Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
yangql
drop
Commits
4cccaba1
Commit
4cccaba1
authored
Jun 07, 2023
by
Yang0001
Browse files
first commit
parents
Changes
358
Show whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
2622 additions
and
0 deletions
+2622
-0
example/16_gemm_multi_d_multi_reduces/gemm_mean_meansquare_xdl_fp16.cpp
...m_multi_d_multi_reduces/gemm_mean_meansquare_xdl_fp16.cpp
+174
-0
example/16_gemm_multi_d_multi_reduces/gemm_mean_meansquare_xdl_fp32.cpp
...m_multi_d_multi_reduces/gemm_mean_meansquare_xdl_fp32.cpp
+174
-0
example/16_gemm_multi_d_multi_reduces/gemm_reduce_xdl_common.hpp
.../16_gemm_multi_d_multi_reduces/gemm_reduce_xdl_common.hpp
+491
-0
example/17_convnd_bwd_data/CMakeLists.txt
example/17_convnd_bwd_data/CMakeLists.txt
+5
-0
example/17_convnd_bwd_data/README.md
example/17_convnd_bwd_data/README.md
+47
-0
example/17_convnd_bwd_data/convnd_bwd_data_common.hpp
example/17_convnd_bwd_data/convnd_bwd_data_common.hpp
+152
-0
example/17_convnd_bwd_data/convnd_bwd_data_dl_fp16.cpp
example/17_convnd_bwd_data/convnd_bwd_data_dl_fp16.cpp
+180
-0
example/17_convnd_bwd_data/convnd_bwd_data_xdl_fp16.cpp
example/17_convnd_bwd_data/convnd_bwd_data_xdl_fp16.cpp
+207
-0
example/18_batched_gemm_reduce/CMakeLists.txt
example/18_batched_gemm_reduce/CMakeLists.txt
+2
-0
example/18_batched_gemm_reduce/batched_gemm_reduce_xdl_fp16.cpp
...e/18_batched_gemm_reduce/batched_gemm_reduce_xdl_fp16.cpp
+311
-0
example/19_binary_elementwise/CMakeLists.txt
example/19_binary_elementwise/CMakeLists.txt
+5
-0
example/19_binary_elementwise/broadcast_add_2d_amn_bn.cpp
example/19_binary_elementwise/broadcast_add_2d_amn_bn.cpp
+136
-0
example/19_binary_elementwise/broadcast_add_3d_am_bmnk.cpp
example/19_binary_elementwise/broadcast_add_3d_am_bmnk.cpp
+120
-0
example/19_binary_elementwise/elementwise_add_1d.cpp
example/19_binary_elementwise/elementwise_add_1d.cpp
+111
-0
example/19_binary_elementwise/elementwise_add_4d.cpp
example/19_binary_elementwise/elementwise_add_4d.cpp
+120
-0
example/20_grouped_conv_bwd_weight/CMakeLists.txt
example/20_grouped_conv_bwd_weight/CMakeLists.txt
+8
-0
example/20_grouped_conv_bwd_weight/common.hpp
example/20_grouped_conv_bwd_weight/common.hpp
+138
-0
example/20_grouped_conv_bwd_weight/grouped_conv_bwd_weight_xdl_bf16.cpp
...uped_conv_bwd_weight/grouped_conv_bwd_weight_xdl_bf16.cpp
+18
-0
example/20_grouped_conv_bwd_weight/grouped_conv_bwd_weight_xdl_fp16.cpp
...uped_conv_bwd_weight/grouped_conv_bwd_weight_xdl_fp16.cpp
+17
-0
example/20_grouped_conv_bwd_weight/run_grouped_conv_bwd_weight_example.inc
...d_conv_bwd_weight/run_grouped_conv_bwd_weight_example.inc
+206
-0
No files found.
Too many changes to show.
To preserve performance only
358 of 358+
files are displayed.
Plain diff
Email patch
example/16_gemm_multi_d_multi_reduces/gemm_mean_meansquare_xdl_fp16.cpp
0 → 100644
View file @
4cccaba1
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "gemm_reduce_xdl_common.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_multiple_r_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
// DataType
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
GemmAccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
F16
;
using
ReduceAccDataType
=
F32
;
using
R0DataType
=
F32
;
using
R1DataType
=
F32
;
using
RsDataType
=
ck
::
Tuple
<
R0DataType
,
R1DataType
>
;
// Layout
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
ELayout
=
Row
;
// Elementwise op
using
Square
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
;
using
Div
=
ck
::
tensor_operation
::
element_wise
::
UnaryDivide
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
PassThrough
;
using
QsElementOp
=
ck
::
Tuple
<
PassThrough
,
Square
>
;
using
RsElementOp
=
ck
::
Tuple
<
Div
,
Div
>
;
// ReduceOp
using
R0ThreadReduceOp
=
ck
::
reduce
::
Add
;
using
R1ThreadReduceOp
=
ck
::
reduce
::
Add
;
using
RsThreadReduceOp
=
ck
::
Tuple
<
R0ThreadReduceOp
,
R1ThreadReduceOp
>
;
static
constexpr
auto
R0GlobalReduceOp
=
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
;
static
constexpr
auto
R1GlobalReduceOp
=
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
;
using
RsGlobalReduceOp
=
ck
::
InMemoryDataOperationEnumSequence
<
R0GlobalReduceOp
,
R1GlobalReduceOp
>
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
DeviceOpInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleDMultipleR_Xdl_CShuffle
<
ALayout
,
// ALayout
BLayout
,
// BLayout
ELayout
,
// ELayout
ADataType
,
// ADataType
BDataType
,
// BDataType
GemmAccDataType
,
// GemmAccDataType
CShuffleDataType
,
// CShuffleDataType
DsDataType
,
// DsDataType
EDataType
,
// EDataType
ReduceAccDataType
,
// ReduceAccDataType
RsDataType
,
// RsDataType
AElementOp
,
// AElementwiseOperation
BElementOp
,
// BElementwiseOperation
CDEElementOp
,
// CDE ElementwiseOperation
QsElementOp
,
// Qs Elementwise Operation
RsElementOp
,
// Rs Elementwise Operation
RsThreadReduceOp
,
// Thread Reduce Operation
RsGlobalReduceOp
,
// Global Reduce Operation
GemmDefault
,
// GEMM Specialization
1
,
// NumGemmKPrefetchStage
256
,
// BlockSize
256
,
// MPerBlock
128
,
// NPerBlock
32
,
// KPerBlock
8
,
// AK1
8
,
// BK1
32
,
// MPerXdl
32
,
// NPerXdl
4
,
// MXdlPerWave
2
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransfer ThreadCluster Lengths_K0_M_K1
S
<
1
,
0
,
2
>
,
// ABlockTransfer ThreadCluster ArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransfer SrcAccessOrder
2
,
// ABlockTransfer SrcVectorDim
8
,
// ABlockTransfer SrcScalarPerVector
8
,
// ABlockTransfer DstScalarPerVector_K1
1
,
// ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransfer ThreadCluster Lengths_K0_N_K1
S
<
1
,
0
,
2
>
,
// BBlockTransfer ThreadCluster ArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransfer SrcAccessOrder
2
,
// BBlockTransfer SrcVectorDim
8
,
// BBlockTransfer SrcScalarPerVector
8
,
// BBlockTransfer DstScalarPerVector_K1
1
,
// BBlockLdsExtraN
1
,
// CShuffleMXdlPerWavePerShuffle
1
,
// CShuffleNXdlPerWavePerShuffle
S
<
64
,
4
>
,
// CD Reduce Thread Transfer ClusterLengths _MPerBlock_NPerBlock
4
,
// CDE ReduceThreadTransfer ScalarPerVector _NPerBlock
1
>
;
// RThread DstScalarPerVector _MPerBlock
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
ReduceAccDataType
,
GemmAccDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
true
;
// GEMM shape
ck
::
index_t
M
=
1024
;
ck
::
index_t
N
=
1024
;
ck
::
index_t
K
=
1024
;
ck
::
index_t
StrideA
=
1024
;
ck
::
index_t
StrideB
=
1024
;
ck
::
index_t
StrideE
=
1024
;
if
(
argc
==
1
)
{
// do nothing
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
10
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
StrideA
=
std
::
stoi
(
argv
[
7
]);
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideE
=
std
::
stoi
(
argv
[
9
]);
}
else
{
std
::
cout
<<
"arg1: verification (0=no, 1=yes)
\n
"
<<
" arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
<<
" arg3: Measure kernel execution time (1=ON, 0=Off)
\n
"
<<
" arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideE
\n
"
<<
std
::
endl
;
exit
(
EXIT_SUCCESS
);
}
return
!
run_gemm_reduce_mean_meansquare_xdl
<
ADataType
,
BDataType
,
EDataType
,
R0DataType
,
R1DataType
,
ALayout
,
BLayout
,
ELayout
,
AElementOp
,
BElementOp
,
CDEElementOp
,
QsElementOp
,
RsElementOp
,
RsThreadReduceOp
,
ReduceAccDataType
,
DeviceOpInstance
,
ReferenceGemmInstance
>
(
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideE
,
do_verification
,
init_method
,
time_kernel
);
}
example/16_gemm_multi_d_multi_reduces/gemm_mean_meansquare_xdl_fp32.cpp
0 → 100644
View file @
4cccaba1
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "gemm_reduce_xdl_common.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_multiple_r_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
// DataType
using
ADataType
=
F32
;
using
BDataType
=
F32
;
using
GemmAccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
F32
;
using
ReduceAccDataType
=
F32
;
using
R0DataType
=
F32
;
using
R1DataType
=
F32
;
using
RsDataType
=
ck
::
Tuple
<
R0DataType
,
R1DataType
>
;
// Layout
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
ELayout
=
Row
;
// Elementwise op
using
Square
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
;
using
Div
=
ck
::
tensor_operation
::
element_wise
::
UnaryDivide
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
PassThrough
;
using
QsElementOp
=
ck
::
Tuple
<
PassThrough
,
Square
>
;
using
RsElementOp
=
ck
::
Tuple
<
Div
,
Div
>
;
// ReduceOp
using
R0ThreadReduceOp
=
ck
::
reduce
::
Add
;
using
R1ThreadReduceOp
=
ck
::
reduce
::
Add
;
using
RsThreadReduceOp
=
ck
::
Tuple
<
R0ThreadReduceOp
,
R1ThreadReduceOp
>
;
static
constexpr
auto
R0GlobalReduceOp
=
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
;
static
constexpr
auto
R1GlobalReduceOp
=
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
;
using
RsGlobalReduceOp
=
ck
::
InMemoryDataOperationEnumSequence
<
R0GlobalReduceOp
,
R1GlobalReduceOp
>
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
DeviceOpInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleDMultipleR_Xdl_CShuffle
<
ALayout
,
// ALayout
BLayout
,
// BLayout
ELayout
,
// ELayout
ADataType
,
// ADataType
BDataType
,
// BDataType
GemmAccDataType
,
// GemmAccDataType
CShuffleDataType
,
// CShuffleDataType
DsDataType
,
// DsDataType
EDataType
,
// EDataType
ReduceAccDataType
,
// ReduceAccDataType
RsDataType
,
// RsDataType
AElementOp
,
// AElementwiseOperation
BElementOp
,
// BElementwiseOperation
CDEElementOp
,
// CDE ElementwiseOperation
QsElementOp
,
// Qs Elementwise Operation
RsElementOp
,
// Rs Elementwise Operation
RsThreadReduceOp
,
// Thread Reduce Operation
RsGlobalReduceOp
,
// Global Reduce Operation
GemmDefault
,
// GEMM Specialization
1
,
// NumGemmKPrefetchStage
256
,
// BlockSize
256
,
// MPerBlock
128
,
// NPerBlock
16
,
// KPerBlock
4
,
// AK1
4
,
// BK1
32
,
// MPerXdl
32
,
// NPerXdl
4
,
// MXdlPerWave
2
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransfer ThreadCluster Lengths_K0_M_K1
S
<
1
,
0
,
2
>
,
// ABlockTransfer ThreadCluster ArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransfer SrcAccessOrder
2
,
// ABlockTransfer SrcVectorDim
4
,
// ABlockTransfer SrcScalarPerVector
4
,
// ABlockTransfer DstScalarPerVector_K1
1
,
// ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransfer ThreadCluster Lengths_K0_N_K1
S
<
1
,
0
,
2
>
,
// BBlockTransfer ThreadCluster ArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransfer SrcAccessOrder
2
,
// BBlockTransfer SrcVectorDim
4
,
// BBlockTransfer SrcScalarPerVector
4
,
// BBlockTransfer DstScalarPerVector_K1
1
,
// BBlockLdsExtraN
1
,
// CShuffleMXdlPerWavePerShuffle
1
,
// CShuffleNXdlPerWavePerShuffle
S
<
64
,
4
>
,
// CD Reduce Thread Transfer ClusterLengths _MPerBlock_NPerBlock
4
,
// CDE ReduceThreadTransfer ScalarPerVector _NPerBlock
1
>
;
// RThread DstScalarPerVector _MPerBlock
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
ReduceAccDataType
,
GemmAccDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
true
;
// GEMM shape
ck
::
index_t
M
=
1024
;
ck
::
index_t
N
=
1024
;
ck
::
index_t
K
=
1024
;
ck
::
index_t
StrideA
=
1024
;
ck
::
index_t
StrideB
=
1024
;
ck
::
index_t
StrideE
=
1024
;
if
(
argc
==
1
)
{
// do nothing
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
10
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
StrideA
=
std
::
stoi
(
argv
[
7
]);
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideE
=
std
::
stoi
(
argv
[
9
]);
}
else
{
std
::
cout
<<
"arg1: verification (0=no, 1=yes)
\n
"
<<
" arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
<<
" arg3: Measure kernel execution time (1=ON, 0=Off)
\n
"
<<
" arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideE
\n
"
<<
std
::
endl
;
exit
(
EXIT_SUCCESS
);
}
return
!
run_gemm_reduce_mean_meansquare_xdl
<
ADataType
,
BDataType
,
EDataType
,
R0DataType
,
R1DataType
,
ALayout
,
BLayout
,
ELayout
,
AElementOp
,
BElementOp
,
CDEElementOp
,
QsElementOp
,
RsElementOp
,
RsThreadReduceOp
,
ReduceAccDataType
,
DeviceOpInstance
,
ReferenceGemmInstance
>
(
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideE
,
do_verification
,
init_method
,
time_kernel
);
}
example/16_gemm_multi_d_multi_reduces/gemm_reduce_xdl_common.hpp
0 → 100644
View file @
4cccaba1
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <iostream>
#include "ck/ck.hpp"
#include "ck/host_utility/io.hpp"
#include "ck/stream_config.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/fill.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
F16
=
ck
::
half_t
;
using
BF16
=
ck
::
bhalf_t
;
using
F32
=
float
;
using
F64
=
double
;
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
using
INT4
=
ck
::
int4_t
;
#endif
using
INT8
=
std
::
int8_t
;
using
INT32
=
std
::
int32_t
;
template
<
typename
ADataType
,
typename
BDataType
,
typename
EDataType
,
typename
R0DataType
>
void
DumpGemmReduceMaxPerf
(
float
ave_time
,
int
M
,
int
N
,
int
K
)
{
using
namespace
ck
::
literals
;
std
::
size_t
flop
=
2
_uz
*
M
*
N
*
K
;
std
::
size_t
gemm_num_byte
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
EDataType
)
*
M
*
N
+
sizeof
(
R0DataType
)
*
M
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gemm_gb_per_sec
=
gemm_num_byte
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gemm_gb_per_sec
<<
" GB/s, "
<<
std
::
endl
;
}
template
<
typename
ADataType
,
typename
BDataType
,
typename
EDataType
,
typename
R0DataType
,
typename
R1DataType
>
void
DumpGemmReduceMeanSquareMeanPerf
(
float
ave_time
,
int
M
,
int
N
,
int
K
)
{
using
namespace
ck
::
literals
;
std
::
size_t
flop
=
2
_uz
*
M
*
N
*
K
+
M
*
(
3
_uz
*
N
+
2
_uz
);
std
::
size_t
gemm_num_byte
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
EDataType
)
*
M
*
N
+
sizeof
(
R0DataType
)
*
M
+
sizeof
(
R1DataType
)
*
M
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gemm_gb_per_sec
=
gemm_num_byte
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gemm_gb_per_sec
<<
" GB/s, "
<<
std
::
endl
;
}
template
<
typename
ADataType
,
typename
BDataType
,
typename
EDataType
,
typename
R0DataType
,
typename
ALayout
,
typename
BLayout
,
typename
ELayout
,
typename
AElementOp
,
typename
BElementOp
,
typename
CDEElementOp
,
typename
QsElementOp
,
typename
RsElementOp
,
typename
RsThreadReduceOp
,
typename
ReduceAccDataType
,
typename
DeviceOpInstance
,
typename
ReferenceGemmInstance
,
typename
ADataKernelType
=
ADataType
,
typename
BDataKernelType
=
BDataType
,
typename
EDataKernelType
=
EDataType
>
auto
run_gemm_reduce_max_xdl
(
ck
::
index_t
M
,
ck
::
index_t
N
,
ck
::
index_t
K
,
ck
::
index_t
StrideA
,
ck
::
index_t
StrideB
,
ck
::
index_t
StrideE
,
bool
do_verification
,
int
init_method
,
bool
time_kernel
)
{
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
static_assert
(
sizeof
(
ck
::
int4_t
)
==
sizeof
(
int8_t
));
static_assert
(
sizeof
(
ADataType
)
==
sizeof
(
ADataKernelType
));
static_assert
(
sizeof
(
BDataType
)
==
sizeof
(
BDataKernelType
));
static_assert
(
sizeof
(
EDataType
)
==
sizeof
(
EDataKernelType
));
#endif
using
namespace
ck
::
literals
;
auto
f_host_tensor_descriptor1d
=
[](
std
::
size_t
len
,
std
::
size_t
stride
)
{
return
HostTensorDescriptor
({
len
},
{
stride
});
};
auto
f_host_tensor_descriptor2d
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
}
};
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor2d
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor2d
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
EDataKernelType
>
e_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
StrideE
,
ELayout
{}));
Tensor
<
R0DataType
>
r0_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
ck
::
utils
::
FillUniformDistributionIntegerValue
<
ADataType
>
{
-
5.
f
,
5.
f
}(
a_m_k
);
ck
::
utils
::
FillUniformDistributionIntegerValue
<
BDataType
>
{
-
5.
f
,
5.
f
}(
b_k_n
);
break
;
default:
ck
::
utils
::
FillUniformDistribution
<
ADataType
>
{
-
1.
f
,
1.
f
}(
a_m_k
);
ck
::
utils
::
FillUniformDistribution
<
BDataType
>
{
-
1.
f
,
1.
f
}(
b_k_n
);
break
;
}
DeviceMem
a_device_buf
(
sizeof
(
ADataKernelType
)
*
a_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataKernelType
)
*
b_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
EDataKernelType
)
*
e_m_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
r0_device_buf
(
sizeof
(
R0DataType
)
*
r0_m
.
mDesc
.
GetElementSpaceSize
());
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
if
constexpr
(
std
::
is_same_v
<
ADataType
,
ck
::
int4_t
>
)
{
Tensor
<
ADataKernelType
>
a_m_k_converted
=
a_m_k
.
template
CopyAsType
<
ADataKernelType
>();
Tensor
<
BDataKernelType
>
b_k_n_converted
=
b_k_n
.
template
CopyAsType
<
BDataKernelType
>();
a_device_buf
.
ToDevice
(
a_m_k_converted
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n_converted
.
mData
.
data
());
}
else
#endif // CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
{
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
}
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
auto
qs_element_op
=
QsElementOp
{};
auto
rs_element_op
=
RsElementOp
{};
// Prepare GEMM, max
auto
device_op
=
DeviceOpInstance
{};
auto
invoker
=
device_op
.
MakeInvoker
();
auto
argument
=
device_op
.
MakeArgument
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
{},
e_device_buf
.
GetDeviceBuffer
(),
{
r0_device_buf
.
GetDeviceBuffer
()},
M
,
N
,
K
,
StrideA
,
StrideB
,
{},
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
,
qs_element_op
,
rs_element_op
);
if
(
!
device_op
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! this device_op instance does not support this problem"
);
}
// [CAUTION]: launch_and_time_kernel will not initialize D.
// If we evaluate kernel multiple time but without initialize D. Verification will fail
r0_device_buf
.
SetValue
(
ck
::
NumericLimits
<
R0DataType
>::
Lowest
());
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
});
bool
pass
=
true
;
if
(
do_verification
)
{
auto
I0
=
ck
::
Number
<
0
>
{};
Tensor
<
ReduceAccDataType
>
e_m_n_host
(
e_m_n
.
mDesc
);
Tensor
<
R0DataType
>
r0_m_host
(
r0_m
.
mDesc
);
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
e_m_n_host
,
a_element_op
,
b_element_op
,
cde_element_op
);
ref_invoker
.
Run
(
ref_argument
);
auto
reduce0_op
=
RsThreadReduceOp
{}[
I0
];
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
auto
reduce0_acc
=
reduce0_op
.
template
GetIdentityValue
<
ReduceAccDataType
>();
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
auto
e_val
=
e_m_n_host
(
m
,
n
);
reduce0_op
(
reduce0_acc
,
e_val
);
};
r0_m_host
(
m
)
=
ck
::
type_convert
<
R0DataType
>
(
reduce0_acc
);
}
e_device_buf
.
FromDevice
(
e_m_n
.
mData
.
data
());
Tensor
<
EDataType
>
e_m_n_host_converted
(
e_m_n_host
);
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
if
constexpr
(
std
::
is_same_v
<
ADataType
,
ck
::
int4_t
>
)
{
Tensor
<
EDataType
>
e_m_n_device_converted
(
e_m_n
);
pass
=
ck
::
utils
::
check_err
(
e_m_n_device_converted
,
e_m_n_host_converted
,
"Error: Incorrect results c"
,
1e-2
,
1e-2
);
}
else
#endif // CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
{
pass
=
ck
::
utils
::
check_err
(
e_m_n
,
e_m_n_host_converted
,
"Error: Incorrect results c"
,
1e-2
,
1e-2
);
}
r0_device_buf
.
FromDevice
(
r0_m
.
mData
.
data
());
pass
&=
ck
::
utils
::
check_err
(
r0_m
,
r0_m_host
,
"Error: Incorrect results d0"
,
1e-2
,
1e-2
);
if
(
pass
)
{
std
::
cout
<<
"Success!"
<<
std
::
endl
;
}
}
if
(
time_kernel
)
{
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
DumpGemmReduceMaxPerf
<
ADataType
,
BDataType
,
EDataType
,
R0DataType
>
(
ave_time
,
M
,
N
,
K
);
}
return
pass
?
0
:
1
;
}
template
<
typename
ADataType
,
typename
BDataType
,
typename
EDataType
,
typename
R0DataType
,
typename
R1DataType
,
typename
ALayout
,
typename
BLayout
,
typename
ELayout
,
typename
AElementOp
,
typename
BElementOp
,
typename
CDEElementOp
,
typename
QsElementOp
,
typename
RsElementOp
,
typename
RsThreadReduceOp
,
typename
ReduceAccDataType
,
typename
DeviceOpInstance
,
typename
ReferenceGemmInstance
,
typename
ADataKernelType
=
ADataType
,
typename
BDataKernelType
=
BDataType
,
typename
EDataKernelType
=
EDataType
>
bool
run_gemm_reduce_mean_meansquare_xdl
(
ck
::
index_t
M
,
ck
::
index_t
N
,
ck
::
index_t
K
,
ck
::
index_t
StrideA
,
ck
::
index_t
StrideB
,
ck
::
index_t
StrideE
,
bool
do_verification
,
int
init_method
,
bool
time_kernel
)
{
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
static_assert
(
sizeof
(
ck
::
int4_t
)
==
sizeof
(
int8_t
));
static_assert
(
sizeof
(
ADataType
)
==
sizeof
(
ADataKernelType
));
static_assert
(
sizeof
(
BDataType
)
==
sizeof
(
BDataKernelType
));
static_assert
(
sizeof
(
EDataType
)
==
sizeof
(
EDataKernelType
));
#endif
using
namespace
ck
::
literals
;
auto
f_host_tensor_descriptor1d
=
[](
std
::
size_t
len
,
std
::
size_t
stride
)
{
return
HostTensorDescriptor
({
len
},
{
stride
});
};
auto
f_host_tensor_descriptor2d
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
}
};
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor2d
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor2d
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
EDataKernelType
>
e_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
StrideE
,
ELayout
{}));
Tensor
<
R0DataType
>
r0_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
Tensor
<
R1DataType
>
r1_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
ck
::
utils
::
FillUniformDistributionIntegerValue
<
ADataType
>
{
-
5.
f
,
5.
f
}(
a_m_k
);
ck
::
utils
::
FillUniformDistributionIntegerValue
<
BDataType
>
{
-
5.
f
,
5.
f
}(
b_k_n
);
break
;
default:
ck
::
utils
::
FillUniformDistribution
<
ADataType
>
{
-
1.
f
,
1.
f
}(
a_m_k
);
ck
::
utils
::
FillUniformDistribution
<
BDataType
>
{
-
1.
f
,
1.
f
}(
b_k_n
);
break
;
}
DeviceMem
a_device_buf
(
sizeof
(
ADataKernelType
)
*
a_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataKernelType
)
*
b_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
EDataKernelType
)
*
e_m_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
r0_device_buf
(
sizeof
(
R0DataType
)
*
r0_m
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
r1_device_buf
(
sizeof
(
R1DataType
)
*
r1_m
.
mDesc
.
GetElementSpaceSize
());
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
if
constexpr
(
std
::
is_same_v
<
ADataType
,
ck
::
int4_t
>
)
{
Tensor
<
ADataKernelType
>
a_m_k_converted
=
a_m_k
.
template
CopyAsType
<
ADataKernelType
>();
Tensor
<
BDataKernelType
>
b_k_n_converted
=
b_k_n
.
template
CopyAsType
<
BDataKernelType
>();
a_device_buf
.
ToDevice
(
a_m_k_converted
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n_converted
.
mData
.
data
());
}
else
#endif // CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
{
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
}
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
auto
qs_element_op
=
QsElementOp
{};
auto
rs_element_op
=
RsElementOp
{
N
,
N
};
// Prepare GEMM, mean, mean_square
auto
device_op
=
DeviceOpInstance
{};
auto
invoker
=
device_op
.
MakeInvoker
();
auto
argument
=
device_op
.
MakeArgument
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
{},
e_device_buf
.
GetDeviceBuffer
(),
{
r0_device_buf
.
GetDeviceBuffer
(),
r1_device_buf
.
GetDeviceBuffer
()},
M
,
N
,
K
,
StrideA
,
StrideB
,
{},
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
,
qs_element_op
,
rs_element_op
);
if
(
!
device_op
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! this device_op instance does not support this problem"
);
}
// init reducetion buffer to 0
r0_device_buf
.
SetZero
();
r1_device_buf
.
SetZero
();
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
});
bool
pass
=
true
;
if
(
do_verification
)
{
auto
I0
=
ck
::
Number
<
0
>
{};
auto
I1
=
ck
::
Number
<
1
>
{};
Tensor
<
ReduceAccDataType
>
e_m_n_host
(
e_m_n
.
mDesc
);
Tensor
<
R0DataType
>
r0_m_host
(
r0_m
.
mDesc
);
Tensor
<
R1DataType
>
r1_m_host
(
r1_m
.
mDesc
);
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
e_m_n_host
,
a_element_op
,
b_element_op
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
auto
reduce0_op
=
RsThreadReduceOp
{}[
I0
];
auto
reduce1_op
=
RsThreadReduceOp
{}[
I1
];
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
auto
reduce0_acc
=
reduce0_op
.
template
GetIdentityValue
<
ReduceAccDataType
>();
auto
reduce1_acc
=
reduce1_op
.
template
GetIdentityValue
<
ReduceAccDataType
>();
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
ReduceAccDataType
square_e_val
;
auto
e_val
=
ck
::
type_convert
<
ReduceAccDataType
>
(
e_m_n_host
(
m
,
n
));
qs_element_op
[
I1
](
square_e_val
,
e_val
);
reduce0_op
(
reduce0_acc
,
e_val
);
reduce1_op
(
reduce1_acc
,
square_e_val
);
}
rs_element_op
[
I0
](
reduce0_acc
,
reduce0_acc
);
rs_element_op
[
I1
](
reduce1_acc
,
reduce1_acc
);
r0_m_host
(
m
)
=
ck
::
type_convert
<
R0DataType
>
(
reduce0_acc
);
r1_m_host
(
m
)
=
ck
::
type_convert
<
R1DataType
>
(
reduce1_acc
);
}
e_device_buf
.
FromDevice
(
e_m_n
.
mData
.
data
());
Tensor
<
EDataType
>
e_m_n_host_converted
(
e_m_n_host
);
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
if
constexpr
(
std
::
is_same_v
<
ADataType
,
ck
::
int4_t
>
)
{
Tensor
<
EDataType
>
e_m_n_device_converted
(
e_m_n
);
pass
=
ck
::
utils
::
check_err
(
e_m_n_device_converted
,
e_m_n_host_converted
,
"Error: Incorrect results c"
,
1e-2
,
1e-2
);
}
else
#endif // CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
{
pass
=
ck
::
utils
::
check_err
(
e_m_n
,
e_m_n_host_converted
,
"Error: Incorrect results c"
,
1e-2
,
1e-2
);
}
r0_device_buf
.
FromDevice
(
r0_m
.
mData
.
data
());
r1_device_buf
.
FromDevice
(
r1_m
.
mData
.
data
());
pass
&=
ck
::
utils
::
check_err
(
r0_m
,
r0_m_host
,
"Error: Incorrect results d0"
,
1e-2
,
1e-2
);
pass
&=
ck
::
utils
::
check_err
(
r1_m
,
r1_m_host
,
"Error: Incorrect results d1"
,
1e-2
,
1e-2
);
if
(
pass
)
{
std
::
cout
<<
"Success!"
<<
std
::
endl
;
}
}
if
(
time_kernel
)
{
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
DumpGemmReduceMeanSquareMeanPerf
<
ADataType
,
BDataType
,
EDataType
,
R0DataType
,
R1DataType
>
(
ave_time
,
M
,
N
,
K
);
}
return
pass
;
}
example/17_convnd_bwd_data/CMakeLists.txt
0 → 100644
View file @
4cccaba1
add_example_executable
(
example_convnd_bwd_data_xdl_fp16 convnd_bwd_data_xdl_fp16.cpp
)
target_link_libraries
(
example_convnd_bwd_data_xdl_fp16 PRIVATE utility
)
add_example_executable
(
example_convnd_bwd_data_dl_fp16 convnd_bwd_data_dl_fp16.cpp
)
target_link_libraries
(
example_convnd_bwd_data_dl_fp16 PRIVATE utility
)
example/17_convnd_bwd_data/README.md
0 → 100644
View file @
4cccaba1
# Instructions for ```example_convnd_bwd_data_xdl```
## Run ```example_example_convnd_bwd_data_xdl```
```
bash
#arg1: verification (0=no, 1=yes)
#arg2: initialization (0=no init, 1=integer value, 2=decimal value)
#arg3: run kernel # of times (>1)
#arg4: num_dim_spatial(1|2|3)
#arg5 to ...: N, K, C, [Z,] [Y,] X, [Di,] [Hi,] Wi, S[z,] [Sy,] Sx, [Dz,] [Dy,] Dx, [LeftPz,] [LeftPy,] LeftPx, [RightPy,] [RightPy,] RightPx
./bin/example_convnd_bwd_data_xdl 0 1 5
```
Result
```
in_n_c_hi_wi: dim 4, lengths {128, 128, 71, 71}, strides {645248, 1, 9088, 128}
wei_k_c_y_x: dim 4, lengths {256, 128, 3, 3}, strides {1152, 1, 384, 128}
out_n_k_ho_wo: dim 4, lengths {128, 256, 36, 36}, strides {331776, 1, 9216, 256}
arg.a_grid_desc_k0_m_k1_container_{128, 175232, 8}
arg.b_grid_desc_k0_n_k1_container_{128, 128, 8}
arg.c_grid_desc_m_n_container_{ 175232, 128}
arg.c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_container_( 2738, 2, 2, 2, 4, 2 )
launch_and_time_kernel: grid_dim {1369, 1, 1}, block_dim {256, 1, 1}
Warm up
Start running 1 times...
arg.a_grid_desc_k0_m_k1_container_{64, 175232, 8}
arg.b_grid_desc_k0_n_k1_container_{64, 128, 8}
arg.c_grid_desc_m_n_container_{ 175232, 128}
arg.c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_container_( 2738, 2, 2, 2, 4, 2 )
launch_and_time_kernel: grid_dim {1369, 1, 1}, block_dim {256, 1, 1}
Warm up
Start running 1 times...
arg.a_grid_desc_k0_m_k1_container_{64, 175232, 8}
arg.b_grid_desc_k0_n_k1_container_{64, 128, 8}
arg.c_grid_desc_m_n_container_{ 175232, 128}
arg.c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_container_( 2738, 2, 2, 2, 4, 2 )
launch_and_time_kernel: grid_dim {1369, 1, 1}, block_dim {256, 1, 1}
Warm up
Start running 1 times...
arg.a_grid_desc_k0_m_k1_container_{32, 175232, 8}
arg.b_grid_desc_k0_n_k1_container_{32, 128, 8}
arg.c_grid_desc_m_n_container_{ 175232, 128}
arg.c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_container_( 2738, 2, 2, 2, 4, 2 )
launch_and_time_kernel: grid_dim {1369, 1, 1}, block_dim {256, 1, 1}
Warm up
Start running 1 times...
Perf: 1.40031 ms, 69.8734 TFlops, 179.037 GB/s
```
example/17_convnd_bwd_data/convnd_bwd_data_common.hpp
0 → 100644
View file @
4cccaba1
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_bwd_data.hpp"
void
print_helper_msg
()
{
std
::
cout
<<
"arg1: verification (0=no, 1=yes)
\n
"
<<
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
<<
"arg3: time kernel (0=no, 1=yes)
\n
"
<<
ck
::
utils
::
conv
::
get_conv_param_parser_helper_msg
()
<<
std
::
endl
;
}
template
<
ck
::
index_t
NDimSpatial
,
typename
InDataType
,
typename
WeiDataType
,
typename
OutDataType
,
typename
InElementOp
,
typename
WeiElementOp
,
typename
OutElementOp
,
typename
DeviceConvNdBwdDataInstance
>
int
run_conv_bwd_data
(
bool
do_verification
,
int
init_method
,
bool
time_kernel
,
const
ck
::
utils
::
conv
::
ConvParam
&
conv_param
,
const
HostTensorDescriptor
&
in_g_n_c_wis_desc
,
const
HostTensorDescriptor
&
wei_g_k_c_xs_desc
,
const
HostTensorDescriptor
&
out_g_n_k_wos_desc
,
const
InElementOp
&
in_element_op
,
const
WeiElementOp
&
wei_element_op
,
const
OutElementOp
&
out_element_op
)
{
Tensor
<
InDataType
>
in_host
(
in_g_n_c_wis_desc
);
Tensor
<
InDataType
>
in_device
(
in_g_n_c_wis_desc
);
Tensor
<
WeiDataType
>
wei
(
wei_g_k_c_xs_desc
);
Tensor
<
OutDataType
>
out
(
out_g_n_k_wos_desc
);
std
::
cout
<<
"in: "
<<
in_host
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"wei: "
<<
wei
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"out: "
<<
out
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
out
.
GenerateTensorValue
(
GeneratorTensor_2
<
OutDataType
>
{
-
5
,
5
});
wei
.
GenerateTensorValue
(
GeneratorTensor_2
<
WeiDataType
>
{
-
5
,
5
});
break
;
case
2
:
out
.
GenerateTensorValue
(
GeneratorTensor_3
<
OutDataType
>
{
0.0
,
1.0
});
wei
.
GenerateTensorValue
(
GeneratorTensor_3
<
WeiDataType
>
{
-
0.5
,
0.5
});
break
;
default:
out
.
GenerateTensorValue
(
GeneratorTensor_1
<
OutDataType
>
{
1
});
wei
.
GenerateTensorValue
(
GeneratorTensor_1
<
WeiDataType
>
{
1
});
}
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in_device
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
wei_device_buf
(
sizeof
(
WeiDataType
)
*
wei
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out
.
mDesc
.
GetElementSpaceSize
());
out_device_buf
.
ToDevice
(
out
.
mData
.
data
());
wei_device_buf
.
ToDevice
(
wei
.
mData
.
data
());
// reset input to zero
in_device_buf
.
SetZero
();
// do GEMM
auto
conv
=
DeviceConvNdBwdDataInstance
{};
auto
invoker
=
conv
.
MakeInvoker
();
auto
argument
=
conv
.
MakeArgument
(
static_cast
<
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
WeiDataType
*>
(
wei_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
C_
,
conv_param
.
input_spatial_lengths_
,
conv_param
.
filter_spatial_lengths_
,
conv_param
.
GetOutputSpatialLengths
(),
conv_param
.
conv_filter_strides_
,
conv_param
.
conv_filter_dilations_
,
conv_param
.
input_left_pads_
,
conv_param
.
input_right_pads_
,
in_element_op
,
wei_element_op
,
out_element_op
);
if
(
!
conv
.
IsSupportedArgument
(
argument
))
{
std
::
cout
<<
"Not support,please check parameters or device"
;
return
0
;
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
conv_param
.
GetFlops
();
std
::
size_t
num_btype
=
conv_param
.
GetByte
<
InDataType
,
WeiDataType
,
OutDataType
>
();
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
if
(
do_verification
)
{
auto
ref_conv
=
ck
::
tensor_operation
::
host
::
ReferenceConvBwdData
<
NDimSpatial
,
InDataType
,
WeiDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
>
();
auto
ref_invoker
=
ref_conv
.
MakeInvoker
();
auto
ref_argument
=
ref_conv
.
MakeArgument
(
in_host
,
wei
,
out
,
conv_param
.
conv_filter_strides_
,
conv_param
.
conv_filter_dilations_
,
conv_param
.
input_left_pads_
,
conv_param
.
input_right_pads_
,
in_element_op
,
wei_element_op
,
out_element_op
);
ref_invoker
.
Run
(
ref_argument
);
in_device_buf
.
FromDevice
(
in_device
.
mData
.
data
());
return
ck
::
utils
::
check_err
(
in_device
,
in_host
)
?
0
:
1
;
}
return
0
;
}
example/17_convnd_bwd_data/convnd_bwd_data_dl_fp16.cpp
0 → 100644
View file @
4cccaba1
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_bwd_data_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_convnd_bwd_data_nwc_kxc_nwk_dl.hpp"
using
InDataType
=
ck
::
half_t
;
using
WeiDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
ConvBwdDefault
=
ck
::
tensor_operation
::
device
::
ConvolutionBackwardDataSpecialization
::
Default
;
template
<
ck
::
index_t
NDimSpatial
>
// clang-format off
using
DeviceConvNdBwdDataInstance
=
ck
::
tensor_operation
::
device
::
DeviceConvNdBwdDataNwcKxcNwk_Dl
<
// ######| NDim| InData| WeiData| OutData| AccData| In| Wei| Out| Convolution| Block| MPer| NPer| K0Per| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
// ######| Spatial| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Forward| Size| Block| Block| Block| | ThreadM111| ThreadN111| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
// ######| | | | | | Operation| Operation| Operation| Specialization| | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_N0_N1_K1| K0_N0_N1_K1| ArrangeOrder| Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder| Lengths_K0_N0_N1_K1| Order| | |
// ######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
NDimSpatial
,
InDataType
,
WeiDataType
,
OutDataType
,
AccDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
ConvBwdDefault
,
256
,
128
,
128
,
16
,
2
,
4
,
4
,
1
,
S
<
8
,
2
>
,
S
<
8
,
2
>
,
S
<
8
,
1
,
1
,
2
>
,
S
<
2
,
1
,
128
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
4
,
1
,
1
,
2
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
1
,
1
,
2
>
,
S
<
1
,
1
,
8
,
2
>
,
S
<
16
,
1
,
16
,
1
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
1
,
1
,
8
,
1
>
,
S
<
0
,
3
,
1
,
2
>
,
S
<
1
,
1
,
1
,
2
>
,
S
<
0
,
1
,
2
,
3
,
4
,
5
>
,
5
,
4
>
;
// clang-format on
int
main
(
int
argc
,
char
*
argv
[])
{
namespace
ctc
=
ck
::
tensor_layout
::
convolution
;
print_helper_msg
();
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
ck
::
utils
::
conv
::
ConvParam
conv_param
{
2
,
1
,
128
,
256
,
256
,
{
3
,
3
},
{
71
,
71
},
{
2
,
2
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
}};
if
(
argc
==
1
)
{
// use default
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
const
ck
::
index_t
num_dim_spatial
=
std
::
stoi
(
argv
[
4
]);
conv_param
=
ck
::
utils
::
conv
::
parse_conv_param
(
num_dim_spatial
,
5
,
argv
);
}
const
auto
in_element_op
=
InElementOp
{};
const
auto
wei_element_op
=
WeiElementOp
{};
const
auto
out_element_op
=
OutElementOp
{};
if
(
conv_param
.
num_dim_spatial_
==
1
)
{
using
InLayout
=
ctc
::
GNWC
;
using
WeiLayout
=
ctc
::
GKXC
;
using
OutLayout
=
ctc
::
GNWK
;
const
auto
in_g_n_c_wis_desc
=
ck
::
utils
::
conv
::
make_input_host_tensor_descriptor_g_n_c_wis_packed
<
InLayout
>
(
conv_param
);
const
auto
wei_g_k_c_xs_desc
=
ck
::
utils
::
conv
::
make_weight_host_tensor_descriptor_g_k_c_xs_packed
<
WeiLayout
>
(
conv_param
);
const
auto
out_g_n_k_wos_desc
=
ck
::
utils
::
conv
::
make_output_host_tensor_descriptor_g_n_k_wos_packed
<
OutLayout
>
(
conv_param
);
return
run_conv_bwd_data
<
1
,
InDataType
,
WeiDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
DeviceConvNdBwdDataInstance
<
1
>>
(
do_verification
,
init_method
,
time_kernel
,
conv_param
,
in_g_n_c_wis_desc
,
wei_g_k_c_xs_desc
,
out_g_n_k_wos_desc
,
in_element_op
,
wei_element_op
,
out_element_op
);
}
else
if
(
conv_param
.
num_dim_spatial_
==
2
)
{
using
InLayout
=
ctc
::
GNHWC
;
using
WeiLayout
=
ctc
::
GKYXC
;
using
OutLayout
=
ctc
::
GNHWK
;
const
auto
in_g_n_c_wis_desc
=
ck
::
utils
::
conv
::
make_input_host_tensor_descriptor_g_n_c_wis_packed
<
InLayout
>
(
conv_param
);
const
auto
wei_g_k_c_xs_desc
=
ck
::
utils
::
conv
::
make_weight_host_tensor_descriptor_g_k_c_xs_packed
<
WeiLayout
>
(
conv_param
);
const
auto
out_g_n_k_wos_desc
=
ck
::
utils
::
conv
::
make_output_host_tensor_descriptor_g_n_k_wos_packed
<
OutLayout
>
(
conv_param
);
return
run_conv_bwd_data
<
2
,
InDataType
,
WeiDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
DeviceConvNdBwdDataInstance
<
2
>>
(
do_verification
,
init_method
,
time_kernel
,
conv_param
,
in_g_n_c_wis_desc
,
wei_g_k_c_xs_desc
,
out_g_n_k_wos_desc
,
in_element_op
,
wei_element_op
,
out_element_op
);
}
else
if
(
conv_param
.
num_dim_spatial_
==
3
)
{
using
InLayout
=
ctc
::
GNDHWC
;
using
WeiLayout
=
ctc
::
GKZYXC
;
using
OutLayout
=
ctc
::
GNDHWK
;
const
auto
in_g_n_c_wis_desc
=
ck
::
utils
::
conv
::
make_input_host_tensor_descriptor_g_n_c_wis_packed
<
InLayout
>
(
conv_param
);
const
auto
wei_g_k_c_xs_desc
=
ck
::
utils
::
conv
::
make_weight_host_tensor_descriptor_g_k_c_xs_packed
<
WeiLayout
>
(
conv_param
);
const
auto
out_g_n_k_wos_desc
=
ck
::
utils
::
conv
::
make_output_host_tensor_descriptor_g_n_k_wos_packed
<
OutLayout
>
(
conv_param
);
return
run_conv_bwd_data
<
3
,
InDataType
,
WeiDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
DeviceConvNdBwdDataInstance
<
3
>>
(
do_verification
,
init_method
,
time_kernel
,
conv_param
,
in_g_n_c_wis_desc
,
wei_g_k_c_xs_desc
,
out_g_n_k_wos_desc
,
in_element_op
,
wei_element_op
,
out_element_op
);
}
return
0
;
}
example/17_convnd_bwd_data/convnd_bwd_data_xdl_fp16.cpp
0 → 100644
View file @
4cccaba1
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_bwd_data_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_convnd_bwd_data_nwc_kxc_nwk_xdl.hpp"
using
InDataType
=
ck
::
half_t
;
using
WeiDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
ConvBwdDefault
=
ck
::
tensor_operation
::
device
::
ConvolutionBackwardDataSpecialization
::
Default
;
template
<
ck
::
index_t
NDimSpatial
>
using
DeviceConvNdBwdDataInstance
=
ck
::
tensor_operation
::
device
::
DeviceConvNdBwdDataNwcKxcNwk_Xdl
<
NDimSpatial
,
// NDimSpatial
InDataType
,
// InDataType
WeiDataType
,
// WeiDataType
OutDataType
,
// OutDataType
AccDataType
,
// AccDataType
InElementOp
,
// InElementwiseOperation
WeiElementOp
,
// WeiElementwiseOperation
OutElementOp
,
// OutElementwiseOperation
ConvBwdDefault
,
// ConvolutionBackwardDataSpecialization
256
,
// BlockSize
128
,
// MPerBlock
128
,
// NPerBlock
4
,
// K0PerBlock
8
,
// K1
32
,
// MPerXdl
32
,
// NPerXdl
2
,
// MXdlPerWave
2
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransferThreadClusterLengths_K0_M_K1
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
8
,
// ABlockTransferSrcScalarPerVector
8
,
// ABlockTransferDstScalarPerVector_K1
true
,
// ABlockLdsAddExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransferThreadClusterLengths_K0_N_K1
S
<
2
,
0
,
1
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
0
,
2
,
1
>
,
// BBlockTransferSrcAccessOrder
1
,
// BBlockTransferSrcVectorDim
2
,
// BBlockTransferSrcScalarPerVector
8
,
// BBlockTransferDstScalarPerVector_K1
true
,
// BBlockLdsAddExtraN
7
,
1
>
;
// GemmCThreadTransferDstScalarPerVector
int
main
(
int
argc
,
char
*
argv
[])
{
namespace
ctc
=
ck
::
tensor_layout
::
convolution
;
print_helper_msg
();
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
ck
::
utils
::
conv
::
ConvParam
conv_param
{
2
,
1
,
128
,
256
,
256
,
{
3
,
3
},
{
71
,
71
},
{
2
,
2
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
}};
if
(
argc
==
1
)
{
// use default
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
const
ck
::
index_t
num_dim_spatial
=
std
::
stoi
(
argv
[
4
]);
conv_param
=
ck
::
utils
::
conv
::
parse_conv_param
(
num_dim_spatial
,
5
,
argv
);
}
const
auto
in_element_op
=
InElementOp
{};
const
auto
wei_element_op
=
WeiElementOp
{};
const
auto
out_element_op
=
OutElementOp
{};
if
(
conv_param
.
num_dim_spatial_
==
1
)
{
using
InLayout
=
ctc
::
GNWC
;
using
WeiLayout
=
ctc
::
GKXC
;
using
OutLayout
=
ctc
::
GNWK
;
const
auto
in_g_n_c_wis_desc
=
ck
::
utils
::
conv
::
make_input_host_tensor_descriptor_g_n_c_wis_packed
<
InLayout
>
(
conv_param
);
const
auto
wei_g_k_c_xs_desc
=
ck
::
utils
::
conv
::
make_weight_host_tensor_descriptor_g_k_c_xs_packed
<
WeiLayout
>
(
conv_param
);
const
auto
out_g_n_k_wos_desc
=
ck
::
utils
::
conv
::
make_output_host_tensor_descriptor_g_n_k_wos_packed
<
OutLayout
>
(
conv_param
);
return
run_conv_bwd_data
<
1
,
InDataType
,
WeiDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
DeviceConvNdBwdDataInstance
<
1
>>
(
do_verification
,
init_method
,
time_kernel
,
conv_param
,
in_g_n_c_wis_desc
,
wei_g_k_c_xs_desc
,
out_g_n_k_wos_desc
,
in_element_op
,
wei_element_op
,
out_element_op
);
}
else
if
(
conv_param
.
num_dim_spatial_
==
2
)
{
using
InLayout
=
ctc
::
GNHWC
;
using
WeiLayout
=
ctc
::
GKYXC
;
using
OutLayout
=
ctc
::
GNHWK
;
const
auto
in_g_n_c_wis_desc
=
ck
::
utils
::
conv
::
make_input_host_tensor_descriptor_g_n_c_wis_packed
<
InLayout
>
(
conv_param
);
const
auto
wei_g_k_c_xs_desc
=
ck
::
utils
::
conv
::
make_weight_host_tensor_descriptor_g_k_c_xs_packed
<
WeiLayout
>
(
conv_param
);
const
auto
out_g_n_k_wos_desc
=
ck
::
utils
::
conv
::
make_output_host_tensor_descriptor_g_n_k_wos_packed
<
OutLayout
>
(
conv_param
);
return
run_conv_bwd_data
<
2
,
InDataType
,
WeiDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
DeviceConvNdBwdDataInstance
<
2
>>
(
do_verification
,
init_method
,
time_kernel
,
conv_param
,
in_g_n_c_wis_desc
,
wei_g_k_c_xs_desc
,
out_g_n_k_wos_desc
,
in_element_op
,
wei_element_op
,
out_element_op
);
}
else
if
(
conv_param
.
num_dim_spatial_
==
3
)
{
using
InLayout
=
ctc
::
GNDHWC
;
using
WeiLayout
=
ctc
::
GKZYXC
;
using
OutLayout
=
ctc
::
GNDHWK
;
const
auto
in_g_n_c_wis_desc
=
ck
::
utils
::
conv
::
make_input_host_tensor_descriptor_g_n_c_wis_packed
<
InLayout
>
(
conv_param
);
const
auto
wei_g_k_c_xs_desc
=
ck
::
utils
::
conv
::
make_weight_host_tensor_descriptor_g_k_c_xs_packed
<
WeiLayout
>
(
conv_param
);
const
auto
out_g_n_k_wos_desc
=
ck
::
utils
::
conv
::
make_output_host_tensor_descriptor_g_n_k_wos_packed
<
OutLayout
>
(
conv_param
);
return
run_conv_bwd_data
<
3
,
InDataType
,
WeiDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
DeviceConvNdBwdDataInstance
<
3
>>
(
do_verification
,
init_method
,
time_kernel
,
conv_param
,
in_g_n_c_wis_desc
,
wei_g_k_c_xs_desc
,
out_g_n_k_wos_desc
,
in_element_op
,
wei_element_op
,
out_element_op
);
}
return
0
;
}
example/18_batched_gemm_reduce/CMakeLists.txt
0 → 100644
View file @
4cccaba1
add_example_executable
(
example_batched_gemm_reduce_xdl_fp16 batched_gemm_reduce_xdl_fp16.cpp
)
example/18_batched_gemm_reduce/batched_gemm_reduce_xdl_fp16.cpp
0 → 100644
View file @
4cccaba1
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/utility/reduction_operator.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batched_gemm_reduce_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
CDataType
=
F16
;
using
ReduceAccDataType
=
F32
;
using
ReduceDataType
=
F32
;
using
ReducePtrsGlobal
=
ck
::
Tuple
<
ReduceDataType
*
,
ReduceDataType
*>
;
using
ALayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
BLayout
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
CLayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ReduceOp0
=
ck
::
reduce
::
Add
;
using
ReduceOp1
=
ck
::
reduce
::
Add
;
using
ReduceOps
=
ck
::
Tuple
<
ReduceOp0
,
ReduceOp1
>
;
using
UnaryIdenticElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
UnarySquareElementOp
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
;
using
ReduceInElementOps
=
ck
::
Tuple
<
UnaryIdenticElementOp
,
UnarySquareElementOp
>
;
using
ReduceOutElementOps
=
ck
::
Tuple
<
UnaryIdenticElementOp
,
UnaryIdenticElementOp
>
;
using
ReduceGlobalMemOps
=
ck
::
InMemoryDataOperationEnumSequence
<
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
,
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
>
;
static
constexpr
auto
GemmSpecialization
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
DeviceBatchedGemmReduceInstance
=
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmReduce_Xdl_CShuffle
//######| ALayout| BLayout| CLayout|AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| DData| A| B| C| Dxs| DxsInEleOp| DxsAccEleOp| D| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//######| | | | Type| Type| Type| DataType| DataType| DataType| Type Tuple| Elementwise| Elementwise| Elementwise| Reduce| | | MemoryData| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| Operation| | | Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
ReducePtrsGlobal
,
AElementOp
,
BElementOp
,
CElementOp
,
ReduceOps
,
ReduceInElementOps
,
ReduceOutElementOps
,
ReduceGlobalMemOps
,
GemmSpecialization
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
S
<
64
,
4
>
,
4
,
1
>
;
// clang-format on
using
ReferenceBatchedGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
BDataType
,
CDataType
,
ReduceAccDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
// GEMM shape
ck
::
index_t
M
=
2048
;
ck
::
index_t
N
=
1920
;
ck
::
index_t
K
=
2048
;
ck
::
index_t
StrideA
=
2048
;
ck
::
index_t
StrideB
=
2048
;
ck
::
index_t
StrideC
=
1920
;
ck
::
index_t
BatchCount
=
4
;
if
(
argc
==
1
)
{
// do nothing
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
11
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
StrideA
=
std
::
stoi
(
argv
[
7
]);
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideC
=
std
::
stoi
(
argv
[
9
]);
BatchCount
=
std
::
stoi
(
argv
[
10
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=n0, 1=yes)
\n
"
);
printf
(
"arg4 to 10: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC, BatchCount
\n
"
);
exit
(
0
);
}
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
batch_count
,
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
({
batch_count
,
row
,
col
},
{
row
*
stride
,
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
({
batch_count
,
row
,
col
},
{
col
*
stride
,
1
_uz
,
stride
});
}
};
Tensor
<
ADataType
>
a_g_m_k
(
f_host_tensor_descriptor
(
BatchCount
,
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_g_k_n
(
f_host_tensor_descriptor
(
BatchCount
,
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
CDataType
>
c_g_m_n_host_result
(
f_host_tensor_descriptor
(
BatchCount
,
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
ReduceDataType
>
d0_g_m_host_result
({
BatchCount
,
M
});
Tensor
<
ReduceDataType
>
d1_g_m_host_result
({
BatchCount
,
M
});
Tensor
<
CDataType
>
c_g_m_n_device_result
(
f_host_tensor_descriptor
(
BatchCount
,
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
ReduceDataType
>
d0_g_m_device_result
({
BatchCount
,
M
});
Tensor
<
ReduceDataType
>
d1_g_m_device_result
({
BatchCount
,
M
});
std
::
cout
<<
"a_g_m_k: "
<<
a_g_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_g_k_n: "
<<
b_g_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_g_m_n: "
<<
c_g_m_n_host_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d0_g_m: "
<<
d0_g_m_host_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d1_g_m: "
<<
d1_g_m_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
break
;
default:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
}
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_g_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_g_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_device_buf
(
sizeof
(
CDataType
)
*
c_g_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
reduce0_device_buf
(
sizeof
(
ReduceDataType
)
*
d0_g_m_device_result
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
reduce1_device_buf
(
sizeof
(
ReduceDataType
)
*
d1_g_m_device_result
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a_g_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_g_k_n
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
c_element_op
=
CElementOp
{};
std
::
array
<
void
*
,
3
>
gemm_element_ops
=
{
&
a_element_op
,
&
b_element_op
,
&
c_element_op
};
auto
passthrough
=
UnaryIdenticElementOp
{};
auto
square
=
UnarySquareElementOp
{};
std
::
array
<
void
*
,
2
>
reduce_in_element_ops
=
{
&
passthrough
,
&
square
};
std
::
array
<
void
*
,
2
>
reduce_out_element_ops
=
{
&
passthrough
,
&
passthrough
};
std
::
array
<
void
*
,
2
>
p_reduces
=
{
reduce0_device_buf
.
GetDeviceBuffer
(),
reduce1_device_buf
.
GetDeviceBuffer
()};
// do GEMM
auto
batched_gemm
=
DeviceBatchedGemmReduceInstance
{};
auto
invoker
=
batched_gemm
.
MakeInvoker
();
auto
argument
=
batched_gemm
.
MakeArgument
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
nullptr
,
{},
c_device_buf
.
GetDeviceBuffer
(),
p_reduces
,
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
{},
gemm_element_ops
,
{},
reduce_in_element_ops
,
reduce_out_element_ops
,
BatchCount
);
if
(
!
batched_gemm
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
// init DO, D1 to 0
reduce0_device_buf
.
SetZero
();
reduce1_device_buf
.
SetZero
();
// if time_kernel == true, kernel will run multiple times. This kernel use atomic-add so result
// will not be correct. need to set time_kernel = false for correctness test
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
BatchCount
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
BatchCount
*
M
*
K
+
sizeof
(
BDataType
)
*
BatchCount
*
K
*
N
+
sizeof
(
CDataType
)
*
BatchCount
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
batched_gemm
.
GetTypeString
()
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
c_device_buf
.
FromDevice
(
c_g_m_n_device_result
.
mData
.
data
());
reduce0_device_buf
.
FromDevice
(
d0_g_m_device_result
.
mData
.
data
());
reduce1_device_buf
.
FromDevice
(
d1_g_m_device_result
.
mData
.
data
());
auto
ref_batched_gemm
=
ReferenceBatchedGemmInstance
{};
auto
ref_invoker
=
ref_batched_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_batched_gemm
.
MakeArgument
(
a_g_m_k
,
b_g_k_n
,
c_g_m_n_host_result
,
a_element_op
,
b_element_op
,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
auto
reduce0_op
=
ReduceOp0
{};
auto
reduce1_op
=
ReduceOp1
{};
for
(
int
batch
=
0
;
batch
<
BatchCount
;
++
batch
)
{
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
auto
reduce0_acc
=
reduce0_op
.
GetIdentityValue
<
ReduceAccDataType
>
();
auto
reduce1_acc
=
reduce1_op
.
GetIdentityValue
<
ReduceAccDataType
>
();
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
auto
c_val
=
ck
::
type_convert
<
ReduceAccDataType
>
(
c_g_m_n_host_result
(
batch
,
m
,
n
));
ReduceAccDataType
d0_val
;
ReduceAccDataType
d1_val
;
UnaryIdenticElementOp
{}(
d0_val
,
c_val
);
UnarySquareElementOp
{}(
d1_val
,
c_val
);
reduce0_op
(
reduce0_acc
,
d0_val
);
reduce1_op
(
reduce1_acc
,
d1_val
);
}
d0_g_m_host_result
(
batch
,
m
)
=
ck
::
type_convert
<
ReduceDataType
>
(
reduce0_acc
);
d1_g_m_host_result
(
batch
,
m
)
=
ck
::
type_convert
<
ReduceDataType
>
(
reduce1_acc
);
}
}
pass
=
ck
::
utils
::
check_err
(
c_g_m_n_host_result
,
c_g_m_n_device_result
,
"Error: Incorrect results c"
)
&&
ck
::
utils
::
check_err
(
d0_g_m_device_result
,
d0_g_m_host_result
,
"Error: Incorrect results! D0"
,
1e-4
,
1e-5
)
&&
ck
::
utils
::
check_err
(
d1_g_m_device_result
,
d1_g_m_host_result
,
"Error: Incorrect results! D1"
,
1e-3
,
1e-5
);
}
return
pass
?
0
:
1
;
}
example/19_binary_elementwise/CMakeLists.txt
0 → 100644
View file @
4cccaba1
add_example_executable
(
example_broadcast_add_2d_amn_bn broadcast_add_2d_amn_bn.cpp
)
add_example_executable
(
example_broadcast_add_3d_am_bmnk broadcast_add_3d_am_bmnk.cpp
)
add_example_executable
(
example_elementwise_add_1d elementwise_add_1d.cpp
)
add_example_executable
(
example_elementwise_add_4d elementwise_add_4d.cpp
)
\ No newline at end of file
example/19_binary_elementwise/broadcast_add_2d_amn_bn.cpp
0 → 100644
View file @
4cccaba1
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
ABDataType
=
F16
;
using
CDataType
=
F16
;
using
Add
=
ck
::
tensor_operation
::
element_wise
::
Add
;
using
DeviceElementwiseAddInstance
=
ck
::
tensor_operation
::
device
::
DeviceElementwise
<
ck
::
Tuple
<
ABDataType
,
ABDataType
>
,
ck
::
Tuple
<
CDataType
>
,
Add
,
2
,
8
,
ck
::
Sequence
<
8
,
8
>
,
ck
::
Sequence
<
8
>>
;
template
<
typename
HostTensorA
,
typename
HostTensorB
,
typename
HostTensorC
,
typename
Functor
,
int
broadcastDim
>
void
host_broadcast2D
(
HostTensorC
&
C
,
const
HostTensorA
&
A
,
const
HostTensorB
&
B
,
int
M
,
int
N
,
Functor
functor
)
{
using
ctype
=
ck
::
remove_reference_t
<
decltype
(
C
(
0
,
0
))
>
;
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
auto
Amn
=
A
(
m
,
n
);
ctype
Cmn
=
0
;
if
constexpr
(
broadcastDim
==
0
)
{
auto
Bn
=
B
(
n
);
functor
(
Cmn
,
Amn
,
Bn
);
}
else
{
auto
Bm
=
B
(
m
);
functor
(
Cmn
,
Amn
,
Bm
);
}
C
(
m
,
n
)
=
Cmn
;
}
}
}
int
main
()
{
bool
do_verification
=
true
;
bool
time_kernel
=
false
;
ck
::
index_t
M
=
1024
;
ck
::
index_t
N
=
1024
;
ck
::
index_t
Stride
=
1024
;
auto
f_host_tensor_descriptor1d
=
[](
std
::
size_t
len
,
std
::
size_t
stride
)
{
return
HostTensorDescriptor
({
len
},
{
stride
});
};
auto
f_host_tensor_descriptor2d
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
)
{
using
namespace
ck
::
literals
;
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
};
Tensor
<
ABDataType
>
a_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
Stride
));
Tensor
<
ABDataType
>
b_n
(
f_host_tensor_descriptor1d
(
N
,
1
));
Tensor
<
CDataType
>
c_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
Stride
));
a_m_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
ABDataType
>
{
0.0
,
1.0
});
b_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
ABDataType
>
{
0.0
,
1.0
});
DeviceMem
a_m_n_device_buf
(
sizeof
(
ABDataType
)
*
a_m_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_n_device_buf
(
sizeof
(
ABDataType
)
*
b_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_m_n_device_buf
(
sizeof
(
CDataType
)
*
c_m_n
.
mDesc
.
GetElementSpaceSize
());
a_m_n_device_buf
.
ToDevice
(
a_m_n
.
mData
.
data
());
b_n_device_buf
.
ToDevice
(
b_n
.
mData
.
data
());
std
::
array
<
const
void
*
,
2
>
input
=
{
a_m_n_device_buf
.
GetDeviceBuffer
(),
b_n_device_buf
.
GetDeviceBuffer
()};
std
::
array
<
void
*
,
1
>
output
=
{
c_m_n_device_buf
.
GetDeviceBuffer
()};
std
::
array
<
ck
::
index_t
,
2
>
abc_lengths
=
{
M
,
N
};
std
::
array
<
ck
::
index_t
,
2
>
a_strides
=
{
Stride
,
1
};
std
::
array
<
ck
::
index_t
,
2
>
b_strides
=
{
0
,
1
};
std
::
array
<
ck
::
index_t
,
2
>
c_strides
=
{
Stride
,
1
};
auto
broadcastAdd
=
DeviceElementwiseAddInstance
{};
auto
argument
=
broadcastAdd
.
MakeArgumentPointer
(
abc_lengths
,
{
a_strides
,
b_strides
},
{
c_strides
},
input
,
output
,
Add
{});
if
(
!
broadcastAdd
.
IsSupportedArgument
(
argument
.
get
()))
{
throw
std
::
runtime_error
(
"The runtime parameters seems not supported by the device instance, exiting!"
);
};
auto
broadcastAdd_invoker_ptr
=
broadcastAdd
.
MakeInvokerPointer
();
float
ave_time
=
broadcastAdd_invoker_ptr
->
Run
(
argument
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms"
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
c_m_n_device_buf
.
FromDevice
(
c_m_n
.
mData
.
data
());
Tensor
<
CDataType
>
host_c_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
Stride
));
host_broadcast2D
<
Tensor
<
ABDataType
>
,
Tensor
<
ABDataType
>
,
Tensor
<
CDataType
>
,
Add
,
0
>
(
host_c_m_n
,
a_m_n
,
b_n
,
M
,
N
,
Add
{});
pass
&=
ck
::
utils
::
check_err
(
c_m_n
,
host_c_m_n
,
"Error: Incorrect results c"
,
1e-3
,
1e-3
);
}
return
pass
?
0
:
1
;
}
example/19_binary_elementwise/broadcast_add_3d_am_bmnk.cpp
0 → 100644
View file @
4cccaba1
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
ABDataType
=
F16
;
using
CDataType
=
F16
;
using
Add
=
ck
::
tensor_operation
::
element_wise
::
Add
;
using
DeviceElementwiseAddInstance
=
ck
::
tensor_operation
::
device
::
DeviceElementwise
<
ck
::
Tuple
<
ABDataType
,
ABDataType
>
,
ck
::
Tuple
<
CDataType
>
,
Add
,
3
,
8
,
ck
::
Sequence
<
1
,
8
>
,
ck
::
Sequence
<
8
>>
;
template
<
typename
HostTensorA
,
typename
HostTensorB
,
typename
HostTensorC
,
typename
Functor
>
void
host_broadcast3D_am_bmnk
(
HostTensorC
&
C
,
const
HostTensorA
&
A
,
const
HostTensorB
&
B
,
const
std
::
vector
<
std
::
size_t
>&
shape
,
Functor
functor
)
{
using
ctype
=
ck
::
remove_reference_t
<
decltype
(
C
(
0
,
0
))
>
;
for
(
std
::
size_t
m
=
0
;
m
<
shape
[
0
];
++
m
)
for
(
std
::
size_t
n
=
0
;
n
<
shape
[
1
];
++
n
)
for
(
std
::
size_t
k
=
0
;
k
<
shape
[
2
];
++
k
)
{
auto
a_val
=
A
(
m
);
auto
b_val
=
B
(
m
,
n
,
k
);
ctype
c_val
=
0
;
functor
(
c_val
,
a_val
,
b_val
);
C
(
m
,
n
,
k
)
=
c_val
;
}
}
int
main
()
{
bool
do_verification
=
true
;
bool
time_kernel
=
false
;
std
::
vector
<
std
::
size_t
>
mnk
=
{
4
,
16
,
32
};
ck
::
index_t
M
=
mnk
[
0
];
Tensor
<
ABDataType
>
a_m
({
M
});
Tensor
<
ABDataType
>
b_m_n_k
(
mnk
);
Tensor
<
CDataType
>
c_m_n_k
(
mnk
);
a_m
.
GenerateTensorValue
(
GeneratorTensor_3
<
ABDataType
>
{
0.0
,
1.0
});
b_m_n_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ABDataType
>
{
0.0
,
1.0
});
DeviceMem
a_m_device_buf
(
sizeof
(
ABDataType
)
*
a_m
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_m_n_k_device_buf
(
sizeof
(
ABDataType
)
*
b_m_n_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_m_n_k_device_buf
(
sizeof
(
CDataType
)
*
c_m_n_k
.
mDesc
.
GetElementSpaceSize
());
a_m_device_buf
.
ToDevice
(
a_m
.
mData
.
data
());
b_m_n_k_device_buf
.
ToDevice
(
b_m_n_k
.
mData
.
data
());
std
::
array
<
const
void
*
,
2
>
input
=
{
a_m_device_buf
.
GetDeviceBuffer
(),
b_m_n_k_device_buf
.
GetDeviceBuffer
()};
std
::
array
<
void
*
,
1
>
output
=
{
c_m_n_k_device_buf
.
GetDeviceBuffer
()};
std
::
array
<
ck
::
index_t
,
3
>
abc_lengths
;
std
::
array
<
ck
::
index_t
,
3
>
a_strides
=
{
1
,
0
,
0
};
std
::
array
<
ck
::
index_t
,
3
>
b_strides
;
std
::
array
<
ck
::
index_t
,
3
>
c_strides
;
ck
::
ranges
::
copy
(
mnk
,
abc_lengths
.
begin
());
ck
::
ranges
::
copy
(
b_m_n_k
.
mDesc
.
GetStrides
(),
b_strides
.
begin
());
ck
::
ranges
::
copy
(
c_m_n_k
.
mDesc
.
GetStrides
(),
c_strides
.
begin
());
auto
broadcastAdd
=
DeviceElementwiseAddInstance
{};
auto
argument
=
broadcastAdd
.
MakeArgumentPointer
(
abc_lengths
,
{
a_strides
,
b_strides
},
{
c_strides
},
input
,
output
,
Add
{});
if
(
!
broadcastAdd
.
IsSupportedArgument
(
argument
.
get
()))
{
throw
std
::
runtime_error
(
"The runtime parameters seems not supported by the device instance, exiting!"
);
};
auto
broadcastAdd_invoker_ptr
=
broadcastAdd
.
MakeInvokerPointer
();
float
ave_time
=
broadcastAdd_invoker_ptr
->
Run
(
argument
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms"
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
c_m_n_k_device_buf
.
FromDevice
(
c_m_n_k
.
mData
.
data
());
Tensor
<
CDataType
>
host_c_m_n_k
(
mnk
);
host_broadcast3D_am_bmnk
<
Tensor
<
ABDataType
>
,
Tensor
<
ABDataType
>
,
Tensor
<
CDataType
>
,
Add
>
(
host_c_m_n_k
,
a_m
,
b_m_n_k
,
mnk
,
Add
{});
pass
&=
ck
::
utils
::
check_err
(
c_m_n_k
,
host_c_m_n_k
,
"Error: Incorrect results c"
,
1e-3
,
1e-3
);
}
return
pass
?
0
:
1
;
}
example/19_binary_elementwise/elementwise_add_1d.cpp
0 → 100644
View file @
4cccaba1
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
ABDataType
=
F16
;
using
CDataType
=
F16
;
using
Add
=
ck
::
tensor_operation
::
element_wise
::
Add
;
using
DeviceElementwiseAddInstance
=
ck
::
tensor_operation
::
device
::
DeviceElementwise
<
ck
::
Tuple
<
ABDataType
,
ABDataType
>
,
ck
::
Tuple
<
CDataType
>
,
Add
,
1
,
8
,
ck
::
Sequence
<
8
,
8
>
,
ck
::
Sequence
<
8
>>
;
template
<
typename
HostTensorA
,
typename
HostTensorB
,
typename
HostTensorC
,
typename
Functor
>
void
host_elementwise1D
(
HostTensorC
&
C
,
const
HostTensorA
&
A
,
const
HostTensorB
&
B
,
int
M
,
Functor
functor
)
{
using
ctype
=
ck
::
remove_reference_t
<
decltype
(
C
(
0
))
>
;
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
auto
Am
=
A
(
m
);
auto
Bm
=
B
(
m
);
ctype
Cm
=
0
;
functor
(
Cm
,
Am
,
Bm
);
C
(
m
)
=
Cm
;
}
}
int
main
()
{
bool
do_verification
=
true
;
bool
time_kernel
=
false
;
ck
::
index_t
M
=
1024
;
auto
f_host_tensor_descriptor1d
=
[](
std
::
size_t
len
,
std
::
size_t
stride
)
{
return
HostTensorDescriptor
({
len
},
{
stride
});
};
Tensor
<
ABDataType
>
a_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
Tensor
<
ABDataType
>
b_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
Tensor
<
CDataType
>
c_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
a_m
.
GenerateTensorValue
(
GeneratorTensor_3
<
ABDataType
>
{
0.0
,
1.0
});
b_m
.
GenerateTensorValue
(
GeneratorTensor_3
<
ABDataType
>
{
0.0
,
1.0
});
DeviceMem
a_m_device_buf
(
sizeof
(
ABDataType
)
*
a_m
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_m_device_buf
(
sizeof
(
ABDataType
)
*
b_m
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_m_device_buf
(
sizeof
(
CDataType
)
*
c_m
.
mDesc
.
GetElementSpaceSize
());
a_m_device_buf
.
ToDevice
(
a_m
.
mData
.
data
());
b_m_device_buf
.
ToDevice
(
b_m
.
mData
.
data
());
std
::
array
<
const
void
*
,
2
>
input
=
{
a_m_device_buf
.
GetDeviceBuffer
(),
b_m_device_buf
.
GetDeviceBuffer
()};
std
::
array
<
void
*
,
1
>
output
=
{
c_m_device_buf
.
GetDeviceBuffer
()};
std
::
array
<
ck
::
index_t
,
1
>
abc_lengths
=
{
M
};
std
::
array
<
ck
::
index_t
,
1
>
a_strides
=
{
1
};
std
::
array
<
ck
::
index_t
,
1
>
b_strides
=
{
1
};
std
::
array
<
ck
::
index_t
,
1
>
c_strides
=
{
1
};
auto
broadcastAdd
=
DeviceElementwiseAddInstance
{};
auto
argument
=
broadcastAdd
.
MakeArgumentPointer
(
abc_lengths
,
{
a_strides
,
b_strides
},
{
c_strides
},
input
,
output
,
Add
{});
if
(
!
broadcastAdd
.
IsSupportedArgument
(
argument
.
get
()))
{
throw
std
::
runtime_error
(
"The runtime parameters seems not supported by the device instance, exiting!"
);
};
auto
broadcastAdd_invoker_ptr
=
broadcastAdd
.
MakeInvokerPointer
();
float
ave_time
=
broadcastAdd_invoker_ptr
->
Run
(
argument
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms"
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
c_m_device_buf
.
FromDevice
(
c_m
.
mData
.
data
());
Tensor
<
CDataType
>
host_c_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
host_elementwise1D
<
Tensor
<
ABDataType
>
,
Tensor
<
ABDataType
>
,
Tensor
<
CDataType
>
,
Add
>
(
host_c_m
,
a_m
,
b_m
,
M
,
Add
{});
pass
&=
ck
::
utils
::
check_err
(
c_m
,
host_c_m
,
"Error: Incorrect results c"
,
1e-3
,
1e-3
);
}
return
pass
?
0
:
1
;
}
example/19_binary_elementwise/elementwise_add_4d.cpp
0 → 100644
View file @
4cccaba1
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
ABDataType
=
F16
;
using
CDataType
=
F16
;
using
Add
=
ck
::
tensor_operation
::
element_wise
::
Add
;
using
DeviceElementwiseAddInstance
=
ck
::
tensor_operation
::
device
::
DeviceElementwise
<
ck
::
Tuple
<
ABDataType
,
ABDataType
>
,
ck
::
Tuple
<
CDataType
>
,
Add
,
4
,
8
,
ck
::
Sequence
<
8
,
8
>
,
ck
::
Sequence
<
8
>>
;
template
<
typename
HostTensorA
,
typename
HostTensorB
,
typename
HostTensorC
,
typename
Functor
>
void
host_elementwise4D
(
HostTensorC
&
C
,
const
HostTensorA
&
A
,
const
HostTensorB
&
B
,
const
std
::
vector
<
std
::
size_t
>&
shape
,
Functor
functor
)
{
using
ctype
=
ck
::
remove_reference_t
<
decltype
(
C
(
0
,
0
,
0
,
0
))
>
;
for
(
std
::
size_t
n
=
0
;
n
<
shape
[
0
];
++
n
)
for
(
std
::
size_t
c
=
0
;
c
<
shape
[
1
];
++
c
)
for
(
std
::
size_t
h
=
0
;
h
<
shape
[
2
];
++
h
)
for
(
std
::
size_t
w
=
0
;
w
<
shape
[
3
];
++
w
)
{
auto
a_val
=
A
(
n
,
c
,
h
,
w
);
auto
b_val
=
B
(
n
,
c
,
h
,
w
);
ctype
c_val
=
0
;
functor
(
c_val
,
a_val
,
b_val
);
C
(
n
,
c
,
h
,
w
)
=
c_val
;
}
}
int
main
()
{
bool
do_verification
=
true
;
bool
time_kernel
=
false
;
std
::
vector
<
std
::
size_t
>
nchw
=
{
4
,
16
,
32
,
32
};
Tensor
<
ABDataType
>
a
(
nchw
);
Tensor
<
ABDataType
>
b
(
nchw
);
Tensor
<
CDataType
>
c
(
nchw
);
a
.
GenerateTensorValue
(
GeneratorTensor_3
<
ABDataType
>
{
0.0
,
1.0
});
b
.
GenerateTensorValue
(
GeneratorTensor_3
<
ABDataType
>
{
0.0
,
1.0
});
DeviceMem
a_device_buf
(
sizeof
(
ABDataType
)
*
a
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
ABDataType
)
*
b
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_device_buf
(
sizeof
(
CDataType
)
*
c
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b
.
mData
.
data
());
std
::
array
<
const
void
*
,
2
>
input
=
{
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
()};
std
::
array
<
void
*
,
1
>
output
=
{
c_device_buf
.
GetDeviceBuffer
()};
std
::
array
<
ck
::
index_t
,
4
>
abc_lengths
;
std
::
array
<
ck
::
index_t
,
4
>
a_strides
;
std
::
array
<
ck
::
index_t
,
4
>
b_strides
;
std
::
array
<
ck
::
index_t
,
4
>
c_strides
;
ck
::
ranges
::
copy
(
nchw
,
abc_lengths
.
begin
());
ck
::
ranges
::
copy
(
a
.
mDesc
.
GetStrides
(),
a_strides
.
begin
());
ck
::
ranges
::
copy
(
b
.
mDesc
.
GetStrides
(),
b_strides
.
begin
());
ck
::
ranges
::
copy
(
c
.
mDesc
.
GetStrides
(),
c_strides
.
begin
());
auto
broadcastAdd
=
DeviceElementwiseAddInstance
{};
auto
argument
=
broadcastAdd
.
MakeArgumentPointer
(
abc_lengths
,
{
a_strides
,
b_strides
},
{
c_strides
},
input
,
output
,
Add
{});
if
(
!
broadcastAdd
.
IsSupportedArgument
(
argument
.
get
()))
{
throw
std
::
runtime_error
(
"The runtime parameters seems not supported by the device instance, exiting!"
);
};
auto
broadcastAdd_invoker_ptr
=
broadcastAdd
.
MakeInvokerPointer
();
float
ave_time
=
broadcastAdd_invoker_ptr
->
Run
(
argument
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms"
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
c_device_buf
.
FromDevice
(
c
.
mData
.
data
());
Tensor
<
CDataType
>
host_c
(
nchw
);
host_elementwise4D
<
Tensor
<
ABDataType
>
,
Tensor
<
ABDataType
>
,
Tensor
<
CDataType
>
,
Add
>
(
host_c
,
a
,
b
,
nchw
,
Add
{});
pass
&=
ck
::
utils
::
check_err
(
c
,
host_c
,
"Error: Incorrect results c"
,
1e-3
,
1e-3
);
}
return
pass
?
0
:
1
;
}
example/20_grouped_conv_bwd_weight/CMakeLists.txt
0 → 100644
View file @
4cccaba1
add_custom_target
(
example_grouped_conv_bwd_weight
)
add_example_executable
(
example_grouped_conv_bwd_weight_xdl_fp16 grouped_conv_bwd_weight_xdl_fp16.cpp
)
add_example_executable
(
example_grouped_conv_bwd_weight_xdl_bf16 grouped_conv_bwd_weight_xdl_bf16.cpp
)
add_dependencies
(
example_grouped_conv_bwd_weight example_grouped_conv_bwd_weight_xdl_fp16
example_grouped_conv_bwd_weight_xdl_bf16
)
example/20_grouped_conv_bwd_weight/common.hpp
0 → 100644
View file @
4cccaba1
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <algorithm>
#include <iostream>
#include <iterator>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/convolution_backward_weight_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_weight_gnwc_gkxc_gnwk_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_bwd_weight.hpp"
using
BF16
=
ck
::
bhalf_t
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
ConvBwdWeightDefault
=
ck
::
tensor_operation
::
device
::
ConvolutionBackwardWeightSpecialization
::
Default
;
template
<
typename
InputLay
,
typename
WeightLay
,
typename
OutputLay
>
struct
CommonLayoutSetting
{
using
InputLayout
=
InputLay
;
using
WeightLayout
=
WeightLay
;
using
OutputLayout
=
OutputLay
;
};
template
<
ck
::
index_t
NDimSpatial
>
struct
CommonLayoutSettingSelector
;
namespace
ctl
=
ck
::
tensor_layout
::
convolution
;
template
<
>
struct
CommonLayoutSettingSelector
<
1
>
final
:
CommonLayoutSetting
<
ctl
::
GNWC
,
ctl
::
GKXC
,
ctl
::
GNWK
>
{
};
template
<
>
struct
CommonLayoutSettingSelector
<
2
>
final
:
CommonLayoutSetting
<
ctl
::
GNHWC
,
ctl
::
GKYXC
,
ctl
::
GNHWK
>
{
};
template
<
>
struct
CommonLayoutSettingSelector
<
3
>
final
:
CommonLayoutSetting
<
ctl
::
GNDHWC
,
ctl
::
GKZYXC
,
ctl
::
GNDHWK
>
{
};
template
<
ck
::
index_t
NDimSpatial
>
using
InputLayout
=
typename
CommonLayoutSettingSelector
<
NDimSpatial
>::
InputLayout
;
template
<
ck
::
index_t
NDimSpatial
>
using
WeightLayout
=
typename
CommonLayoutSettingSelector
<
NDimSpatial
>::
WeightLayout
;
template
<
ck
::
index_t
NDimSpatial
>
using
OutputLayout
=
typename
CommonLayoutSettingSelector
<
NDimSpatial
>::
OutputLayout
;
struct
ExecutionConfig
final
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
};
#define DefaultConvParam \
ck::utils::conv::ConvParam \
{ \
2, 4, 1, 128, 256, {3, 3}, {14, 14}, {1, 1}, {1, 1}, {1, 1}, { 1, 1 } \
}
inline
void
print_help_msg
()
{
std
::
cerr
<<
"arg1: verification (0=no, 1=yes)
\n
"
<<
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
<<
"arg3: time kernel (0=no, 1=yes)
\n
"
<<
ck
::
utils
::
conv
::
get_conv_param_parser_helper_msg
()
<<
std
::
endl
;
}
inline
bool
parse_cmd_args
(
int
argc
,
char
*
argv
[],
ExecutionConfig
&
config
,
ck
::
utils
::
conv
::
ConvParam
&
conv_param
)
{
constexpr
int
num_execution_config_args
=
3
;
// arguments for do_verification, init_method, time_kernel
constexpr
int
num_conv_param_leading_args
=
5
;
// arguments for num_dim_spatial_, G_, N_, K_, C_
constexpr
int
threshold_to_catch_partial_args
=
1
+
num_execution_config_args
;
constexpr
int
threshold_to_catch_all_args
=
threshold_to_catch_partial_args
+
num_conv_param_leading_args
;
if
(
argc
==
1
)
{
// use default
}
// catch only ExecutionConfig arguments
else
if
(
argc
==
threshold_to_catch_partial_args
)
{
config
.
do_verification
=
std
::
stoi
(
argv
[
1
]);
config
.
init_method
=
std
::
stoi
(
argv
[
2
]);
config
.
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
// catch both ExecutionConfig & ConvParam arguments
else
if
(
threshold_to_catch_all_args
<
argc
&&
((
argc
-
threshold_to_catch_all_args
)
%
3
==
0
))
{
config
.
do_verification
=
std
::
stoi
(
argv
[
1
]);
config
.
init_method
=
std
::
stoi
(
argv
[
2
]);
config
.
time_kernel
=
std
::
stoi
(
argv
[
3
]);
const
ck
::
index_t
num_dim_spatial
=
std
::
stoi
(
argv
[
4
]);
conv_param
=
ck
::
utils
::
conv
::
parse_conv_param
(
num_dim_spatial
,
threshold_to_catch_partial_args
,
argv
);
}
else
{
print_help_msg
();
return
false
;
}
return
true
;
}
example/20_grouped_conv_bwd_weight/grouped_conv_bwd_weight_xdl_bf16.cpp
0 → 100644
View file @
4cccaba1
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
using
InDataType
=
BF16
;
// bf16 kernel use fp32 atomic add to accumulate Weight tensor into global memory
using
WeiDataType
=
F32
;
using
OutDataType
=
BF16
;
using
AccDataType
=
F32
;
using
InElementOp
=
PassThrough
;
using
WeiElementOp
=
PassThrough
;
using
OutElementOp
=
PassThrough
;
#include "run_grouped_conv_bwd_weight_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_grouped_conv_bwd_weight_example
(
argc
,
argv
);
}
example/20_grouped_conv_bwd_weight/grouped_conv_bwd_weight_xdl_fp16.cpp
0 → 100644
View file @
4cccaba1
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
using
InDataType
=
F16
;
using
WeiDataType
=
F16
;
using
OutDataType
=
F16
;
using
AccDataType
=
F32
;
using
InElementOp
=
PassThrough
;
using
WeiElementOp
=
PassThrough
;
using
OutElementOp
=
PassThrough
;
#include "run_grouped_conv_bwd_weight_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_grouped_conv_bwd_weight_example
(
argc
,
argv
);
}
example/20_grouped_conv_bwd_weight/run_grouped_conv_bwd_weight_example.inc
0 → 100644
View file @
4cccaba1
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
template
<
ck
::
index_t
NDimSpatial
>
using
DeviceConvBwdWeightInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvBwdWeightGnwcGkxcGnwk_Xdl_CShuffle
<
NDimSpatial
,
// NDimSpatial
InDataType
,
// InDataType
WeiDataType
,
// WeiDataType
OutDataType
,
// OutDataType
AccDataType
,
// AccDataType
InElementOp
,
// InElementwiseOperation
WeiElementOp
,
// WeiElementwiseOperation
OutElementOp
,
// OutElementwiseOperation
ConvBwdWeightDefault
,
// ConvolutionBackwardWeightSpecialization
256
,
// BlockSize
128
,
// MPerBlock
128
,
// NPerBlock
4
,
// K0PerBlock
8
,
// K1
32
,
// MPerXdl
32
,
// NPerXdl
2
,
// MXdlPerWave
2
,
// NXdlPerWave
S
<
1
,
4
,
16
,
4
>
,
// ABlockTransferThreadClusterLengths_K0_M_K1
S
<
0
,
3
,
1
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
0
,
2
,
1
,
3
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
8
,
// ABlockTransferSrcScalarPerVector
2
,
// ABlockTransferDstScalarPerVector_K1
true
,
// ABlockLdsAddExtraM
S
<
1
,
4
,
16
,
4
>
,
// BBlockTransferThreadClusterLengths_K0_N_K1
S
<
0
,
3
,
1
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
0
,
2
,
1
,
3
>
,
// BBlockTransferSrcAccessOrder
2
,
// BBlockTransferSrcVectorDim
8
,
// BBlockTransferSrcScalarPerVector
2
,
// BBlockTransferDstScalarPerVector_K1
true
,
// BBlockLdsAddExtraN
1
,
// CShuffleMXdlPerWavePerShuffle
1
,
// CShuffleNXdlPerWavePerShuffle
S
<
1
,
32
,
1
,
4
>
,
// CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
128
/
(
sizeof
(
WeiDataType
)
*
CHAR_BIT
)
>
;
// CBlockTransferScalarPerVector_NWaveNPerXdl
template
<
ck
::
index_t
NDimSpatial
>
using
HostConvBwdWeightInstance
=
ck
::
tensor_operation
::
host
::
ReferenceConvBwdWeight
<
NDimSpatial
,
InDataType
,
WeiDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
>
;
template
<
ck
::
index_t
NDimSpatial
>
bool
run_grouped_conv_bwd_weight
(
const
ExecutionConfig
&
config
,
const
ck
::
utils
::
conv
::
ConvParam
&
conv_param
)
{
constexpr
ck
::
index_t
split_k
=
2
;
const
auto
in_g_n_c_wis_desc
=
ck
::
utils
::
conv
::
make_input_host_tensor_descriptor_g_n_c_wis_packed
<
InputLayout
<
NDimSpatial
>>
(
conv_param
);
const
auto
wei_g_k_c_xs_desc
=
ck
::
utils
::
conv
::
make_weight_host_tensor_descriptor_g_k_c_xs_packed
<
WeightLayout
<
NDimSpatial
>>
(
conv_param
);
const
auto
out_g_n_k_wos_desc
=
ck
::
utils
::
conv
::
make_output_host_tensor_descriptor_g_n_k_wos_packed
<
OutputLayout
<
NDimSpatial
>>
(
conv_param
);
Tensor
<
InDataType
>
in
(
in_g_n_c_wis_desc
);
Tensor
<
WeiDataType
>
wei_host_result
(
wei_g_k_c_xs_desc
);
Tensor
<
WeiDataType
>
wei_device_result
(
wei_g_k_c_xs_desc
);
Tensor
<
OutDataType
>
out
(
out_g_n_k_wos_desc
);
std
::
cout
<<
"in: "
<<
in
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"wei: "
<<
wei_host_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"out: "
<<
out
.
mDesc
<<
std
::
endl
;
switch
(
config
.
init_method
)
{
case
0
:
break
;
case
1
:
in
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
5
,
5
});
out
.
GenerateTensorValue
(
GeneratorTensor_2
<
OutDataType
>
{
-
5
,
5
});
break
;
default
:
in
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
0.0
,
1.0
});
out
.
GenerateTensorValue
(
GeneratorTensor_3
<
OutDataType
>
{
-
0.5
,
0.5
});
}
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
wei_device_buf
(
sizeof
(
WeiDataType
)
*
wei_device_result
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out
.
mDesc
.
GetElementSpaceSize
());
in_device_buf
.
ToDevice
(
in
.
mData
.
data
());
out_device_buf
.
ToDevice
(
out
.
mData
.
data
());
// init to 0
wei_device_buf
.
SetZero
();
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_spatial_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
filter_spatial_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
output_spatial_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_dilations
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_left_pads
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_right_pads
{};
auto
range_copy
=
[](
const
auto
&
from
,
auto
to
)
{
std
::
copy
(
begin
(
from
),
end
(
from
),
to
);
};
range_copy
(
conv_param
.
input_spatial_lengths_
,
begin
(
input_spatial_lengths
));
range_copy
(
conv_param
.
filter_spatial_lengths_
,
begin
(
filter_spatial_lengths
));
range_copy
(
conv_param
.
output_spatial_lengths_
,
begin
(
output_spatial_lengths
));
range_copy
(
conv_param
.
conv_filter_strides_
,
begin
(
conv_filter_strides
));
range_copy
(
conv_param
.
conv_filter_dilations_
,
begin
(
conv_filter_dilations
));
range_copy
(
conv_param
.
input_left_pads_
,
begin
(
input_left_pads
));
range_copy
(
conv_param
.
input_right_pads_
,
begin
(
input_right_pads
));
// do GEMM
auto
conv
=
DeviceConvBwdWeightInstance
<
NDimSpatial
>
{};
auto
invoker
=
conv
.
MakeInvoker
();
auto
argument
=
conv
.
MakeArgument
(
static_cast
<
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
WeiDataType
*>
(
wei_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
C_
,
input_spatial_lengths
,
filter_spatial_lengths
,
output_spatial_lengths
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
InElementOp
{},
WeiElementOp
{},
OutElementOp
{},
split_k
);
if
(
!
conv
.
IsSupportedArgument
(
argument
))
{
std
::
cerr
<<
"wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem"
<<
std
::
endl
;
return
false
;
}
float
avg_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
config
.
time_kernel
});
std
::
size_t
flop
=
conv_param
.
GetFlops
();
std
::
size_t
num_btype
=
conv_param
.
GetByte
<
InDataType
,
WeiDataType
,
OutDataType
>
();
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
avg_time
;
std
::
cerr
<<
"Perf: "
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
<<
"DeviceOp: "
<<
conv
.
GetTypeString
()
<<
std
::
endl
;
if
(
config
.
do_verification
)
{
auto
ref_conv
=
HostConvBwdWeightInstance
<
NDimSpatial
>
{};
auto
ref_invoker
=
ref_conv
.
MakeInvoker
();
auto
ref_argument
=
ref_conv
.
MakeArgument
(
in
,
wei_host_result
,
out
,
conv_param
.
conv_filter_strides_
,
conv_param
.
conv_filter_dilations_
,
conv_param
.
input_left_pads_
,
conv_param
.
input_right_pads_
,
InElementOp
{},
WeiElementOp
{},
OutElementOp
{});
ref_invoker
.
Run
(
ref_argument
);
wei_device_buf
.
FromDevice
(
wei_device_result
.
mData
.
data
());
return
ck
::
utils
::
check_err
(
wei_device_result
.
mData
,
wei_host_result
.
mData
);
}
return
true
;
}
bool
run_grouped_conv_bwd_weight_example
(
int
argc
,
char
*
argv
[])
{
ExecutionConfig
config
;
ck
::
utils
::
conv
::
ConvParam
conv_param
=
DefaultConvParam
;
if
(
!
parse_cmd_args
(
argc
,
argv
,
config
,
conv_param
))
{
return
false
;
}
switch
(
conv_param
.
num_dim_spatial_
)
{
case
1
:
return
run_grouped_conv_bwd_weight
<
1
>
(
config
,
conv_param
);
case
2
:
return
run_grouped_conv_bwd_weight
<
2
>
(
config
,
conv_param
);
case
3
:
return
run_grouped_conv_bwd_weight
<
3
>
(
config
,
conv_param
);
}
return
false
;
}
Prev
1
…
4
5
6
7
8
9
10
11
12
…
18
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment