Commit 1d5a34cf authored by wanglch's avatar wanglch
Browse files

Initial commit

parents
This source diff could not be displayed because it is too large. You can view the blob instead.
Steps to run.
1. Navigate to `CLIP_benchmark`.
2. Run `export PYTHONPATH=$PWD`.
3. (Optional) To re-run the experiments, run `python probe_benchmark/scaling_experiments.py`. You'll have to change line
51 to point to your data.
4. (Optional) To generate the results, run `python probe_benchmark/build_df_scaling_experiments.py`.
5. (Optional) VTAB requires post-processing to average. Run `python probe_benchmark/process_vtab.py`.
6. Generate plots with `python probe_benchmark/scaling_plot.py`.
7. Generate table with `python probe_benchark/generate_table.py`.
import json
import os
import pandas as pd
if __name__ == '__main__':
compute_df = pd.read_csv('probe_benchmark/clip_table_2.csv')
# mdf = pd.read_csv("https://gist.githubusercontent.com/mehdidc/58dee67cecd5431a80ee3a2346c9c165/raw/45288ebccaacc34a97f580f8bf16fb3274927f2c/gistfile1.txt")
mdf = pd.read_csv('probe_benchmark/openclip_results.csv')
info = []
# import pdb; pdb.set_trace()
models = ['ViT-B-32-quickgelu,laion400m_e32',
'ViT-B-32,openai',
'ViT-B-32,laion2b_s34b_b79k',
'ViT-B-16,laion400m_e32',
'ViT-B-16-plus-240,laion400m_e32',
'ViT-B-16,openai',
# 'ViT-L-14-336,openai',
'ViT-L-14,openai',
'ViT-B-32,laion2b_e16',
'ViT-L-14,laion400m_e32',
'ViT-L-14,laion2b_s32b_b82k',
'ViT-H-14,laion2b_s32b_b79k',
'ViT-g-14,laion2b_s12b_b42k',
]
alt_models = ['B/32 400M',
'B/32 CLIP WIT',
'B/32 2B',
'B/16 400M',
'B/16+ 400M',
'B/16 CLIP WIT',
# 'ViT-L-14-336,openai',
'L/14 CLIP WIT',
'B/32 2B',
'L/14 400M',
'L/14 2B',
'H/14 2B',
'g/14 2B',
]
datasets = ['imagenet1k-unverified', 'cifar100']
datasets = datasets + [
'vtab/caltech101',
'vtab/cifar10',
'vtab/cifar100',
'vtab/clevr_count_all',
'vtab/clevr_closest_object_distance',
'vtab/diabetic_retinopathy',
'vtab/dmlab',
'vtab/dsprites_label_orientation',
'vtab/dsprites_label_x_position',
'vtab/dtd',
'vtab/eurosat',
'vtab/kitti_closest_vehicle_distance',
'vtab/flowers',
'vtab/pets',
'vtab/pcam',
'vtab/resisc45',
'vtab/smallnorb_label_azimuth',
'vtab/smallnorb_label_elevation',
'vtab/svhn',
]
ks = [10, 25, -1]
lrs = [0.1, 0.01, 0.001]
epoch_vals = [10, 20, 40]
batch_sizes = [32 * 8]
def get_us_dataset(pretrained):
if '2b' in pretrained:
return 'LAION-2B'
elif 'laion' in pretrained:
return 'LAION-400M'
else:
return 'CLIP-WIT'
for dataset in datasets:
dataset_root = '/datasets01/imagenet_full_size/061417' if dataset.startswith(
'imagenet') else '/private/home/mitchellw/git/forks/CLIP_benchmark'
for ii, model_info in enumerate(models):
model_info_split = model_info.split(',')
model, pretrained = model_info_split[0], model_info_split[1]
for epochs in epoch_vals:
for k in ks:
if k == 25 and 'vtab' in dataset:
continue
for lr in lrs:
for bs in batch_sizes:
pth = '/private/home/mitchellw/git/forks/CLIP_benchmark/probe_benchmark/data/' + f'{model}-{pretrained}-{dataset}-{epochs}-{k}-{lr}-{bs}.json'.replace(
'/', '_')
print(pth)
assert os.path.exists(pth)
row = {
'k': k,
'lr': lr,
'bs': bs,
'epochs': epochs,
'model': model.replace('-quickgelu', ''),
'pretrained': pretrained,
