize(label, cv::FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine); top = max(top, labelSize.height); cv::putText(srcImage, label, cv::Point(left, top - 10), cv::FONT_HERSHEY_SIMPLEX, 1, cv::Scalar(0, 255, 255), 2); LOG_INFO(stdout, "box:%d %d %d %d,label:%d,confidence:%f\n", predictions[i].boundingBox.x, predictions[i].boundingBox.y, predictions[i].boundingBox.width, predictions[i].boundingBox.height, predictions[i].classID, predictions[i].confidence); } cv::imwrite("Result.jpg", srcImage); LOG_INFO(stdout, "Detection results have been saved to ./Result.jpg\n"); }