'pretrained_short': 'laion2b' if 'laion2b' in pretrained else pretrained,
'pretrained_clean': 'LAION' if 'laion' in pretrained else 'CLIP-WiT',
'dataset': dataset,
'macts': compute_df[compute_df.model == model.replace('-quickgelu', '')][
'image_macts'].values[0],
# 'gmacs_total': mdf[mdf.model_fullname_pretty == alt_models[ii]]['gmacs_total'].values[0],
# 'samples_seen': mdf[mdf.model_fullname_pretty == alt_models[ii]]['samples_seen'].values[0],
'gmacs_total':
mdf[mdf.model_fullname == models[ii].replace(',', ' ')]['gmacs_total'].values[0],
'samples_seen':
mdf[mdf.model_fullname == models[ii].replace(',', ' ')]['samples_seen'].values[0],
'samples_seen_pretty': mdf[mdf.model_fullname == models[ii].replace(',', ' ')][
'samples_seen_pretty'].values[0],
'model_short': models[ii].replace(',', ' '),
'upstream_dataset': get_us_dataset(pretrained)
}
with open(pth, 'r') as f:
row.update(json.load(f)['metrics'])
info.append(row)
with open('probe_benchmark/scaling_experiment_data2.json', 'w') as f:
json.dump(info, f)
model,image_size,image_width,text_width,embed_dim,gmacs,macts,mparams,image_gmacs,image_macts,image_mparams,text_gmacs,text_macts,text_mparams
ViT-B-32,224,768,512,512,7.4,10.31,151.28,4.41,5.01,87.85,2.98,5.3,63.43
ViT-B-32-plus-256,256,896,640,640,12.43,14.38,210.3,7.79,7.76,119.13,4.64,6.63,91.16
RN50,224,2048,512,1024,9.16,18.29,102.01,6.17,12.98,38.32,2.98,5.3,63.69
ViT-M-16,224,512,512,512,10.99,21.23,102.02,8.0,15.93,38.59,2.98,5.3,63.43
RN101,224,2048,512,512,12.84,23.38,119.69,9.86,18.08,56.26,2.98,5.3,63.43
ViT-M-16-256,256,512,512,512,13.62,27.56,102.05,10.63,22.26,38.62,2.98,5.3,63.43
ViT-B-16,224,768,512,512,20.57,29.2,149.62,17.58,23.9,86.19,2.98,5.3,63.43
ViT-B-16-plus,224,896,640,640,28.41,34.5,208.35,23.77,27.88,117.19,4.64,6.63,91.16
ViT-B-16-plus-240,240,896,640,640,32.05,39.71,208.38,27.41,33.08,117.21,4.64,6.63,91.16
RN50x4,288,2560,640,640,26.09,41.9,178.3,21.45,35.27,87.14,4.64,6.63,91.16
ViT-L-16,224,1024,768,768,68.26,71.47,427.74,61.6,63.52,304.09,6.66,7.95,123.65
ViT-L-14,224,1024,768,768,87.73,96.74,427.62,81.08,88.79,303.97,6.66,7.95,123.65
RN50x16,384,3072,768,768,81.86,111.49,290.98,75.2,103.54,167.33,6.66,7.95,123.65
ViT-H-16,224,1280,1024,1024,150.96,122.01,986.26,127.4,100.81,632.23,23.57,21.2,354.03
ViT-H-14,224,1280,1024,1024,190.97,160.61,986.11,167.4,139.41,632.08,23.57,21.2,354.03
ViT-L-14-280,280,1024,768,768,136.0,168.66,427.76,129.34,160.71,304.11,6.66,7.95,123.65
RN50x64,448,4096,1024,1024,193.4,199.15,500.28,181.61,188.55,297.4,11.78,10.6,202.88
ViT-g-14,224,1408,1024,1024,290.74,213.84,1366.68,267.18,192.64,1012.65,23.57,21.2,354.03
ViT-H-14-280,280,1280,1024,1024,289.49,268.29,986.29,265.93,247.09,632.26,23.57,21.2,354.03
ViT-L-14-336,336,1024,768,768,197.76,278.19,427.94,191.1,270.24,304.29,6.66,7.95,123.65
ViT-g-14-280,280,1408,1024,1024,446.95,358.73,1366.88,423.38,337.53,1012.85,23.57,21.2,354.03
ViT-H-14-336,336,1280,1024,1024,414.53,428.74,986.52,390.97,407.54,632.49,23.57,21.2,354.03
ViT-g-14-336,336,1408,1024,1024,644.21,571.87,1367.13,620.65,550.67,1013.1,23.57,21.2,354.03
import pandas as pd
# make a new version of vtab
if __name__ == '__main__':
df_full = pd.read_json('probe_benchmark/scaling_experiment_data2.json')
df = df_full[df_full.fewshot_k == -1]
df25 = df_full[df_full.fewshot_k == 25]
df10 = df_full[df_full.fewshot_k == 10]
datasets = [
'vtab/caltech101',
'vtab/cifar10',
'vtab/cifar100',
'vtab/clevr_count_all',
'vtab/clevr_closest_object_distance',
'vtab/diabetic_retinopathy',
'vtab/dmlab',
'vtab/dsprites_label_orientation',
'vtab/dsprites_label_x_position',
'vtab/dtd',
'vtab/eurosat',
'vtab/kitti_closest_vehicle_distance',
'vtab/flowers',
'vtab/pets',
'vtab/pcam',
'vtab/resisc45',
'vtab/smallnorb_label_azimuth',
'vtab/smallnorb_label_elevation',
'vtab_svhn',
]
datasets2 = [
'imagenet1k-unverified', 'cifar100'
]
all_info = []
cols = []
first = True
for n, g in df_full.groupby(['model', 'pretrained', 'samples_seen_pretty']):
count = 0
total = 0.
for d in datasets:
g_filter = g[(g.dataset == d) & (g.fewshot_k == -1)]
count += 1
total += g_filter.lp_acc1.max()
avg = total / count
info = {'VTAB acc': avg}
if first:
cols.append('VTAB acc')
for d in datasets2:
for k in [10, 25, -1]:
g_filter = g[(g.dataset == d) & (g.fewshot_k == k)]
info[f'{d}: {k} shot'] = g_filter.lp_acc1.max()
if first:
cols.append(f'{d}: {k} shot')
for k in ['model', 'pretrained', 'upstream_dataset', 'gmacs_total', 'samples_seen_pretty']:
info[k] = g[k].values[0]
all_info.append(info)
first = False
df = pd.DataFrame(all_info)
formatters = {}
print(df.keys())
columns = ['model', 'samples_seen_pretty', 'upstream_dataset']
df = df.sort_values(by=['model', 'samples_seen_pretty', 'upstream_dataset'])
for ds in cols:
columns.append(ds)
formatters[ds] = lambda x: f'{100 * x:.2f}'
latex = df.to_latex(columns=columns, formatters=formatters)
print(latex)
# with open('probe_benchmark/scaling_experiment_data_combined.json', 'w') as f:
# json.dump(all_info, f)
import os
from clip_benchmark.cli import get_parser_args, run
# /private/home/mitchellw/miniconda3/envs/cb/bin/python probe_benchmark/laion5b_fewshot_experiments.py
if __name__ == '__main__':
models = ['ViT-B-32-quickgelu,laion400m_e32',
'ViT-B-32,openai',
'ViT-B-32,laion2b_s34b_b79k',
'ViT-B-16,laion400m_e32',
# 'ViT-B-16-plus-240,laion400m_e32',
'ViT-B-16,openai',
# 'ViT-L-14-336,openai',
'ViT-L-14,openai',
# 'ViT-B-32,laion2b_e16',
'ViT-L-14,laion400m_e32',
'ViT-L-14,laion2b_s32b_b82k',
'ViT-H-14,laion2b_s32b_b79k',
]
datasets = ['imagenet1k-unverified']
ks = [1, 2, 4, 8, 16, 32, 64, 128]
lrs = [0.1, 0.01, 0.001, 0.0001]
epoch_vals = [10, 20, 40, 80]
batch_sizes = [32 * 8]
for epochs in epoch_vals:
for dataset in datasets:
dataset_root = '/datasets01/imagenet_full_size/061417' if dataset.startswith(
'imagenet') else '/private/home/mitchellw/git/forks/CLIP_benchmark'
for model_info in models:
model_info_split = model_info.split(',')
model, pretrained = model_info_split[0], model_info_split[1]
for k in ks:
for lr in lrs:
for bs in batch_sizes:
args = get_parser_args()
args.dataset_root = dataset_root
args.dataset = dataset
args.task = 'linear_probe'
args.pretrained = pretrained
args.model = model
args.output = '/private/home/mitchellw/git/forks/CLIP_benchmark/probe_benchmark/data/' + f'{model}-{pretrained}-{dataset}-{epochs}-{k}-{lr}-{bs}.json'.replace(
'/', '_')
if os.path.exists(args.output):
print('skipping - exists.')
args.fewshot_k = k
args.fewshot_epochs = epochs
args.fewshot_lr = lr
args.batch_size = bs
args.skip_load = True # NOTE
run(args)
This source diff could not be displayed because it is too large. You can view the blob instead.
import json
import pandas as pd
# make a new version of vtab
if __name__ == '__main__':
df = pd.read_json('probe_benchmark/scaling_experiment_data2.json')
df = df[df.fewshot_k == -1]
datasets = [
'vtab/caltech101',
'vtab/cifar10',
'vtab/cifar100',
'vtab/clevr_count_all',
'vtab/clevr_closest_object_distance',
'vtab/diabetic_retinopathy',
'vtab/dmlab',
'vtab/dsprites_label_orientation',
'vtab/dsprites_label_x_position',
'vtab/dtd',
'vtab/eurosat',
'vtab/kitti_closest_vehicle_distance',
'vtab/flowers',
'vtab/pets',
'vtab/pcam',
'vtab/resisc45',
'vtab/smallnorb_label_azimuth',
'vtab/smallnorb_label_elevation',
'vtab/svhn',
]
all_info = []
for n, g in df.groupby(['model', 'pretrained', 'samples_seen_pretty']):
count = 0
total = 0.
for d in datasets:
g_filter = g[g.dataset == d]
count += 1
total += g_filter.lp_acc1.max()
avg = total / count
info = {'dataset': 'vtab', 'lp_acc1': avg, 'fewshot_k': -1}
for k in ['model', 'pretrained', 'upstream_dataset', 'gmacs_total', 'samples_seen_pretty']:
info[k] = g[k].values[0]
all_info.append(info)
with open('probe_benchmark/scaling_experiment_data_vtab.json', 'w') as f:
json.dump(all_info, f)
This source diff could not be displayed because it is too large. You can view the blob instead.
[
{
"dataset": "vtab",
"lp_acc1": 0.7272385796110142,
"fewshot_k": -1,
"model": "ViT-B-16",
"pretrained": "laion400m_e32",
"upstream_dataset": "LAION-400M",
"gmacs_total": 268122270972.16,
"samples_seen_pretty": "13B"
},
{
"dataset": "vtab",
"lp_acc1": 0.7125347395825511,
"fewshot_k": -1,
"model": "ViT-B-16",
"pretrained": "openai",
"upstream_dataset": "CLIP-WIT",
"gmacs_total": 263296000000.0,
"samples_seen_pretty": "13B"
},
{
"dataset": "vtab",
"lp_acc1": 0.7332202011443508,
"fewshot_k": -1,
"model": "ViT-B-16-plus-240",
"pretrained": "laion400m_e32",
"upstream_dataset": "LAION-400M",
"gmacs_total": 370313744206.08,
"samples_seen_pretty": "13B"
},
{
"dataset": "vtab",
"lp_acc1": 0.7143166719197058,
"fewshot_k": -1,
"model": "ViT-B-32",
"pretrained": "laion2b_e16",
"upstream_dataset": "LAION-2B",
"gmacs_total": 256967931347.2,
"samples_seen_pretty": "34B"
},
{
"dataset": "vtab",
"lp_acc1": 0.7152995214130362,
"fewshot_k": -1,
"model": "ViT-B-32",
"pretrained": "laion2b_s34b_b79k",
"upstream_dataset": "LAION-2B",
"gmacs_total": 291096483388.0,
"samples_seen_pretty": "34B"
},
{
"dataset": "vtab",
"lp_acc1": 0.7183753019516755,
"fewshot_k": -1,
"model": "ViT-B-32",
"pretrained": "laion400m_e32",
"upstream_dataset": "LAION-400M",
"gmacs_total": 96456237491.2,
"samples_seen_pretty": "13B"
},
{
"dataset": "vtab",
"lp_acc1": 0.6971394911855741,
"fewshot_k": -1,
"model": "ViT-B-32",
"pretrained": "openai",
"upstream_dataset": "CLIP-WIT",
"gmacs_total": 94720000000.0,
"samples_seen_pretty": "13B"
},
{
"dataset": "vtab",
"lp_acc1": 0.7596462313700938,
"fewshot_k": -1,
"model": "ViT-H-14",
"pretrained": "laion2b_s32b_b79k",
"upstream_dataset": "LAION-2B",
"gmacs_total": 6631508868008.96,
"samples_seen_pretty": "34B"
},
{
"dataset": "vtab",
"lp_acc1": 0.744758325311516,
"fewshot_k": -1,
"model": "ViT-L-14",
"pretrained": "laion2b_s32b_b82k",
"upstream_dataset": "LAION-2B",
"gmacs_total": 2807360000000.0,
"samples_seen_pretty": "34B"
},
{
"dataset": "vtab",
"lp_acc1": 0.7397637678783028,
"fewshot_k": -1,
"model": "ViT-L-14",
"pretrained": "laion400m_e32",
"upstream_dataset": "LAION-400M",
"gmacs_total": 1143527799338.24,
"samples_seen_pretty": "13B"
},
{
"dataset": "vtab",
"lp_acc1": 0.7376775015037333,
"fewshot_k": -1,
"model": "ViT-L-14",
"pretrained": "openai",
"upstream_dataset": "CLIP-WIT",
"gmacs_total": 1122944000000.0,
"samples_seen_pretty": "13B"
},
{
"dataset": "vtab",
"lp_acc1": 0.7517780869059744,
"fewshot_k": -1,
"model": "ViT-g-14",
"pretrained": "laion2b_s12b_b42k",
"upstream_dataset": "LAION-2B",
"gmacs_total": 3549396664594.8,
"samples_seen_pretty": "13B"
}
]
import os
from clip_benchmark.cli import get_parser_args, run
if __name__ == '__main__':
models = ['ViT-B-32-quickgelu,laion400m_e32',
'ViT-B-32,openai',
'ViT-B-32,laion2b_s34b_b79k',
'ViT-B-16,laion400m_e32',
'ViT-B-16-plus-240,laion400m_e32',
'ViT-B-16,openai',
'ViT-L-14-336,openai',
'ViT-L-14,openai',
'ViT-B-32,laion2b_e16',
'ViT-L-14,laion400m_e32',
'ViT-L-14,laion2b_s32b_b82k',
'ViT-H-14,laion2b_s32b_b79k',
'ViT-g-14,laion2b_s12b_b42k',
]
datasets = ['imagenet1k-unverified', 'cifar100']
datasets = datasets + [
'vtab/caltech101',
'vtab/cifar10',
'vtab/cifar100',
'vtab/clevr_count_all',
'vtab/clevr_closest_object_distance',
'vtab/diabetic_retinopathy',
'vtab/dmlab',
'vtab/dsprites_label_orientation',
'vtab/dsprites_label_x_position',
'vtab/dtd',
'vtab/eurosat',
'vtab/kitti_closest_vehicle_distance',
'vtab/flowers',
'vtab/pets',
'vtab/pcam',
'vtab/resisc45',
'vtab/smallnorb_label_azimuth',
'vtab/smallnorb_label_elevation',
'vtab/svhn',
]
ks = [10, 25, -1]
lrs = [0.1, 0.01, 0.001]
epoch_vals = [10, 20, 40]
batch_sizes = [32 * 8]
if not os.path.exists('probe_benchmark/data'):
os.mkdir('probe_benchmark/data')
for dataset in datasets:
dataset_root = 'datasets/' + dataset.split('/')[-1] # TODO: change!
print(dataset_root)
for model_info in models:
model_info_split = model_info.split(',')
model, pretrained = model_info_split[0], model_info_split[1]
for epochs in epoch_vals:
# For VTAB, do not run >= 25 shot.
for k in ks:
if k >= 25 and dataset.startswith('vtab'):
continue
for lr in lrs:
for bs in batch_sizes:
args = get_parser_args()
args.dataset_root = dataset_root
args.dataset = dataset
args.task = 'linear_probe'
args.pretrained = pretrained
args.model = model
args.output = f'probe_benchmark/data/' + f'{model}-{pretrained}-{dataset}-{epochs}-{k}-{lr}-{bs}.json'.replace(
'/', '_')
if os.path.exists(args.output):
print('skipping - exists.')
continue
args.fewshot_k = k
args.fewshot_epochs = epochs
args.fewshot_lr = lr
args.batch_size = bs
run(args)
print(dataset, model, pretrained, epochs, k, lr, bs)
This source diff could not be displayed because it is too large. You can view the blob instead.
open_clip_torch>=0.2.1
opencv-python
peft>=0.6.2
protobuf==3.20.3
pycocoevalcap
pyyaml
scikit-learn>=1.0,<2
scikit-learn
scipy
task_adaptation
tensorflow==2.11.0
termcolor
tqdm>=2
transformers>=4.32.0
webdataset>=0.2.31
yacs
[bumpversion]
current_version = 0.1.0
commit = True
tag = True
[bumpversion:file:setup.py]
search = version='{current_version}'
replace = version='{new_version}'
[bumpversion:file:clip_benchmark/__init__.py]
search = __version__ = '{current_version}'
replace = __version__ = '{new_version}'
[bdist_wheel]
universal = 1
[flake8]
exclude = docs
#!/usr/bin/env python
"""The setup script."""
from setuptools import find_packages, setup
with open('README.md') as readme_file:
readme = readme_file.read()
with open('HISTORY.rst') as history_file:
history = history_file.read()
def load_requirements(f):
return [l.strip() for l in open(f).readlines()]
requirements = load_requirements('requirements.txt')
test_requirements = requirements + ['pytest', 'pytest-runner']
setup(
author='Mehdi Cherti',
author_email='mehdicherti@gmail.com',
python_requires='>=3.6',
classifiers=[
'Development Status :: 2 - Pre-Alpha',
'Intended Audience :: Developers',
'License :: OSI Approved :: MIT License',
'Natural Language :: English',
'Programming Language :: Python :: 3',
'Programming Language :: Python :: 3.6',
'Programming Language :: Python :: 3.7',
'Programming Language :: Python :: 3.8',
],
description='CLIP-like models benchmarks on various datasets',
entry_points={
'console_scripts': [
'clip_benchmark=clip_benchmark.cli:main',
'clip_benchmark_export_wds=clip_benchmark.webdataset_builder:main',
],
},
install_requires=requirements,
license='MIT license',
long_description=readme + '\n\n' + history,
long_description_content_type='text/markdown',
include_package_data=True,
keywords='clip_benchmark',
name='clip_benchmark',
packages=find_packages(include=['clip_benchmark', 'clip_benchmark.*']),
test_suite='tests',
tests_require=test_requirements,
url='https://github.com/mehdidc/clip_benchmark',
version='1.4.0',
zip_safe=False,
extra_require={
'vtab': ['task_adaptation==0.1', 'timm>=0.5.4'],
'tfds': ['tfds-nightly', 'timm>=0.5.4'],
'coco': ['pycocotools>=2.0.4'],
}
)
set -x
PARTITION=${PARTITION:-'INTERN4'}
alias s1a="srun -p ${PARTITION} -N 1 --gres=gpu:1 --cpus-per-task 10 --quotatype=auto"
export PYTHONPATH="${PYTHONPATH}:$(pwd)"
s1a --async python3 clip_benchmark/cli.py eval --model_type internvl --language "en" --task "zeroshot_classification" \
--dataset "birdsnap" --dataset_root ./data/birdsnap/ --model internvl_c_classification \
--pretrained ./pretrained/internvl_c_13b_224px.pth --output result.json
s1a --async python3 clip_benchmark/cli.py eval --model_type internvl --language "en" --task "zeroshot_classification" \
--dataset "cifar10" --dataset_root ./data/ --model internvl_c_classification \
--pretrained ./pretrained/internvl_c_13b_224px.pth --output result.json
s1a --async python3 clip_benchmark/cli.py eval --model_type internvl --language "en" --task "zeroshot_classification" \
--dataset "cifar100" --dataset_root ./data/ --model internvl_c_classification \
--pretrained ./pretrained/internvl_c_13b_224px.pth --output result.json
s1a --async python3 clip_benchmark/cli.py eval --model_type internvl --language "en" --task "zeroshot_classification" \
--dataset "food101" --dataset_root ./data/ --model internvl_c_classification \
--pretrained ./pretrained/internvl_c_13b_224px.pth --output result.json
s1a --async python3 clip_benchmark/cli.py eval --model_type internvl --language "en" --task "zeroshot_classification" \
--dataset "sun397" --dataset_root ./data/ --model internvl_c_classification \
--pretrained ./pretrained/internvl_c_13b_224px.pth --output result.json
s1a --async python3 clip_benchmark/cli.py eval --model_type internvl --language "en" --task "zeroshot_classification" \
--dataset "cars" --dataset_root ./data/ --model internvl_c_classification \
--pretrained ./pretrained/internvl_c_13b_224px.pth --output result.json
s1a --async python3 clip_benchmark/cli.py eval --model_type internvl --language "en" --task "zeroshot_classification" \
--dataset "fgvc_aircraft" --dataset_root ./data/ --model internvl_c_classification \
--pretrained ./pretrained/internvl_c_13b_224px.pth --output result.json
s1a --async python3 clip_benchmark/cli.py eval --model_type internvl --language "en" --task "zeroshot_classification" \
--dataset "dtd" --dataset_root ./data/ --model internvl_c_classification \
--pretrained ./pretrained/internvl_c_13b_224px.pth --output result.json
s1a --async python3 clip_benchmark/cli.py eval --model_type internvl --language "en" --task "zeroshot_classification" \
--dataset "pets" --dataset_root ./data/ --model internvl_c_classification \
--pretrained ./pretrained/internvl_c_13b_224px.pth --output result.json
s1a --async python3 clip_benchmark/cli.py eval --model_type internvl --language "en" --task "zeroshot_classification" \
--dataset "caltech101" --dataset_root ./data/ --model internvl_c_classification \
--pretrained ./pretrained/internvl_c_13b_224px.pth --output result.json
s1a --async python3 clip_benchmark/cli.py eval --model_type internvl --language "en" --task "zeroshot_classification" \
--dataset "mnist" --dataset_root ./data/ --model internvl_c_classification \
--pretrained ./pretrained/internvl_c_13b_224px.pth --output result.json
s1a --async python3 clip_benchmark/cli.py eval --model_type internvl --language "en" --task "zeroshot_classification" \
--dataset "stl10" --dataset_root ./data/ --model internvl_c_classification \
--pretrained ./pretrained/internvl_c_13b_224px.pth --output result.json
s1a --async python3 clip_benchmark/cli.py eval --model_type internvl --language "en" --task "zeroshot_classification" \
--dataset "eurosat" --dataset_root ./data/ --model internvl_c_classification \
--pretrained ./pretrained/internvl_c_13b_224px.pth --output result.json
s1a --async python3 clip_benchmark/cli.py eval --model_type internvl --language "en" --task "zeroshot_classification" \
--dataset "gtsrb" --dataset_root ./data/ --model internvl_c_classification \
--pretrained ./pretrained/internvl_c_13b_224px.pth --output result.json
s1a --async python3 clip_benchmark/cli.py eval --model_type internvl --language "en" --task "zeroshot_classification" \
--dataset "country211" --dataset_root ./data/ --model internvl_c_classification \
--pretrained ./pretrained/internvl_c_13b_224px.pth --output result.json
s1a --async python3 clip_benchmark/cli.py eval --model_type internvl --language "en" --task "zeroshot_classification" \
--dataset "pcam" --dataset_root ./data/ --model internvl_c_classification \
--pretrained ./pretrained/internvl_c_13b_224px.pth --output result.json
s1a --async python3 clip_benchmark/cli.py eval --model_type internvl --language "en" --task "zeroshot_classification" \
--dataset "renderedsst2" --dataset_root ./data/ --model internvl_c_classification \
--pretrained ./pretrained/internvl_c_13b_224px.pth --output result.json
s1a --async python3 clip_benchmark/cli.py eval --model_type internvl --language "en" --task "zeroshot_classification" \
--dataset "fer2013" --dataset_root ./data/fer2013 --model internvl_c_classification \
--pretrained ./pretrained/internvl_c_13b_224px.pth --output result.json
s1a --async python3 clip_benchmark/cli.py eval --model_type internvl --language "en" --task "zeroshot_classification" \
--dataset "voc2007" --dataset_root ./data/ --model internvl_c_classification \
--pretrained ./pretrained/internvl_c_13b_224px.pth --output result.json
s1a --async python3 clip_benchmark/cli.py eval --model_type internvl --language "en" --task "zeroshot_classification" \
--dataset "vtab/flowers" --dataset_root ./data/ --model internvl_c_classification \
--pretrained ./pretrained/internvl_c_13b_224px.pth --output result.json
s1a --async python3 clip_benchmark/cli.py eval --model_type internvl --language "en" --task "zeroshot_classification" \
--dataset "vtab/resisc45" --dataset_root ./data/ --model internvl_c_classification \
--pretrained ./pretrained/internvl_c_13b_224px.pth --output result.json
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment