Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
yangql
drop
Commits
4cccaba1
Commit
4cccaba1
authored
Jun 07, 2023
by
Yang0001
Browse files
first commit
parents
Changes
358
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
2626 additions
and
0 deletions
+2626
-0
example/10_convnd_fwd_multiple_d_multiple_reduce/common.hpp
example/10_convnd_fwd_multiple_d_multiple_reduce/common.hpp
+159
-0
example/10_convnd_fwd_multiple_d_multiple_reduce/convnd_fwd_max_xdl_bf16.cpp
...wd_multiple_d_multiple_reduce/convnd_fwd_max_xdl_bf16.cpp
+18
-0
example/10_convnd_fwd_multiple_d_multiple_reduce/convnd_fwd_max_xdl_fp16.cpp
...wd_multiple_d_multiple_reduce/convnd_fwd_max_xdl_fp16.cpp
+18
-0
example/10_convnd_fwd_multiple_d_multiple_reduce/convnd_fwd_max_xdl_fp32.cpp
...wd_multiple_d_multiple_reduce/convnd_fwd_max_xdl_fp32.cpp
+18
-0
example/10_convnd_fwd_multiple_d_multiple_reduce/convnd_fwd_max_xdl_int4.cpp
...wd_multiple_d_multiple_reduce/convnd_fwd_max_xdl_int4.cpp
+26
-0
example/10_convnd_fwd_multiple_d_multiple_reduce/convnd_fwd_max_xdl_int8.cpp
...wd_multiple_d_multiple_reduce/convnd_fwd_max_xdl_int8.cpp
+18
-0
example/10_convnd_fwd_multiple_d_multiple_reduce/run_convnd_fwd_max_example.inc
...multiple_d_multiple_reduce/run_convnd_fwd_max_example.inc
+307
-0
example/12_reduce/CMakeLists.txt
example/12_reduce/CMakeLists.txt
+3
-0
example/12_reduce/README.md
example/12_reduce/README.md
+62
-0
example/12_reduce/reduce_blockwise.cpp
example/12_reduce/reduce_blockwise.cpp
+299
-0
example/12_reduce/reduce_blockwise_impl.hpp
example/12_reduce/reduce_blockwise_impl.hpp
+338
-0
example/12_reduce/reduce_blockwise_two_call.cpp
example/12_reduce/reduce_blockwise_two_call.cpp
+301
-0
example/12_reduce/reduce_example_common.hpp
example/12_reduce/reduce_example_common.hpp
+49
-0
example/12_reduce/reduce_multiblock_atomic_add.cpp
example/12_reduce/reduce_multiblock_atomic_add.cpp
+216
-0
example/12_reduce/reduce_multiblock_atomic_add_impl.hpp
example/12_reduce/reduce_multiblock_atomic_add_impl.hpp
+233
-0
example/13_pool2d_fwd/CMakeLists.txt
example/13_pool2d_fwd/CMakeLists.txt
+3
-0
example/13_pool2d_fwd/README.md
example/13_pool2d_fwd/README.md
+41
-0
example/13_pool2d_fwd/pool2d_fwd_common.hpp
example/13_pool2d_fwd/pool2d_fwd_common.hpp
+283
-0
example/13_pool2d_fwd/pool2d_fwd_fp16.cpp
example/13_pool2d_fwd/pool2d_fwd_fp16.cpp
+117
-0
example/13_pool2d_fwd/pool2d_fwd_fp32.cpp
example/13_pool2d_fwd/pool2d_fwd_fp32.cpp
+117
-0
No files found.
Too many changes to show.
To preserve performance only
358 of 358+
files are displayed.
Plain diff
Email patch
example/10_convnd_fwd_multiple_d_multiple_reduce/common.hpp
0 → 100644
View file @
4cccaba1
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <cstdlib>
#include <iostream>
#include <iterator>
#include <numeric>
#include <type_traits>
#include <vector>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_multiple_r_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/fill.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
using
BF16
=
ck
::
bhalf_t
;
using
FP16
=
ck
::
half_t
;
using
FP32
=
float
;
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
using
I4
=
ck
::
int4_t
;
#endif
using
I8
=
std
::
int8_t
;
using
I32
=
std
::
int32_t
;
template
<
typename
ALay
,
typename
BLay
,
typename
DELay
,
typename
RLay
>
struct
LayoutSetting
{
using
ALayout
=
ALay
;
using
BLayout
=
BLay
;
using
DELayout
=
DELay
;
using
RLayout
=
RLay
;
};
template
<
ck
::
index_t
NDimSpatial
>
struct
LayoutSettingSelector
;
namespace
ctl
=
ck
::
tensor_layout
::
convolution
;
template
<
>
struct
LayoutSettingSelector
<
1
>
final
:
LayoutSetting
<
ctl
::
GNWC
,
ctl
::
GKXC
,
ctl
::
GNWK
,
ctl
::
GNW
>
{
};
template
<
>
struct
LayoutSettingSelector
<
2
>
final
:
LayoutSetting
<
ctl
::
GNHWC
,
ctl
::
GKYXC
,
ctl
::
GNHWK
,
ctl
::
GNHW
>
{
};
template
<
>
struct
LayoutSettingSelector
<
3
>
final
:
LayoutSetting
<
ctl
::
GNDHWC
,
ctl
::
GKZYXC
,
ctl
::
GNDHWK
,
ctl
::
GNDHW
>
{
};
template
<
ck
::
index_t
NDimSpatial
>
using
ALayout
=
typename
LayoutSettingSelector
<
NDimSpatial
>::
ALayout
;
template
<
ck
::
index_t
NDimSpatial
>
using
BLayout
=
typename
LayoutSettingSelector
<
NDimSpatial
>::
BLayout
;
template
<
ck
::
index_t
NDimSpatial
>
using
DELayout
=
typename
LayoutSettingSelector
<
NDimSpatial
>::
DELayout
;
template
<
ck
::
index_t
NDimSpatial
>
using
RLayout
=
typename
LayoutSettingSelector
<
NDimSpatial
>::
RLayout
;
struct
ExecutionConfig
final
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
};
inline
void
print_help_msg
()
{
std
::
cerr
<<
"arg1: verification (0=no, 1=yes)
\n
"
<<
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
<<
"arg3: time kernel (0=no, 1=yes)
\n
"
<<
ck
::
utils
::
conv
::
get_conv_param_parser_helper_msg
()
<<
std
::
endl
;
}
inline
bool
parse_cmd_args
(
int
argc
,
char
*
argv
[],
ck
::
utils
::
conv
::
ConvParam
&
problem_size
,
ExecutionConfig
&
config
)
{
constexpr
int
num_execution_config_args
=
3
;
// arguments for do_verification, init_method, time_kernel
constexpr
int
num_conv_param_leading_args
=
5
;
// arguments for num_dim_spatial_, G_, N_, K_, C_
constexpr
int
threshold_to_catch_partial_args
=
1
+
num_execution_config_args
;
constexpr
int
threshold_to_catch_all_args
=
threshold_to_catch_partial_args
+
num_conv_param_leading_args
;
if
(
argc
==
1
)
{
// use default
}
// catch only ExecutionConfig arguments
else
if
(
argc
==
threshold_to_catch_partial_args
)
{
config
.
do_verification
=
std
::
stoi
(
argv
[
1
]);
config
.
init_method
=
std
::
stoi
(
argv
[
2
]);
config
.
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
// catch both ExecutionConfig & ConvParam arguments
else
if
(
threshold_to_catch_all_args
<
argc
&&
((
argc
-
threshold_to_catch_all_args
)
%
3
==
0
))
{
config
.
do_verification
=
std
::
stoi
(
argv
[
1
]);
config
.
init_method
=
std
::
stoi
(
argv
[
2
]);
config
.
time_kernel
=
std
::
stoi
(
argv
[
3
]);
const
ck
::
index_t
num_dim_spatial
=
std
::
stoi
(
argv
[
4
]);
problem_size
=
ck
::
utils
::
conv
::
parse_conv_param
(
num_dim_spatial
,
threshold_to_catch_partial_args
,
argv
);
}
else
{
print_help_msg
();
return
false
;
}
return
true
;
}
inline
HostTensorDescriptor
make_r0_host_tensor_descriptor
(
const
ck
::
utils
::
conv
::
ConvParam
&
problem_size
)
{
std
::
vector
<
ck
::
index_t
>
dimensions
{
problem_size
.
G_
,
problem_size
.
N_
};
ck
::
ranges
::
copy
(
problem_size
.
output_spatial_lengths_
,
std
::
back_inserter
(
dimensions
));
return
HostTensorDescriptor
(
dimensions
);
}
template
<
typename
Lengths
,
typename
Strides
>
void
unpack_host_tensor_descriptor
(
const
HostTensorDescriptor
&
descriptor
,
Lengths
&
lengths
,
Strides
&
strides
)
{
assert
(
size
(
descriptor
.
GetLengths
())
==
size
(
lengths
));
std
::
copy_n
(
begin
(
descriptor
.
GetLengths
()),
size
(
descriptor
.
GetLengths
()),
begin
(
lengths
));
assert
(
size
(
descriptor
.
GetStrides
())
==
size
(
strides
));
std
::
copy_n
(
begin
(
descriptor
.
GetStrides
()),
size
(
descriptor
.
GetStrides
()),
begin
(
strides
));
}
example/10_convnd_fwd_multiple_d_multiple_reduce/convnd_fwd_max_xdl_bf16.cpp
0 → 100644
View file @
4cccaba1
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
using
ADataType
=
BF16
;
using
BDataType
=
BF16
;
using
AccDataType
=
FP32
;
using
CShuffleDataType
=
FP32
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
BF16
;
using
ReduceAccDataType
=
FP32
;
using
R0DataType
=
FP32
;
using
RsDataType
=
ck
::
Tuple
<
R0DataType
>
;
#include "run_convnd_fwd_max_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_convnd_fwd_max_example
(
argc
,
argv
);
}
example/10_convnd_fwd_multiple_d_multiple_reduce/convnd_fwd_max_xdl_fp16.cpp
0 → 100644
View file @
4cccaba1
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
using
ADataType
=
FP16
;
using
BDataType
=
FP16
;
using
AccDataType
=
FP32
;
using
CShuffleDataType
=
FP32
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
FP16
;
using
ReduceAccDataType
=
FP32
;
using
R0DataType
=
FP32
;
using
RsDataType
=
ck
::
Tuple
<
R0DataType
>
;
#include "run_convnd_fwd_max_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_convnd_fwd_max_example
(
argc
,
argv
);
}
example/10_convnd_fwd_multiple_d_multiple_reduce/convnd_fwd_max_xdl_fp32.cpp
0 → 100644
View file @
4cccaba1
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
using
ADataType
=
FP32
;
using
BDataType
=
FP32
;
using
AccDataType
=
FP32
;
using
CShuffleDataType
=
FP32
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
FP32
;
using
ReduceAccDataType
=
FP32
;
using
R0DataType
=
FP32
;
using
RsDataType
=
ck
::
Tuple
<
R0DataType
>
;
#include "run_convnd_fwd_max_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_convnd_fwd_max_example
(
argc
,
argv
);
}
example/10_convnd_fwd_multiple_d_multiple_reduce/convnd_fwd_max_xdl_int4.cpp
0 → 100644
View file @
4cccaba1
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#ifndef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
#error Should compile this file with ck::int4_t support
#endif
#define BUILD_INT4_EXAMPLE
#include "common.hpp"
using
ADataType
=
I4
;
using
BDataType
=
I4
;
using
KernelADataType
=
I8
;
using
KernelBDataType
=
I8
;
using
AccDataType
=
I32
;
using
CShuffleDataType
=
I32
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
I32
;
using
ReduceAccDataType
=
I32
;
using
R0DataType
=
I32
;
using
RsDataType
=
ck
::
Tuple
<
R0DataType
>
;
#include "run_convnd_fwd_max_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_convnd_fwd_max_example
(
argc
,
argv
);
}
example/10_convnd_fwd_multiple_d_multiple_reduce/convnd_fwd_max_xdl_int8.cpp
0 → 100644
View file @
4cccaba1
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
using
ADataType
=
I8
;
using
BDataType
=
I8
;
using
AccDataType
=
I32
;
using
CShuffleDataType
=
I32
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
I32
;
using
ReduceAccDataType
=
I32
;
using
R0DataType
=
I32
;
using
RsDataType
=
ck
::
Tuple
<
R0DataType
>
;
#include "run_convnd_fwd_max_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_convnd_fwd_max_example
(
argc
,
argv
);
}
example/10_convnd_fwd_multiple_d_multiple_reduce/run_convnd_fwd_max_example.inc
0 → 100644
View file @
4cccaba1
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
PassThrough
;
using
QsElementOp
=
ck
::
Tuple
<
PassThrough
>
;
using
RsElementOp
=
ck
::
Tuple
<
PassThrough
>
;
// ReduceOp
using
RsThreadReduceOp
=
ck
::
Tuple
<
ck
::
reduce
::
Max
>
;
using
RsGlobalReduceOp
=
ck
::
InMemoryDataOperationEnumSequence
<
ck
::
InMemoryDataOperationEnum
::
AtomicMax
>
;
static
constexpr
auto
ConvSpec
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
template
<
ck
::
index_t
NDimSpatial
>
using
DeviceInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleDMultipleR_Xdl_CShuffle
//######| NDimSpatial| ALayout| BLayout| DELayout| RLayout| AData| BData| AccData| CShuffle| DsData| EData| ReduceAccData| RsData| A| B| CDE| Qs| Rs| Thread| Global| Conv| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CDRThreadTransfer| CDE| RThreadTransfer|
//######| | | | | | Type| Type| Type| DataType| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Elementwise| Elementwise| Reduce| Reduce| Fwd|Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| ClusterLengths| ReduceThreadTransfer| DstScalarPerVector|
//######| | | | | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| Operation| Operation| Specialization| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _MPerBlock_NPerBlock| ScalarPerVector| _MPerBlock|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | _NPerBlock| |
#ifdef BUILD_INT4_EXAMPLE
<
NDimSpatial
,
ALayout
<
NDimSpatial
>
,
BLayout
<
NDimSpatial
>
,
DELayout
<
NDimSpatial
>
,
RLayout
<
NDimSpatial
>
,
KernelADataType
,
KernelBDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
ReduceAccDataType
,
RsDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
QsElementOp
,
RsElementOp
,
RsThreadReduceOp
,
RsGlobalReduceOp
,
ConvSpec
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
64
,
4
>
,
4
,
1
>
;
#else
<
NDimSpatial
,
ALayout
<
NDimSpatial
>
,
BLayout
<
NDimSpatial
>
,
DELayout
<
NDimSpatial
>
,
RLayout
<
NDimSpatial
>
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
ReduceAccDataType
,
RsDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
QsElementOp
,
RsElementOp
,
RsThreadReduceOp
,
RsGlobalReduceOp
,
ConvSpec
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
64
,
4
>
,
4
,
1
>
;
#endif
template
<
ck
::
index_t
NDimSpatial
>
using
HostInstance
=
ck
::
tensor_operation
::
host
::
ReferenceConvFwd
<
NDimSpatial
,
ADataType
,
BDataType
,
EDataType
,
AElementOp
,
BElementOp
,
PassThrough
>
;
// clang-format on
template
<
ck
::
index_t
NDimSpatial
>
bool
run_convnd_fwd_max
(
const
ck
::
utils
::
conv
::
ConvParam
&
problem_size
,
const
ExecutionConfig
&
config
)
{
static_assert
(
1
<=
NDimSpatial
&&
NDimSpatial
<=
3
,
"Unsupported NDimSpatial"
);
#if defined(BUILD_INT4_EXAMPLE) && defined(CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4)
static_assert
(
sizeof
(
ck
::
int4_t
)
==
sizeof
(
int8_t
));
#endif
const
auto
conv_input_g_n_c_wis_desc
=
ck
::
utils
::
conv
::
make_input_host_tensor_descriptor_g_n_c_wis_packed
<
ALayout
<
NDimSpatial
>>
(
problem_size
);
const
auto
conv_weight_g_k_c_xs_desc
=
ck
::
utils
::
conv
::
make_weight_host_tensor_descriptor_g_k_c_xs_packed
<
BLayout
<
NDimSpatial
>>
(
problem_size
);
const
auto
conv_output_g_n_k_wos_desc
=
ck
::
utils
::
conv
::
make_output_host_tensor_descriptor_g_n_k_wos_packed
<
DELayout
<
NDimSpatial
>>
(
problem_size
);
const
auto
r0_desc
=
make_r0_host_tensor_descriptor
(
problem_size
);
Tensor
<
ADataType
>
conv_input
(
conv_input_g_n_c_wis_desc
);
Tensor
<
BDataType
>
conv_weight
(
conv_weight_g_k_c_xs_desc
);
Tensor
<
EDataType
>
conv_output_device
(
conv_output_g_n_k_wos_desc
);
Tensor
<
R0DataType
>
r0_device
(
r0_desc
);
switch
(
config
.
init_method
)
{
case
0
:
break
;
case
1
:
ck
::
utils
::
FillUniformDistributionIntegerValue
<
ADataType
>
{
-
8
,
7
}(
conv_input
);
ck
::
utils
::
FillUniformDistributionIntegerValue
<
BDataType
>
{
-
8
,
7
}(
conv_weight
);
break
;
default
:
ck
::
utils
::
FillUniformDistribution
<
ADataType
>
{
-
5
,
5
}(
conv_input
);
ck
::
utils
::
FillUniformDistribution
<
BDataType
>
{
-
5
,
5
}(
conv_weight
);
}
DeviceMem
conv_input_device_buf
(
sizeof
(
ADataType
)
*
conv_input
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
conv_weight_device_buf
(
sizeof
(
BDataType
)
*
conv_weight
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
conv_output_device_buf
(
sizeof
(
EDataType
)
*
conv_output_device
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
r0_device_buf
(
sizeof
(
R0DataType
)
*
r0_device
.
mDesc
.
GetElementSpaceSize
());
#ifdef BUILD_INT4_EXAMPLE
const
Tensor
<
KernelADataType
>
conv_input_converted
(
conv_input
);
const
Tensor
<
KernelBDataType
>
conv_weight_converted
(
conv_weight
);
conv_input_device_buf
.
ToDevice
(
conv_input_converted
.
mData
.
data
());
conv_weight_device_buf
.
ToDevice
(
conv_weight_converted
.
mData
.
data
());
#else
conv_input_device_buf
.
ToDevice
(
conv_input
.
mData
.
data
());
conv_weight_device_buf
.
ToDevice
(
conv_weight
.
mData
.
data
());
#endif
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
conv_input_g_n_c_wis_lengths
{},
conv_input_g_n_c_wis_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
conv_weight_g_k_c_xs_lengths
{},
conv_weight_g_k_c_xs_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
conv_output_g_n_k_wos_lengths
{},
conv_output_g_n_k_wos_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
2
>
r0_lengths
{},
r0_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_strides
{},
conv_filter_dilations
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_left_pads
{},
input_right_pads
{};
unpack_host_tensor_descriptor
(
conv_input_g_n_c_wis_desc
,
conv_input_g_n_c_wis_lengths
,
conv_input_g_n_c_wis_strides
);
unpack_host_tensor_descriptor
(
conv_weight_g_k_c_xs_desc
,
conv_weight_g_k_c_xs_lengths
,
conv_weight_g_k_c_xs_strides
);
unpack_host_tensor_descriptor
(
conv_output_g_n_k_wos_desc
,
conv_output_g_n_k_wos_lengths
,
conv_output_g_n_k_wos_strides
);
unpack_host_tensor_descriptor
(
r0_desc
,
r0_lengths
,
r0_strides
);
ck
::
ranges
::
copy
(
problem_size
.
conv_filter_strides_
,
begin
(
conv_filter_strides
));
ck
::
ranges
::
copy
(
problem_size
.
conv_filter_dilations_
,
begin
(
conv_filter_dilations
));
ck
::
ranges
::
copy
(
problem_size
.
input_left_pads_
,
begin
(
input_left_pads
));
ck
::
ranges
::
copy
(
problem_size
.
input_right_pads_
,
begin
(
input_right_pads
));
// run Conv + Reduction on device
auto
conv
=
DeviceInstance
<
NDimSpatial
>
{};
auto
invoker
=
conv
.
MakeInvoker
();
auto
argument
=
conv
.
MakeArgument
(
conv_input_device_buf
.
GetDeviceBuffer
(),
conv_weight_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
0
>
{},
conv_output_device_buf
.
GetDeviceBuffer
(),
{
r0_device_buf
.
GetDeviceBuffer
()},
conv_input_g_n_c_wis_lengths
,
conv_input_g_n_c_wis_strides
,
conv_weight_g_k_c_xs_lengths
,
conv_weight_g_k_c_xs_strides
,
std
::
array
<
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
,
0
>
{{}},
std
::
array
<
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
,
0
>
{{}},
conv_output_g_n_k_wos_lengths
,
conv_output_g_n_k_wos_strides
,
r0_lengths
,
r0_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
AElementOp
{},
BElementOp
{},
CDEElementOp
{},
QsElementOp
{},
RsElementOp
{});
if
(
!
conv
.
IsSupportedArgument
(
argument
))
{
std
::
cerr
<<
"wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem"
<<
std
::
endl
;
return
false
;
}
const
float
avg_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
config
.
time_kernel
});
const
std
::
size_t
flop
=
problem_size
.
GetFlops
();
const
std
::
size_t
num_btype
=
problem_size
.
GetByte
<
ADataType
,
BDataType
,
EDataType
>
();
const
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
const
float
gb_per_sec
=
num_btype
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
conv
.
GetTypeString
()
<<
std
::
endl
;
if
(
config
.
do_verification
)
{
Tensor
<
EDataType
>
conv_output_host
(
conv_output_g_n_k_wos_desc
);
// run Conv + Reduction on host
auto
ref_conv
=
HostInstance
<
NDimSpatial
>
{};
auto
ref_invoker
=
ref_conv
.
MakeInvoker
();
auto
ref_argument
=
ref_conv
.
MakeArgument
(
conv_input
,
conv_weight
,
conv_output_host
,
problem_size
.
conv_filter_strides_
,
problem_size
.
conv_filter_dilations_
,
problem_size
.
input_left_pads_
,
problem_size
.
input_right_pads_
,
AElementOp
{},
BElementOp
{},
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
Tensor
<
R0DataType
>
r0_host
(
r0_device
.
mDesc
);
auto
reduce0_op
=
RsThreadReduceOp
{}[
ck
::
Number
<
0
>
{}];
auto
&
output_dims
=
conv_output_g_n_k_wos_desc
.
GetLengths
();
if
constexpr
(
NDimSpatial
==
1
)
{
for
(
std
::
size_t
g
=
0
;
g
<
output_dims
[
0
];
++
g
)
{
for
(
std
::
size_t
n
=
0
;
n
<
output_dims
[
1
];
++
n
)
{
for
(
std
::
size_t
w
=
0
;
w
<
output_dims
[
3
];
++
w
)
{
auto
reduce0_acc
=
reduce0_op
.
GetIdentityValue
<
ReduceAccDataType
>
();
for
(
std
::
size_t
k
=
0
;
k
<
output_dims
[
2
];
++
k
)
{
auto
e_val
=
ck
::
type_convert
<
ReduceAccDataType
>
(
conv_output_host
(
g
,
n
,
k
,
w
));
reduce0_op
(
reduce0_acc
,
e_val
);
}
r0_host
(
g
,
n
,
w
)
=
ck
::
type_convert
<
R0DataType
>
(
reduce0_acc
);
}
}
}
}
else
if
constexpr
(
NDimSpatial
==
2
)
{
for
(
std
::
size_t
g
=
0
;
g
<
output_dims
[
0
];
++
g
)
{
for
(
std
::
size_t
n
=
0
;
n
<
output_dims
[
1
];
++
n
)
{
for
(
std
::
size_t
h
=
0
;
h
<
output_dims
[
3
];
++
h
)
{
for
(
std
::
size_t
w
=
0
;
w
<
output_dims
[
4
];
++
w
)
{
auto
reduce0_acc
=
reduce0_op
.
GetIdentityValue
<
ReduceAccDataType
>
();
for
(
std
::
size_t
k
=
0
;
k
<
output_dims
[
2
];
++
k
)
{
auto
e_val
=
ck
::
type_convert
<
ReduceAccDataType
>
(
conv_output_host
(
g
,
n
,
k
,
h
,
w
));
reduce0_op
(
reduce0_acc
,
e_val
);
}
r0_host
(
g
,
n
,
h
,
w
)
=
ck
::
type_convert
<
R0DataType
>
(
reduce0_acc
);
}
}
}
}
}
else
if
constexpr
(
NDimSpatial
==
3
)
{
for
(
std
::
size_t
g
=
0
;
g
<
output_dims
[
0
];
++
g
)
{
for
(
std
::
size_t
n
=
0
;
n
<
output_dims
[
1
];
++
n
)
{
for
(
std
::
size_t
d
=
0
;
d
<
output_dims
[
3
];
++
d
)
{
for
(
std
::
size_t
h
=
0
;
h
<
output_dims
[
4
];
++
h
)
{
for
(
std
::
size_t
w
=
0
;
w
<
output_dims
[
5
];
++
w
)
{
auto
reduce0_acc
=
reduce0_op
.
GetIdentityValue
<
ReduceAccDataType
>
();
for
(
std
::
size_t
k
=
0
;
k
<
output_dims
[
2
];
++
k
)
{
auto
e_val
=
ck
::
type_convert
<
ReduceAccDataType
>
(
conv_output_host
(
g
,
n
,
k
,
d
,
h
,
w
));
reduce0_op
(
reduce0_acc
,
e_val
);
}
r0_host
(
g
,
n
,
d
,
h
,
w
)
=
ck
::
type_convert
<
R0DataType
>
(
reduce0_acc
);
}
}
}
}
}
}
conv_output_device_buf
.
FromDevice
(
conv_output_device
.
mData
.
data
());
r0_device_buf
.
FromDevice
(
r0_device
.
mData
.
data
());
return
ck
::
utils
::
check_err
(
conv_output_device
,
conv_output_host
,
"Error: incorrect results! (Matrix E)"
,
1
e
-
5
f
,
1
e
-
4
f
)
&&
ck
::
utils
::
check_err
(
r0_device
,
r0_host
,
"Error: incorrect results! (Matrix R0)"
,
1
e
-
5
f
,
1
e
-
4
f
);
}
return
true
;
}
bool
run_convnd_fwd_max_example
(
int
argc
,
char
*
argv
[])
{
ck
::
utils
::
conv
::
ConvParam
problem_size
{
2
,
1
,
128
,
256
,
192
,
{
3
,
3
},
{
71
,
71
},
{
2
,
2
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
}};
ExecutionConfig
config
;
if
(
!
parse_cmd_args
(
argc
,
argv
,
problem_size
,
config
))
{
return
false
;
}
switch
(
problem_size
.
num_dim_spatial_
)
{
case
1
:
return
run_convnd_fwd_max
<
1
>
(
problem_size
,
config
);
case
2
:
return
run_convnd_fwd_max
<
2
>
(
problem_size
,
config
);
case
3
:
return
run_convnd_fwd_max
<
3
>
(
problem_size
,
config
);
}
return
false
;
}
example/12_reduce/CMakeLists.txt
0 → 100644
View file @
4cccaba1
add_example_executable
(
example_reduce_blockwise reduce_blockwise.cpp
)
add_example_executable
(
example_reduce_multiblock_atomic_add reduce_multiblock_atomic_add.cpp
)
add_example_executable
(
example_reduce_blockwise_two_call reduce_blockwise_two_call.cpp
)
example/12_reduce/README.md
0 → 100644
View file @
4cccaba1
# Instructions for ```example_reduce_blockwise```
## Run ```example_reduce_blockwise```
```
bash
# -D <xxx> : input 3d/4d/5d tensor lengths
# -R <xxx> : reduce dimension ids
# -v <x> : verification (0=no, 1=yes)
#arg1: data type (0: fp16, 1: fp32, 3: int8, 5: bp16, 6: fp64, 7: int4)
#arg2: initialization (0=no init, 1=single integer value, 2=scope integer value, 3=decimal value)
#arg3: time kernel (0=no, 1=yes)
./bin/example_reduce_blockwise
-D
16,64,32,960
-v
1 0 2 1
```
Result
```
./bin/example_reduce_blockwise -D 16,64,32,960 -v 1 0 2 1
launch_and_time_kernel: grid_dim {240, 1, 1}, block_dim {256, 1, 1}
Warm up 1 time
Start running 10 times...
Perf: 0.238063 ms, 264.285 GB/s, DeviceReduceBlockWise<256,M_C4_S1,K_C64_S1,InSrcVectorDim_0_InSrcVectorSize_1_OutDstVectorSize_1>
```
## Run ```example_reduce_multiblock_atomic_add```
```
bash
# -D <xxx> : input 3d/4d/5d tensor lengths
# -R <xxx> : reduce dimension ids
# -v <x> : verification (0=no, 1=yes)
#arg1: data type (0: fp32, 1: fp64)
#arg2: initialization (0=no init, 1=single integer value, 2=scope integer value, 3=decimal value)
#arg3: time kernel (0=no, 1=yes)
./bin/example_reduce_multiblock_atomic_add
-D
16,64,32,960
-v
1 0 2 0
```
Result
```
./bin/example_reduce_multiblock_atomic_add -D 16,64,32,960 -v 1 0 2 0
Perf: 0 ms, inf GB/s, DeviceReduceMultiBlock<256,M_C4_S1,K_C64_S1,InSrcVectorDim_0_InSrcVectorSize_1_OutDstVectorSize_1>
echo $?
0
```
# Instructions for ```example_reduce_blockwise_two_call```
## Run ```example_reduce_blockwise_two_call```
```
bash
#arg1: verification (0=no, 1=yes(
#arg2: initialization (0=no init, 1=single integer value, 2=scope integer value, 3=decimal value)
#arg3: time kernel (0=no, 1=yes)
./bin/example_reduce_blockwise_two_call 1 2 1
```
Result
```
./bin/example_reduce_blockwise_two_call 1 2 1
launch_and_time_kernel: grid_dim {204800, 1, 1}, block_dim {256, 1, 1}
Warm up 1 time
Start running 10 times...
launch_and_time_kernel: grid_dim {6400, 1, 1}, block_dim {256, 1, 1}
Warm up 1 time
Start running 10 times...
Perf: 2.1791 ms, 771.42 GB/s, DeviceReduceBlockWise<256,M_C32_S1,K_C8_S1,InSrcVectorDim_1_InSrcVectorSize_1_OutDstVectorSize_1> => DeviceReduceBlockWise<256,M_C256_S1,K_C1_S1,InSrcVectorDim_1_InSrcVectorSize_1_OutDstVectorSize_1>
```
example/12_reduce/reduce_blockwise.cpp
0 → 100644
View file @
4cccaba1
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <initializer_list>
#include <cstdlib>
#include <getopt.h>
#include "ck/utility/reduction_enums.hpp"
#include "reduce_blockwise_impl.hpp"
#include "reduce_example_common.hpp"
using
namespace
ck
;
using
namespace
ck
::
tensor_operation
::
device
;
static
struct
option
long_options
[]
=
{{
"inLengths"
,
required_argument
,
nullptr
,
'D'
},
{
"verify"
,
required_argument
,
nullptr
,
'v'
},
{
"help"
,
no_argument
,
nullptr
,
'?'
},
{
nullptr
,
0
,
nullptr
,
0
}};
class
SimpleAppArgs
{
private:
int
option_index
=
0
;
public:
std
::
vector
<
size_t
>
inLengths
=
{
16
,
64
,
32
,
960
};
std
::
vector
<
int
>
reduceDims
=
{
0
,
1
,
2
};
std
::
vector
<
float
>
scales
=
{
1.0
f
,
0.0
f
};
bool
do_verification
=
true
;
int
data_type
=
1
;
int
init_method
=
2
;
bool
time_kernel
=
true
;
public:
void
show_usage
(
const
char
*
cmd
)
{
std
::
cout
<<
"Usage of "
<<
cmd
<<
std
::
endl
;
std
::
cout
<<
"--inLengths or -D, comma separated list of input tensor dimension lengths"
<<
std
::
endl
;
std
::
cout
<<
"--reduceDims or -R, comma separated list of to-reduce dimensions"
<<
std
::
endl
;
std
::
cout
<<
"--verify or -v, 1/0 to indicate whether to verify the reduction result by "
"comparing with the host-based reduction"
<<
std
::
endl
;
std
::
cout
<<
"Arg1: data type (0: fp16, 1: fp32, 3: int8, 5: bp16, 6: fp64, 7: int4)"
<<
std
::
endl
;
std
::
cout
<<
"Arg2 -- init method (0=no init, 1=single integer value, 2=scope integer "
"value, 3=decimal value)"
<<
std
::
endl
;
std
::
cout
<<
"Arg3 -- time kernel (0=no, 1=yes)"
<<
std
::
endl
;
};
int
processArgs
(
int
argc
,
char
*
argv
[])
{
using
ck
::
host_common
::
getTypeValuesFromString
;
int
ch
;
while
(
1
)
{
ch
=
getopt_long
(
argc
,
argv
,
"D:R:v:l:"
,
long_options
,
&
option_index
);
if
(
ch
==
-
1
)
break
;
switch
(
ch
)
{
case
'D'
:
if
(
!
optarg
)
throw
std
::
runtime_error
(
"Invalid option format!"
);
inLengths
=
getTypeValuesFromString
<
size_t
>
(
optarg
);
break
;
case
'R'
:
if
(
!
optarg
)
throw
std
::
runtime_error
(
"Invalid option format!"
);
reduceDims
=
getTypeValuesFromString
<
int
>
(
optarg
);
break
;
case
'v'
:
if
(
!
optarg
)
throw
std
::
runtime_error
(
"Invalid option format!"
);
do_verification
=
static_cast
<
bool
>
(
std
::
atoi
(
optarg
));
break
;
case
'?'
:
if
(
std
::
string
(
long_options
[
option_index
].
name
)
==
"help"
)
{
show_usage
(
argv
[
0
]);
return
(
-
1
);
};
break
;
default:
show_usage
(
argv
[
0
]);
return
(
-
1
);
};
};
if
(
optind
+
3
>
argc
)
{
throw
std
::
runtime_error
(
"Invalid cmd-line arguments, more argumetns are needed!"
);
};
data_type
=
std
::
atoi
(
argv
[
optind
++
]);
init_method
=
std
::
atoi
(
argv
[
optind
++
]);
time_kernel
=
static_cast
<
bool
>
(
std
::
atoi
(
argv
[
optind
]));
if
(
scales
.
empty
())
{
scales
.
push_back
(
1.0
f
);
scales
.
push_back
(
0.0
f
);
};
return
(
0
);
};
};
template
<
typename
InOutDataType
,
typename
AccDataType
,
ReduceTensorOp
ReduceOpId
,
index_t
PropagateNan
,
index_t
OutputIndex
>
bool
reduce_blockwise_test
(
bool
do_verification
,
int
init_method
,
bool
time_kernel
,
const
std
::
vector
<
size_t
>&
inLengths
,
const
std
::
vector
<
int
>&
reduceDims
,
float
alpha
,
float
beta
)
{
bool
matched
=
false
;
int
result
=
0
;
const
auto
tuple_object
=
reduce_shape_instances
{};
static_for
<
0
,
std
::
tuple_size
<
reduce_shape_instances
>::
value
,
1
>
{}([
&
](
auto
i
)
{
if
(
matched
)
return
;
using
ShapeType
=
remove_cvref_t
<
decltype
(
std
::
get
<
i
>
(
tuple_object
))
>
;
if
(
ShapeType
::
Rank_
!=
inLengths
.
size
()
||
ShapeType
::
NumReduceDim_
!=
reduceDims
.
size
())
return
;
std
::
array
<
int
,
ShapeType
::
NumReduceDim_
>
arrReduceDims
;
ck
::
ranges
::
copy
(
reduceDims
,
arrReduceDims
.
begin
());
result
=
reduce_blockwise_impl
<
InOutDataType
,
AccDataType
,
ReduceOpId
,
ShapeType
::
Rank_
,
ShapeType
::
NumReduceDim_
,
PropagateNan
,
OutputIndex
>
(
do_verification
,
init_method
,
time_kernel
,
inLengths
,
arrReduceDims
,
alpha
,
beta
);
matched
=
true
;
});
return
(
result
==
0
)
?
true
:
false
;
};
constexpr
ReduceTensorOp
ReduceOpId
=
ReduceTensorOp
::
AVG
;
constexpr
bool
PropagateNan
=
true
;
constexpr
bool
OutputIndex
=
false
;
int
main
(
int
argc
,
char
*
argv
[])
{
bool
pass
=
true
;
if
(
argc
>
1
)
{
SimpleAppArgs
arg
;
if
(
arg
.
processArgs
(
argc
,
argv
)
<
0
)
return
(
-
1
);
if
(
arg
.
data_type
==
0
)
{
pass
=
reduce_blockwise_test
<
ck
::
half_t
,
float
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
(
arg
.
do_verification
,
arg
.
init_method
,
arg
.
time_kernel
,
arg
.
inLengths
,
arg
.
reduceDims
,
arg
.
scales
[
0
],
arg
.
scales
[
1
]);
}
else
if
(
arg
.
data_type
==
1
)
{
pass
=
reduce_blockwise_test
<
float
,
float
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
(
arg
.
do_verification
,
arg
.
init_method
,
arg
.
time_kernel
,
arg
.
inLengths
,
arg
.
reduceDims
,
arg
.
scales
[
0
],
arg
.
scales
[
1
]);
}
else
if
(
arg
.
data_type
==
3
)
{
pass
=
reduce_blockwise_test
<
int8_t
,
float
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
(
arg
.
do_verification
,
arg
.
init_method
,
arg
.
time_kernel
,
arg
.
inLengths
,
arg
.
reduceDims
,
arg
.
scales
[
0
],
arg
.
scales
[
1
]);
}
else
if
(
arg
.
data_type
==
5
)
{
pass
=
reduce_blockwise_test
<
ck
::
bhalf_t
,
float
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
(
arg
.
do_verification
,
arg
.
init_method
,
arg
.
time_kernel
,
arg
.
inLengths
,
arg
.
reduceDims
,
arg
.
scales
[
0
],
arg
.
scales
[
1
]);
}
else
if
(
arg
.
data_type
==
6
)
{
pass
=
reduce_blockwise_test
<
double
,
double
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
(
arg
.
do_verification
,
arg
.
init_method
,
arg
.
time_kernel
,
arg
.
inLengths
,
arg
.
reduceDims
,
arg
.
scales
[
0
],
arg
.
scales
[
1
]);
}
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
else
if
(
arg
.
data_type
==
7
)
{
pass
=
reduce_blockwise_test
<
int4_t
,
int32_t
,
ReduceTensorOp
::
AVG
,
false
,
false
>
(
arg
.
do_verification
,
arg
.
init_method
,
arg
.
time_kernel
,
arg
.
inLengths
,
arg
.
reduceDims
,
arg
.
scales
[
0
],
arg
.
scales
[
1
]);
pass
=
pass
&&
reduce_blockwise_test
<
int4_t
,
int8_t
,
ReduceTensorOp
::
MAX
,
false
,
false
>
(
arg
.
do_verification
,
arg
.
init_method
,
arg
.
time_kernel
,
arg
.
inLengths
,
arg
.
reduceDims
,
arg
.
scales
[
0
],
arg
.
scales
[
1
]);
}
#endif
}
else
{
// for testing half_t
pass
=
pass
&&
reduce_blockwise_test
<
ck
::
half_t
,
float
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
(
true
,
2
,
true
,
{
16
,
64
,
32
,
960
},
{
0
,
1
,
2
},
1.0
f
,
0.0
f
);
// for testing float
pass
=
pass
&&
reduce_blockwise_test
<
float
,
float
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
(
true
,
2
,
true
,
{
16
,
64
,
32
,
960
},
{
0
,
1
,
2
},
1.0
f
,
0.0
f
);
// for testing double
pass
=
pass
&&
reduce_blockwise_test
<
float
,
float
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
(
true
,
2
,
true
,
{
16
,
64
,
32
,
960
},
{
0
,
1
,
2
},
1.0
f
,
0.0
f
);
// for testing bhalf_t
pass
=
pass
&&
reduce_blockwise_test
<
ck
::
bhalf_t
,
float
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
(
true
,
2
,
true
,
{
16
,
64
,
32
,
960
},
{
0
,
1
,
2
},
1.0
f
,
0.0
f
);
// for testing int8_t
pass
=
pass
&&
reduce_blockwise_test
<
int8_t
,
int32_t
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
(
true
,
2
,
true
,
{
16
,
64
,
32
,
960
},
{
0
,
1
,
2
},
1.0
f
,
0.0
f
);
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
// for testing int4_t using AVG operation
pass
=
pass
&&
reduce_blockwise_test
<
int4_t
,
int32_t
,
ReduceTensorOp
::
AVG
,
false
,
false
>
(
true
,
2
,
true
,
{
16
,
64
,
32
,
960
},
{
0
,
1
,
2
},
1.0
f
,
0.0
f
);
// for testing int4_t using MAX operation
pass
=
pass
&&
reduce_blockwise_test
<
int4_t
,
int8_t
,
ReduceTensorOp
::
MAX
,
false
,
false
>
(
true
,
2
,
true
,
{
16
,
64
,
32
,
960
},
{
0
,
1
,
2
},
1.0
f
,
0.0
f
);
#endif
// for testing 3D input
pass
=
pass
&&
reduce_blockwise_test
<
float
,
float
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
(
true
,
2
,
true
,
{
16
,
64
,
960
},
{
0
,
1
},
1.0
f
,
0.0
f
);
// for testing 5D input
pass
=
pass
&&
reduce_blockwise_test
<
float
,
float
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
(
true
,
2
,
true
,
{
16
,
64
,
32
,
2
,
960
},
{
0
,
1
,
2
,
3
},
1.0
f
,
0.0
f
);
};
return
(
pass
?
0
:
1
);
};
example/12_reduce/reduce_blockwise_impl.hpp
0 → 100644
View file @
4cccaba1
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include "ck/ck.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_reduce_multiblock.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/host_common_util.hpp"
#include "ck/library/utility/host_reduction.hpp"
#include "reduce_example_common.hpp"
template
<
typename
InOutDataType
,
typename
AccDataType
,
ck
::
ReduceTensorOp
ReduceOpId
,
ck
::
index_t
Rank
,
ck
::
index_t
NumReduceDim
,
bool
PropagateNan
,
bool
OutputIndex
>
int
reduce_blockwise_impl
(
bool
do_verification
,
int
init_method
,
bool
time_kernel
,
const
std
::
vector
<
size_t
>&
inLengths
,
const
std
::
array
<
int
,
NumReduceDim
>&
reduceDims
,
float
alpha
,
float
beta
)
{
using
namespace
ck
;
using
namespace
ck
::
tensor_operation
::
device
;
constexpr
index_t
NumOutDim
=
(
Rank
-
NumReduceDim
==
0
)
?
1
:
Rank
-
NumReduceDim
;
constexpr
bool
op_support_indices
=
(
ReduceOpId
==
ReduceTensorOp
::
MIN
||
ReduceOpId
==
ReduceTensorOp
::
MAX
||
ReduceOpId
==
ReduceTensorOp
::
AMAX
);
constexpr
bool
invalid_reduce_1
=
OutputIndex
&&
!
op_support_indices
;
// 1) If InOutDataType is half_t, must use half_t as AccDataType for indexable reduction
// operations 2) If InOutDataType is half_t, must use float as AccDataType for non-indexable
// reduction operations
constexpr
bool
invalid_reduce_2
=
std
::
is_same
<
InOutDataType
,
half_t
>::
value
&&
((
!
op_support_indices
&&
!
std
::
is_same
<
AccDataType
,
float
>::
value
)
||
(
op_support_indices
&&
!
std
::
is_same
<
AccDataType
,
half_t
>::
value
));
// 1) If InOutDataType is float, must use float as AccDataType for indexable reduction
// operations
constexpr
bool
invalid_reduce_3
=
std
::
is_same
<
InOutDataType
,
float
>::
value
&&
(
op_support_indices
&&
!
std
::
is_same
<
AccDataType
,
float
>::
value
);
// 1) If InOutDataType is int8_t or int4_t, must use int8_t as AccDataType for indexable
// reduction operations 2) If InOutDataType is int8_t or int4_t, must use int32_t as AccDataType
// for non-indexable reduction operations
constexpr
bool
invalid_reduce_4
=
std
::
is_same
<
InOutDataType
,
int8_t
>::
value
&&
((
!
op_support_indices
&&
!
std
::
is_same
<
AccDataType
,
int32_t
>::
value
)
||
(
op_support_indices
&&
!
std
::
is_same
<
AccDataType
,
int8_t
>::
value
));
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
constexpr
bool
invalid_reduce_4_2
=
std
::
is_same
<
InOutDataType
,
int4_t
>::
value
&&
((
!
op_support_indices
&&
!
std
::
is_same
<
AccDataType
,
int32_t
>::
value
)
||
(
op_support_indices
&&
!
std
::
is_same
<
AccDataType
,
int8_t
>::
value
));
#endif
// 1) If InOutDataType is int8_t or int4_t, the supported operation must be either indexable
// operations or ADD/AVG
constexpr
bool
invalid_reduce_5
=
std
::
is_same
<
InOutDataType
,
int8_t
>::
value
&&
(
!
op_support_indices
&&
ReduceOpId
!=
ReduceTensorOp
::
ADD
&&
ReduceOpId
!=
ReduceTensorOp
::
AVG
);
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
constexpr
bool
invalid_reduce_5_2
=
std
::
is_same
<
InOutDataType
,
int4_t
>::
value
&&
(
!
op_support_indices
&&
ReduceOpId
!=
ReduceTensorOp
::
ADD
&&
ReduceOpId
!=
ReduceTensorOp
::
AVG
);
#endif
// 1) If InOutDataType is bhalf_t, must use float as AccDataType for all reduction operations
constexpr
bool
invalid_reduce_6
=
std
::
is_same
<
InOutDataType
,
bhalf_t
>::
value
&&
!
std
::
is_same
<
AccDataType
,
float
>::
value
;
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
constexpr
bool
invalid_reduce
=
(
invalid_reduce_1
||
invalid_reduce_2
||
invalid_reduce_3
||
invalid_reduce_4
||
invalid_reduce_5
||
invalid_reduce_6
||
invalid_reduce_4_2
||
invalid_reduce_5_2
);
#else
constexpr
bool
invalid_reduce
=
(
invalid_reduce_1
||
invalid_reduce_2
||
invalid_reduce_3
||
invalid_reduce_4
||
invalid_reduce_5
||
invalid_reduce_6
);
#endif
if
constexpr
(
invalid_reduce
)
{
std
::
cerr
<<
"The reduction setting is invalid, exiting!"
<<
std
::
endl
;
return
(
-
1
);
};
using
ReduceOperation
=
typename
reduce_binary_operator
<
ReduceOpId
>::
opType
;
using
InElementwiseOperation
=
typename
reduce_unary_operator
<
ReduceOpId
,
true
,
true
>::
InElementwiseOperation
;
using
AccElementwiseOperation
=
typename
reduce_unary_operator
<
ReduceOpId
,
true
,
true
>::
AccElementwiseOperation
;
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
using
InOutDataTypeInDevice
=
typename
std
::
conditional
<
std
::
is_same
<
InOutDataType
,
int4_t
>::
value
,
int8_t
,
InOutDataType
>::
type
;
#else
using
InOutDataTypeInDevice
=
InOutDataType
;
#endif
using
DeviceReduceInstance
=
ck
::
tensor_operation
::
device
::
DeviceReduceMultiBlock
<
InOutDataTypeInDevice
,
AccDataType
,
InOutDataTypeInDevice
,
Rank
,
NumReduceDim
,
ReduceOperation
,
InElementwiseOperation
,
AccElementwiseOperation
,
InMemoryDataOperationEnum
::
Set
,
PropagateNan
,
OutputIndex
,
false
,
// HaveIndexInputIfOutputIndex
256
,
// BlockSize
4
,
// MThreadClusterSize
64
,
// KThreadClusterSize
1
,
// MThreadSliceSize
1
,
// KThreadSliceSize
0
,
// InSrcVectorDim
1
,
// InSrceVectorSize
1
>
;
// OutDstVectorSize
Tensor
<
InOutDataType
>
in
(
inLengths
);
std
::
vector
<
size_t
>
outLengths
;
auto
invariantDims
=
get_invariant_dims
<
Rank
,
NumReduceDim
>
(
reduceDims
);
if
(
invariantDims
.
empty
())
outLengths
.
push_back
(
1
);
else
for
(
auto
dim
:
invariantDims
)
outLengths
.
push_back
(
inLengths
[
dim
]);
Tensor
<
InOutDataType
>
out_ref
(
outLengths
);
Tensor
<
InOutDataType
>
out
(
outLengths
);
Tensor
<
int
>
out_indices_ref
(
outLengths
);
Tensor
<
int
>
out_indices
(
outLengths
);
auto
inStrides
=
in
.
mDesc
.
GetStrides
();
auto
outStrides
=
out
.
mDesc
.
GetStrides
();
size_t
invariant_total_length
=
out
.
mDesc
.
GetElementSize
();
size_t
reduce_total_length
=
in
.
mDesc
.
GetElementSize
()
/
invariant_total_length
;
std
::
size_t
num_thread
=
1
;
if
(
do_verification
)
{
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
in
.
GenerateTensorValue
(
GeneratorTensor_1
<
InOutDataType
>
{
1
},
num_thread
);
if
(
beta
!=
0.0
f
)
out_ref
.
GenerateTensorValue
(
GeneratorTensor_1
<
InOutDataType
>
{
1
},
num_thread
);
break
;
case
2
:
in
.
GenerateTensorValue
(
GeneratorTensor_2
<
InOutDataType
>
{
-
5
,
5
},
num_thread
);
if
(
beta
!=
0.0
f
)
out_ref
.
GenerateTensorValue
(
GeneratorTensor_2
<
InOutDataType
>
{
-
5
,
5
},
num_thread
);
break
;
default:
in
.
GenerateTensorValue
(
GeneratorTensor_3
<
InOutDataType
>
{
-
5.0
,
5.0
},
num_thread
);
if
(
beta
!=
0.0
f
)
out_ref
.
GenerateTensorValue
(
GeneratorTensor_3
<
InOutDataType
>
{
-
5.0
,
5.0
},
num_thread
);
}
if
(
beta
!=
0.0
f
)
for
(
size_t
i
=
0
;
i
<
out_ref
.
mDesc
.
GetElementSpaceSize
();
i
++
)
out
.
mData
[
i
]
=
out_ref
.
mData
[
i
];
};
// these buffers are usually provided by the user application
DeviceMem
in_dev
(
sizeof
(
InOutDataTypeInDevice
)
*
in
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_dev
(
sizeof
(
InOutDataTypeInDevice
)
*
out
.
mDesc
.
GetElementSpaceSize
());
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
if
(
std
::
is_same
<
InOutDataType
,
int4_t
>::
value
)
{
std
::
vector
<
InOutDataTypeInDevice
>
tmp_buf
(
in
.
mData
.
size
());
std
::
copy_n
(
in
.
mData
.
data
(),
in
.
mData
.
size
(),
tmp_buf
.
data
());
in_dev
.
ToDevice
(
tmp_buf
.
data
());
}
else
#endif
in_dev
.
ToDevice
(
in
.
mData
.
data
());
if
(
beta
!=
0.0
f
)
{
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
if
(
std
::
is_same
<
InOutDataType
,
int4_t
>::
value
)
{
std
::
vector
<
InOutDataTypeInDevice
>
tmp_buf
(
in
.
mData
.
size
());
std
::
copy_n
(
out
.
mData
.
data
(),
out
.
mData
.
size
(),
tmp_buf
.
data
());
out_dev
.
ToDevice
(
tmp_buf
.
data
());
}
else
#endif
out_dev
.
ToDevice
(
out
.
mData
.
data
());
};
size_t
indicesSizeInBytes
=
OutputIndex
?
out
.
mDesc
.
GetElementSize
()
*
sizeof
(
int32_t
)
:
0
;
DeviceMem
out_index_dev
(
indicesSizeInBytes
);
InElementwiseOperation
in_elementwise_op
;
AccElementwiseOperation
acc_elementwise_op
;
std
::
tie
(
in_elementwise_op
,
acc_elementwise_op
)
=
reduce_unary_operator
<
ReduceOpId
,
true
,
true
>::
GetElementwiseOperator
(
static_cast
<
int32_t
>
(
reduce_total_length
));
if
(
do_verification
)
{
ReductionHost
<
InOutDataType
,
AccDataType
,
InOutDataType
,
ReduceOperation
,
InElementwiseOperation
,
AccElementwiseOperation
,
Rank
,
NumReduceDim
,
PropagateNan
,
OutputIndex
>
hostReduce
(
in
.
mDesc
,
out_ref
.
mDesc
,
invariantDims
,
reduceDims
);
hostReduce
.
Run
(
alpha
,
in
.
mData
.
data
(),
beta
,
out_ref
.
mData
.
data
(),
out_indices_ref
.
mData
.
data
(),
in_elementwise_op
,
acc_elementwise_op
);
};
std
::
array
<
index_t
,
Rank
>
arrInLengths
;
std
::
array
<
index_t
,
Rank
>
arrInStrides
;
std
::
array
<
index_t
,
NumOutDim
>
arrOutLengths
;
std
::
array
<
index_t
,
NumOutDim
>
arrOutStrides
;
ck
::
ranges
::
copy
(
inLengths
,
arrInLengths
.
begin
());
ck
::
ranges
::
copy
(
inStrides
,
arrInStrides
.
begin
());
ck
::
ranges
::
copy
(
outLengths
,
arrOutLengths
.
begin
());
ck
::
ranges
::
copy
(
outStrides
,
arrOutStrides
.
begin
());
auto
reduce
=
DeviceReduceInstance
{};
auto
argument_ptr
=
reduce
.
MakeArgumentPointer
(
arrInLengths
,
arrInStrides
,
arrOutLengths
,
arrOutStrides
,
reduceDims
,
alpha
,
beta
,
in_dev
.
GetDeviceBuffer
(),
nullptr
,
out_dev
.
GetDeviceBuffer
(),
out_index_dev
.
GetDeviceBuffer
(),
in_elementwise_op
,
acc_elementwise_op
);
if
(
!
reduce
.
IsSupportedArgument
(
argument_ptr
.
get
()))
{
std
::
cerr
<<
"The runtime parameters seems not supported by the DeviceReduce instance, exiting!"
<<
std
::
endl
;
return
(
-
2
);
};
std
::
string
reduce_name
=
reduce
.
GetTypeString
();
auto
invoker_ptr
=
reduce
.
MakeInvokerPointer
();
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
num_bytes
=
invariant_total_length
*
reduce_total_length
*
sizeof
(
InOutDataType
)
+
invariant_total_length
*
sizeof
(
InOutDataType
);
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
avg_time
<<
" ms, "
<<
gb_per_sec
<<
" GB/s, "
<<
reduce_name
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
if
(
std
::
is_same
<
InOutDataType
,
int4_t
>::
value
)
{
std
::
vector
<
InOutDataTypeInDevice
>
tmp_buf
(
out
.
mData
.
size
());
out_dev
.
FromDevice
(
tmp_buf
.
data
());
std
::
copy_n
(
tmp_buf
.
data
(),
out
.
mData
.
size
(),
out
.
mData
.
data
());
}
else
#endif
out_dev
.
FromDevice
(
out
.
mData
.
data
());
pass
=
pass
&&
ck
::
utils
::
check_err
(
out
,
out_ref
);
if
(
OutputIndex
)
{
out_index_dev
.
FromDevice
(
out_indices
.
mData
.
data
());
pass
=
pass
&&
ck
::
utils
::
check_err
(
out_indices
,
out_indices_ref
);
};
};
return
(
pass
?
0
:
1
);
}
example/12_reduce/reduce_blockwise_two_call.cpp
0 → 100644
View file @
4cccaba1
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <sstream>
#include <initializer_list>
#include <cstdlib>
#include <getopt.h>
#include "ck/ck.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_reduce_multiblock.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/host_common_util.hpp"
#include "ck/library/utility/host_reduction.hpp"
using
namespace
ck
;
using
namespace
ck
::
tensor_operation
::
device
;
using
InOutDataType
=
ck
::
half_t
;
using
InOutDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
constexpr
ReduceTensorOp
ReduceOpId
=
ReduceTensorOp
::
NORM2
;
constexpr
bool
PropagateNan
=
true
;
constexpr
bool
OutputIndex
=
false
;
using
ReduceOperation
=
typename
reduce_binary_operator
<
ReduceOpId
>::
opType
;
using
InElementwiseOperation
=
typename
reduce_unary_operator
<
ReduceOpId
,
true
,
true
>::
InElementwiseOperation
;
using
AccElementwiseOperation
=
typename
reduce_unary_operator
<
ReduceOpId
,
true
,
true
>::
AccElementwiseOperation
;
using
PassThroughOp
=
tensor_operation
::
element_wise
::
PassThrough
;
using
DeviceReduceInstance_1
=
DeviceReduceMultiBlock
<
InOutDataType
,
AccDataType
,
InOutDataType
,
5
,
// Rank
1
,
// NumReduceDim
ReduceOperation
,
InElementwiseOperation
,
PassThroughOp
,
InMemoryDataOperationEnum
::
Set
,
PropagateNan
,
OutputIndex
,
false
,
// HaveIndexInputIfOutputIndex
256
,
32
,
8
,
1
,
1
,
1
,
// vector dim
1
,
1
>
;
using
DeviceReduceInstance_2
=
DeviceReduceMultiBlock
<
InOutDataType
,
AccDataType
,
InOutDataType
,
4
,
// Rank
1
,
// NumReduceDim
ReduceOperation
,
PassThroughOp
,
AccElementwiseOperation
,
InMemoryDataOperationEnum
::
Set
,
PropagateNan
,
OutputIndex
,
false
,
// HaveIndexInputIfOutputIndex
256
,
128
,
2
,
1
,
1
,
1
,
// vector dim
1
,
1
>
;
static
bool
do_verify
;
static
int
init_method
;
static
float
alpha
;
static
float
beta
;
static
bool
time_kernel
;
int
main
(
int
argc
,
char
*
argv
[])
{
// used by the device reduction
const
std
::
array
<
int
,
1
>
reduceDims_1
=
{
4
};
// const std::array<int, 4> invariantDims_1 = {0, 1, 2, 3};
const
std
::
array
<
int
,
1
>
reduceDims_2
=
{
3
};
// const std::array<int, 3> invariantDims_2 = {0, 1, 2};
// used by the host reduction
const
std
::
array
<
int
,
2
>
reduceDims
=
{
3
,
4
};
const
std
::
array
<
int
,
3
>
invariantDims
=
{
0
,
1
,
2
};
const
std
::
vector
<
size_t
>
inLengths_1
=
{
64
,
320
,
80
,
4
,
128
};
// input lengths of the second reduction, which is also the output lengths of the first
// reduction
const
std
::
vector
<
size_t
>
inLengths_2
=
{
64
,
320
,
80
,
4
};
const
std
::
vector
<
size_t
>
outLengths
=
{
64
,
320
,
80
};
if
(
argc
==
1
)
{
do_verify
=
true
;
init_method
=
2
;
time_kernel
=
true
;
}
else
if
(
argc
==
4
)
{
do_verify
=
static_cast
<
bool
>
(
argv
[
1
]);
init_method
=
atoi
(
argv
[
2
]);
time_kernel
=
static_cast
<
bool
>
(
atoi
(
argv
[
3
]));
}
else
{
std
::
ostringstream
ostr
;
ostr
<<
"Wrong parameter! "
<<
std
::
endl
<<
"Usage: "
<<
argv
[
0
]
<<
"[verify 0/1] init_method time_kernel"
<<
std
::
endl
;
throw
std
::
runtime_error
(
ostr
.
str
());
};
alpha
=
1.0
f
;
beta
=
0.0
f
;
Tensor
<
InOutDataType
>
in_1
(
inLengths_1
);
Tensor
<
InOutDataType
>
out_ref
(
outLengths
);
Tensor
<
InOutDataType
>
in_2
(
inLengths_2
);
// also the output tensor of the first reduction
Tensor
<
InOutDataType
>
out
(
outLengths
);
auto
inStrides_1
=
in_1
.
mDesc
.
GetStrides
();
auto
inStrides_2
=
in_2
.
mDesc
.
GetStrides
();
auto
outStrides
=
out
.
mDesc
.
GetStrides
();
size_t
invariant_total_length
=
out
.
mDesc
.
GetElementSize
();
size_t
reduce_total_length
=
in_1
.
mDesc
.
GetElementSize
()
/
invariant_total_length
;
std
::
size_t
num_thread
=
1
;
if
(
do_verify
)
{
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
in_1
.
GenerateTensorValue
(
GeneratorTensor_1
<
InOutDataType
>
{
1
},
num_thread
);
if
(
beta
!=
0.0
f
)
out_ref
.
GenerateTensorValue
(
GeneratorTensor_1
<
InOutDataType
>
{
1
},
num_thread
);
break
;
case
2
:
in_1
.
GenerateTensorValue
(
GeneratorTensor_2
<
InOutDataType
>
{
-
5
,
5
},
num_thread
);
if
(
beta
!=
0.0
f
)
out_ref
.
GenerateTensorValue
(
GeneratorTensor_2
<
InOutDataType
>
{
-
5
,
5
},
num_thread
);
break
;
default:
in_1
.
GenerateTensorValue
(
GeneratorTensor_3
<
InOutDataType
>
{
-
5.0
,
5.0
},
num_thread
);
if
(
beta
!=
0.0
f
)
out_ref
.
GenerateTensorValue
(
GeneratorTensor_3
<
InOutDataType
>
{
-
5.0
,
5.0
},
num_thread
);
}
if
(
beta
!=
0.0
f
)
for
(
size_t
i
=
0
;
i
<
out_ref
.
mDesc
.
GetElementSpaceSize
();
i
++
)
out
.
mData
[
i
]
=
out_ref
.
mData
[
i
];
};
DeviceMem
in_1_dev
(
sizeof
(
InOutDataType
)
*
in_1
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
in_2_dev
(
sizeof
(
InOutDataType
)
*
in_2
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_dev
(
sizeof
(
InOutDataType
)
*
out
.
mDesc
.
GetElementSpaceSize
());
in_1_dev
.
ToDevice
(
in_1
.
mData
.
data
());
if
(
beta
!=
0.0
f
)
out_dev
.
ToDevice
(
out
.
mData
.
data
());
InElementwiseOperation
in_elementwise_op
;
AccElementwiseOperation
acc_elementwise_op
;
std
::
tie
(
in_elementwise_op
,
acc_elementwise_op
)
=
reduce_unary_operator
<
ReduceOpId
,
true
,
true
>::
GetElementwiseOperator
(
static_cast
<
int32_t
>
(
reduce_total_length
));
if
(
do_verify
)
{
ReductionHost
<
InOutDataType
,
AccDataType
,
InOutDataType
,
ReduceOperation
,
InElementwiseOperation
,
AccElementwiseOperation
,
5
,
// Rank
2
,
// NumReduceDim
PropagateNan
,
OutputIndex
>
hostReduce
(
in_1
.
mDesc
,
out_ref
.
mDesc
,
invariantDims
,
reduceDims
);
hostReduce
.
Run
(
alpha
,
in_1
.
mData
.
data
(),
beta
,
out_ref
.
mData
.
data
(),
nullptr
,
in_elementwise_op
,
acc_elementwise_op
);
};
std
::
array
<
index_t
,
5
>
arrInLengths_1
;
std
::
array
<
index_t
,
5
>
arrInStrides_1
;
std
::
array
<
index_t
,
4
>
arrInLengths_2
;
std
::
array
<
index_t
,
4
>
arrInStrides_2
;
std
::
array
<
index_t
,
3
>
arrOutLengths
;
std
::
array
<
index_t
,
3
>
arrOutStrides
;
ck
::
ranges
::
copy
(
inLengths_1
,
arrInLengths_1
.
begin
());
ck
::
ranges
::
copy
(
inStrides_1
,
arrInStrides_1
.
begin
());
ck
::
ranges
::
copy
(
inLengths_2
,
arrInLengths_2
.
begin
());
ck
::
ranges
::
copy
(
inStrides_2
,
arrInStrides_2
.
begin
());
ck
::
ranges
::
copy
(
outLengths
,
arrOutLengths
.
begin
());
ck
::
ranges
::
copy
(
outStrides
,
arrOutStrides
.
begin
());
auto
reduce_1
=
DeviceReduceInstance_1
{};
auto
argument_ptr_1
=
reduce_1
.
MakeArgumentPointer
(
arrInLengths_1
,
arrInStrides_1
,
arrInLengths_2
,
arrInStrides_2
,
reduceDims_1
,
1.0
f
,
0.0
f
,
in_1_dev
.
GetDeviceBuffer
(),
nullptr
,
in_2_dev
.
GetDeviceBuffer
(),
nullptr
,
in_elementwise_op
,
PassThroughOp
{});
if
(
!
reduce_1
.
IsSupportedArgument
(
argument_ptr_1
.
get
()))
{
std
::
cout
<<
"The runtime parameters seems not supported by the DeviceReduce instance, exiting!"
<<
std
::
endl
;
};
auto
invoker_ptr_1
=
reduce_1
.
MakeInvokerPointer
();
auto
reduce_2
=
DeviceReduceInstance_2
{};
auto
argument_ptr_2
=
reduce_2
.
MakeArgumentPointer
(
arrInLengths_2
,
arrInStrides_2
,
arrOutLengths
,
arrOutStrides
,
reduceDims_2
,
alpha
,
beta
,
in_2_dev
.
GetDeviceBuffer
(),
nullptr
,
out_dev
.
GetDeviceBuffer
(),
nullptr
,
PassThroughOp
{},
acc_elementwise_op
);
if
(
!
reduce_2
.
IsSupportedArgument
(
argument_ptr_2
.
get
()))
{
std
::
cout
<<
"The runtime parameters seems not supported by the DeviceReduce instance, exiting!"
<<
std
::
endl
;
};
auto
invoker_ptr_2
=
reduce_2
.
MakeInvokerPointer
();
float
avg_time_1
=
invoker_ptr_1
->
Run
(
argument_ptr_1
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
float
avg_time_2
=
invoker_ptr_2
->
Run
(
argument_ptr_2
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
num_bytes
=
invariant_total_length
*
reduce_total_length
*
sizeof
(
InOutDataType
)
+
invariant_total_length
*
sizeof
(
InOutDataType
);
float
gb_per_sec
=
num_bytes
/
1.E6
/
(
avg_time_1
+
avg_time_2
);
std
::
cout
<<
"Perf: "
<<
avg_time_1
+
avg_time_2
<<
" ms, "
<<
gb_per_sec
<<
" GB/s, "
<<
reduce_1
.
GetTypeString
()
<<
" => "
<<
reduce_2
.
GetTypeString
()
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verify
)
{
out_dev
.
FromDevice
(
out
.
mData
.
data
());
pass
=
pass
&&
ck
::
utils
::
check_err
(
out
,
out_ref
);
};
return
(
pass
?
0
:
1
);
}
example/12_reduce/reduce_example_common.hpp
0 → 100644
View file @
4cccaba1
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/ck.hpp"
template
<
int
Rank
,
int
NumReduceDim
>
static
inline
std
::
array
<
int
,
Rank
-
NumReduceDim
>
get_invariant_dims
(
const
std
::
array
<
int
,
NumReduceDim
>&
reduceDims
)
{
int
reduceFlag
=
0
;
// flag the bits for the reduceDims
for
(
int
i
=
0
;
i
<
NumReduceDim
;
i
++
)
{
reduceFlag
|=
1
<<
reduceDims
[
i
];
};
std
::
array
<
int
,
Rank
-
NumReduceDim
>
invariantDims
;
// collect invariant dimensions
int
dim
=
0
;
for
(
int
i
=
0
;
i
<
Rank
;
i
++
)
if
((
reduceFlag
&
(
1
<<
i
))
==
0
)
{
invariantDims
[
dim
]
=
i
;
dim
++
;
};
return
invariantDims
;
};
template
<
ck
::
index_t
Rank
,
ck
::
index_t
NumReduceDim
>
struct
ReduceShape
{
static
constexpr
ck
::
index_t
Rank_
=
Rank
;
static
constexpr
ck
::
index_t
NumReduceDim_
=
NumReduceDim
;
};
using
reduce_shape_instances
=
std
::
tuple
<
ReduceShape
<
3
,
1
>
,
ReduceShape
<
3
,
2
>
,
ReduceShape
<
4
,
1
>
,
ReduceShape
<
4
,
2
>
,
ReduceShape
<
4
,
3
>
,
ReduceShape
<
5
,
1
>
,
ReduceShape
<
5
,
2
>
,
ReduceShape
<
5
,
3
>
,
ReduceShape
<
5
,
4
>>
;
example/12_reduce/reduce_multiblock_atomic_add.cpp
0 → 100644
View file @
4cccaba1
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <initializer_list>
#include <cstdlib>
#include <getopt.h>
#include "ck/utility/reduction_enums.hpp"
#include "reduce_multiblock_atomic_add_impl.hpp"
#include "reduce_example_common.hpp"
using
namespace
ck
;
using
namespace
ck
::
tensor_operation
::
device
;
static
struct
option
long_options
[]
=
{{
"inLengths"
,
required_argument
,
nullptr
,
'D'
},
{
"verify"
,
required_argument
,
nullptr
,
'v'
},
{
"help"
,
no_argument
,
nullptr
,
'?'
},
{
nullptr
,
0
,
nullptr
,
0
}};
class
SimpleAppArgs
{
private:
int
option_index
=
0
;
public:
std
::
vector
<
size_t
>
inLengths
=
{
16
,
64
,
32
,
960
};
std
::
vector
<
int
>
reduceDims
=
{
0
,
1
,
2
};
std
::
vector
<
float
>
scales
=
{
1.0
f
,
0.0
f
};
bool
do_verification
=
true
;
int
data_type
=
1
;
int
init_method
=
2
;
bool
time_kernel
=
true
;
public:
void
show_usage
(
const
char
*
cmd
)
{
std
::
cout
<<
"Usage of "
<<
cmd
<<
std
::
endl
;
std
::
cout
<<
"--inLengths or -D, comma separated list of input tensor dimension lengths"
<<
std
::
endl
;
std
::
cout
<<
"--reduceDims or -R, comma separated list of to-reduce dimensions"
<<
std
::
endl
;
std
::
cout
<<
"--verify or -v, 1/0 to indicate whether to verify the reduction result by "
"comparing with the host-based reduction"
<<
std
::
endl
;
std
::
cout
<<
"Arg1: data type (0: fp32, 1: fp64)"
<<
std
::
endl
;
std
::
cout
<<
"Arg2 -- init method (0=no init, 1=single integer value, 2=scope integer "
"value, 3=decimal value)"
<<
std
::
endl
;
std
::
cout
<<
"Arg3 -- time kernel (0=no, 1=yes)"
<<
std
::
endl
;
};
int
processArgs
(
int
argc
,
char
*
argv
[])
{
using
ck
::
host_common
::
getTypeValuesFromString
;
int
ch
;
while
(
1
)
{
ch
=
getopt_long
(
argc
,
argv
,
"D:R:v:l:"
,
long_options
,
&
option_index
);
if
(
ch
==
-
1
)
break
;
switch
(
ch
)
{
case
'D'
:
if
(
!
optarg
)
throw
std
::
runtime_error
(
"Invalid option format!"
);
inLengths
=
getTypeValuesFromString
<
size_t
>
(
optarg
);
break
;
case
'R'
:
if
(
!
optarg
)
throw
std
::
runtime_error
(
"Invalid option format!"
);
reduceDims
=
getTypeValuesFromString
<
int
>
(
optarg
);
break
;
case
'v'
:
if
(
!
optarg
)
throw
std
::
runtime_error
(
"Invalid option format!"
);
do_verification
=
static_cast
<
bool
>
(
std
::
atoi
(
optarg
));
break
;
case
'?'
:
if
(
std
::
string
(
long_options
[
option_index
].
name
)
==
"help"
)
{
show_usage
(
argv
[
0
]);
return
(
-
1
);
};
break
;
default:
show_usage
(
argv
[
0
]);
return
(
-
1
);
};
};
if
(
optind
+
3
>
argc
)
{
throw
std
::
runtime_error
(
"Invalid cmd-line arguments, more argumetns are needed!"
);
};
data_type
=
std
::
atoi
(
argv
[
optind
++
]);
init_method
=
std
::
atoi
(
argv
[
optind
++
]);
time_kernel
=
static_cast
<
bool
>
(
std
::
atoi
(
argv
[
optind
]));
if
(
scales
.
empty
())
{
scales
.
push_back
(
1.0
f
);
scales
.
push_back
(
0.0
f
);
};
return
(
0
);
};
};
template
<
typename
InOutDataType
,
typename
AccDataType
,
ReduceTensorOp
ReduceOpId
,
index_t
PropagateNan
>
bool
reduce_multiblock_atomic_add_test
(
bool
do_verification
,
int
init_method
,
bool
time_kernel
,
const
std
::
vector
<
size_t
>&
inLengths
,
const
std
::
vector
<
int
>&
reduceDims
,
float
alpha
,
float
beta
)
{
bool
matched
=
false
;
int
result
=
0
;
const
auto
tuple_object
=
reduce_shape_instances
{};
static_for
<
0
,
std
::
tuple_size
<
reduce_shape_instances
>::
value
,
1
>
{}([
&
](
auto
i
)
{
if
(
matched
)
return
;
using
ShapeType
=
remove_cvref_t
<
decltype
(
std
::
get
<
i
>
(
tuple_object
))
>
;
if
(
ShapeType
::
Rank_
!=
inLengths
.
size
()
||
ShapeType
::
NumReduceDim_
!=
reduceDims
.
size
())
return
;
std
::
array
<
int
,
ShapeType
::
NumReduceDim_
>
a_reduceDims
;
ck
::
ranges
::
copy
(
reduceDims
,
a_reduceDims
.
begin
());
result
=
reduce_multiblock_atomic_add_impl
<
InOutDataType
,
AccDataType
,
ReduceOpId
,
ShapeType
::
Rank_
,
ShapeType
::
NumReduceDim_
,
PropagateNan
>
(
do_verification
,
init_method
,
time_kernel
,
inLengths
,
a_reduceDims
,
alpha
,
beta
);
matched
=
true
;
});
return
(
result
==
0
)
?
true
:
false
;
};
constexpr
ReduceTensorOp
ReduceOpId
=
ReduceTensorOp
::
AVG
;
constexpr
bool
PropagateNan
=
true
;
int
main
(
int
argc
,
char
*
argv
[])
{
bool
pass
=
true
;
if
(
argc
>
1
)
{
SimpleAppArgs
arg
;
if
(
arg
.
processArgs
(
argc
,
argv
)
<
0
)
return
(
-
1
);
if
(
arg
.
data_type
==
0
)
{
pass
=
reduce_multiblock_atomic_add_test
<
float
,
float
,
ReduceOpId
,
PropagateNan
>
(
arg
.
do_verification
,
arg
.
init_method
,
arg
.
time_kernel
,
arg
.
inLengths
,
arg
.
reduceDims
,
arg
.
scales
[
0
],
arg
.
scales
[
1
]);
}
else
if
(
arg
.
data_type
==
1
)
{
pass
=
reduce_multiblock_atomic_add_test
<
double
,
double
,
ReduceOpId
,
PropagateNan
>
(
arg
.
do_verification
,
arg
.
init_method
,
arg
.
time_kernel
,
arg
.
inLengths
,
arg
.
reduceDims
,
arg
.
scales
[
0
],
arg
.
scales
[
1
]);
}
}
else
{
// for testing float
pass
=
pass
&&
reduce_multiblock_atomic_add_test
<
float
,
float
,
ReduceOpId
,
PropagateNan
>
(
true
,
2
,
false
,
{
16
,
64
,
32
,
960
},
{
0
,
1
,
2
},
1.0
f
,
0.0
f
);
// for testing double
pass
=
pass
&&
reduce_multiblock_atomic_add_test
<
double
,
double
,
ReduceOpId
,
PropagateNan
>
(
true
,
2
,
false
,
{
16
,
64
,
32
,
960
},
{
0
,
1
,
2
},
1.0
f
,
0.0
f
);
// for testing 3D input
pass
=
pass
&&
reduce_multiblock_atomic_add_test
<
float
,
float
,
ReduceOpId
,
PropagateNan
>
(
true
,
2
,
false
,
{
16
,
64
,
960
},
{
0
,
1
},
1.0
f
,
0.0
f
);
// for testing 5D input
pass
=
pass
&&
reduce_multiblock_atomic_add_test
<
float
,
float
,
ReduceOpId
,
PropagateNan
>
(
true
,
2
,
false
,
{
16
,
64
,
32
,
2
,
960
},
{
0
,
1
,
2
,
3
},
1.0
f
,
0.0
f
);
};
return
(
pass
?
0
:
1
);
};
example/12_reduce/reduce_multiblock_atomic_add_impl.hpp
0 → 100644
View file @
4cccaba1
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include "ck/ck.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_reduce_multiblock.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/host_common_util.hpp"
#include "ck/library/utility/host_reduction.hpp"
#include "reduce_example_common.hpp"
template
<
typename
InOutDataType
,
typename
AccDataType
,
ck
::
ReduceTensorOp
ReduceOpId
,
ck
::
index_t
Rank
,
ck
::
index_t
NumReduceDim
,
bool
PropagateNan
>
int
reduce_multiblock_atomic_add_impl
(
bool
do_verification
,
int
init_method
,
bool
time_kernel
,
const
std
::
vector
<
size_t
>&
inLengths
,
const
std
::
array
<
int
,
NumReduceDim
>&
reduceDims
,
float
alpha
,
float
beta
)
{
using
namespace
ck
;
using
namespace
ck
::
tensor_operation
::
device
;
constexpr
index_t
NumOutDim
=
(
Rank
-
NumReduceDim
==
0
)
?
1
:
Rank
-
NumReduceDim
;
constexpr
bool
op_support_atomic_add
=
(
ReduceOpId
==
ReduceTensorOp
::
ADD
||
ReduceOpId
==
ReduceTensorOp
::
AVG
);
constexpr
bool
invalid_reduce_1
=
!
op_support_atomic_add
;
constexpr
bool
invalid_reduce_2
=
!
(
std
::
is_same
<
InOutDataType
,
float
>::
value
||
std
::
is_same
<
InOutDataType
,
double
>::
value
);
constexpr
bool
invalid_reduce
=
(
invalid_reduce_1
||
invalid_reduce_2
);
if
(
invalid_reduce
)
{
std
::
cerr
<<
"The reduction setting is invalid, exiting!"
<<
std
::
endl
;
return
(
-
1
);
};
using
ReduceOperation
=
typename
reduce_binary_operator
<
ReduceOpId
>::
opType
;
using
InElementwiseOperation
=
typename
reduce_unary_operator
<
ReduceOpId
,
true
,
true
>::
InElementwiseOperation
;
using
AccElementwiseOperation
=
typename
reduce_unary_operator
<
ReduceOpId
,
true
,
true
>::
AccElementwiseOperation
;
using
DeviceReduceInstance
=
ck
::
tensor_operation
::
device
::
DeviceReduceMultiBlock
<
InOutDataType
,
AccDataType
,
InOutDataType
,
Rank
,
NumReduceDim
,
ReduceOperation
,
InElementwiseOperation
,
AccElementwiseOperation
,
InMemoryDataOperationEnum
::
AtomicAdd
,
PropagateNan
,
false
,
false
,
// HaveIndexInputIfOutputIndex
256
,
4
,
64
,
1
,
1
,
0
,
1
,
1
>
;
Tensor
<
InOutDataType
>
in
(
inLengths
);
std
::
vector
<
size_t
>
outLengths
;
auto
invariantDims
=
get_invariant_dims
<
Rank
,
NumReduceDim
>
(
reduceDims
);
if
(
invariantDims
.
empty
())
outLengths
.
push_back
(
1
);
else
for
(
auto
dim
:
invariantDims
)
outLengths
.
push_back
(
inLengths
[
dim
]);
Tensor
<
InOutDataType
>
out_ref
(
outLengths
);
Tensor
<
InOutDataType
>
out
(
outLengths
);
auto
inStrides
=
in
.
mDesc
.
GetStrides
();
auto
outStrides
=
out
.
mDesc
.
GetStrides
();
size_t
invariant_total_length
=
out
.
mDesc
.
GetElementSize
();
size_t
reduce_total_length
=
in
.
mDesc
.
GetElementSize
()
/
invariant_total_length
;
std
::
size_t
num_thread
=
1
;
if
(
do_verification
)
{
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
in
.
GenerateTensorValue
(
GeneratorTensor_1
<
InOutDataType
>
{
1
},
num_thread
);
if
(
beta
!=
0.0
f
)
out_ref
.
GenerateTensorValue
(
GeneratorTensor_1
<
InOutDataType
>
{
1
},
num_thread
);
break
;
case
2
:
in
.
GenerateTensorValue
(
GeneratorTensor_2
<
InOutDataType
>
{
-
5
,
5
},
num_thread
);
if
(
beta
!=
0.0
f
)
out_ref
.
GenerateTensorValue
(
GeneratorTensor_2
<
InOutDataType
>
{
-
5
,
5
},
num_thread
);
break
;
default:
in
.
GenerateTensorValue
(
GeneratorTensor_3
<
InOutDataType
>
{
-
5.0
,
5.0
},
num_thread
);
if
(
beta
!=
0.0
f
)
out_ref
.
GenerateTensorValue
(
GeneratorTensor_3
<
InOutDataType
>
{
-
5.0
,
5.0
},
num_thread
);
}
if
(
beta
!=
0.0
f
)
for
(
size_t
i
=
0
;
i
<
out_ref
.
mDesc
.
GetElementSpaceSize
();
i
++
)
out
.
mData
[
i
]
=
out_ref
.
mData
[
i
];
};
// these buffers are usually provided by the user application
DeviceMem
in_dev
(
sizeof
(
InOutDataType
)
*
in
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_dev
(
sizeof
(
InOutDataType
)
*
out
.
mDesc
.
GetElementSpaceSize
());
in_dev
.
ToDevice
(
in
.
mData
.
data
());
if
(
beta
!=
0.0
f
)
out_dev
.
ToDevice
(
out
.
mData
.
data
());
InElementwiseOperation
in_elementwise_op
;
AccElementwiseOperation
acc_elementwise_op
;
std
::
tie
(
in_elementwise_op
,
acc_elementwise_op
)
=
reduce_unary_operator
<
ReduceOpId
,
true
,
true
>::
GetElementwiseOperator
(
static_cast
<
int32_t
>
(
reduce_total_length
));
if
(
do_verification
)
{
ReductionHost
<
InOutDataType
,
AccDataType
,
InOutDataType
,
ReduceOperation
,
InElementwiseOperation
,
AccElementwiseOperation
,
Rank
,
NumReduceDim
,
PropagateNan
,
false
>
hostReduce
(
in
.
mDesc
,
out_ref
.
mDesc
,
invariantDims
,
reduceDims
);
hostReduce
.
Run
(
alpha
,
in
.
mData
.
data
(),
beta
,
out_ref
.
mData
.
data
(),
nullptr
,
in_elementwise_op
,
acc_elementwise_op
);
};
std
::
array
<
index_t
,
Rank
>
arrInLengths
;
std
::
array
<
index_t
,
Rank
>
arrInStrides
;
std
::
array
<
index_t
,
NumOutDim
>
arrOutLengths
;
std
::
array
<
index_t
,
NumOutDim
>
arrOutStrides
;
ck
::
ranges
::
copy
(
inLengths
,
arrInLengths
.
begin
());
ck
::
ranges
::
copy
(
inStrides
,
arrInStrides
.
begin
());
ck
::
ranges
::
copy
(
outLengths
,
arrOutLengths
.
begin
());
ck
::
ranges
::
copy
(
outStrides
,
arrOutStrides
.
begin
());
auto
reduce
=
DeviceReduceInstance
{};
auto
argument_ptr
=
reduce
.
MakeArgumentPointer
(
arrInLengths
,
arrInStrides
,
arrOutLengths
,
arrOutStrides
,
reduceDims
,
alpha
,
beta
,
in_dev
.
GetDeviceBuffer
(),
nullptr
,
out_dev
.
GetDeviceBuffer
(),
nullptr
,
in_elementwise_op
,
acc_elementwise_op
);
if
(
!
reduce
.
IsSupportedArgument
(
argument_ptr
.
get
()))
{
std
::
cerr
<<
"The runtime parameters seems not supported by the DeviceReduce instance, exiting!"
<<
std
::
endl
;
return
(
-
2
);
};
std
::
string
reduce_name
=
reduce
.
GetTypeString
();
auto
invoker_ptr
=
reduce
.
MakeInvokerPointer
();
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
num_bytes
=
invariant_total_length
*
reduce_total_length
*
sizeof
(
InOutDataType
)
+
invariant_total_length
*
sizeof
(
InOutDataType
);
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
avg_time
<<
" ms, "
<<
gb_per_sec
<<
" GB/s, "
<<
reduce_name
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
out_dev
.
FromDevice
(
out
.
mData
.
data
());
pass
=
pass
&&
ck
::
utils
::
check_err
(
out
,
out_ref
);
};
return
(
pass
?
0
:
1
);
}
example/13_pool2d_fwd/CMakeLists.txt
0 → 100644
View file @
4cccaba1
add_example_executable
(
example_pool2d_fwd_fp16 pool2d_fwd_fp16.cpp
)
add_example_executable
(
example_pool2d_fwd_fp32 pool2d_fwd_fp32.cpp
)
example/13_pool2d_fwd/README.md
0 → 100644
View file @
4cccaba1
# Instructions for ```example_pool2d_fwd``` Examples
## Run ```example_pool2d_fwd_fp16```
```
bash
#arg1: verification (0=no, 1=yes)
#arg2: initialization (0=no init, 1=single integer value, 2=scope integer value, 3=decimal value)
#arg3: time kernel (0=no, 1=yes)
#arg4 to 15: N, C, Y, X, Hi, Wi, Sy, Sx, LeftPy, LeftPx, RightPy, RightPx
./bin/example_pool2d_fwd_fp16 1 1 1
```
Result
```
in_n_c_hi_wi: dim 4, lengths {128, 192, 71, 71}, strides {967872, 1, 13632, 192}
out_n_c_ho_wo: dim 4, lengths {128, 192, 36, 36}, strides {248832, 1, 6912, 192}
launch_and_time_kernel: grid_dim {124416, 1, 1}, block_dim {64, 1, 1}
Warm up 1 time
Start running 10 times...
Perf: 0.397436 ms, 1.44252 TFlops, 783.713 GB/s
```
## Run ```example_pool2d_fwd_fp32```
```
bash
#arg1: verification (0=no, 1=yes)
#arg2: initialization (0=no init, 1=single integer value, 2=scope integer value, 3=decimal value)
#arg3: time kernel (0=no, 1=yes)
#arg4 to 15: N, C, Y, X, Hi, Wi, Sy, Sx, LeftPy, LeftPx, RightPy, RightPx
./bin/example_pool2d_fwd_fp32 1 1 1
```
Result
```
./bin/example_pool2d_fwd_fp32 1 1 1
in_n_c_hi_wi: dim 4, lengths {128, 192, 71, 71}, strides {967872, 1, 13632, 192}
out_n_c_ho_wo: dim 4, lengths {128, 192, 36, 36}, strides {248832, 1, 6912, 192}
launch_and_time_kernel: grid_dim {124416, 1, 1}, block_dim {64, 1, 1}
Warm up 1 time
Start running 10 times...
Perf: 1.01823 ms, 0.563045 TFlops, 611.8 GB/s
```
example/13_pool2d_fwd/pool2d_fwd_common.hpp
0 → 100644
View file @
4cccaba1
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include "ck/ck.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/utility/reduction_functions_accumulate.hpp"
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_pool2d_fwd_nhwc_nhwc.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
template
<
typename
InDataType
,
typename
OutDataType
,
typename
AccDataType
,
typename
IndexDataType
,
ck
::
ReduceTensorOp
ReduceOpId
,
bool
PropagateNan
,
bool
OutputIndex
>
static
void
pool_host_verify
(
const
Tensor
<
InDataType
>&
in
,
Tensor
<
OutDataType
>&
out
,
Tensor
<
IndexDataType
>&
out_indices
,
const
std
::
array
<
ck
::
index_t
,
2
>&
window_spatial_lengths
,
const
std
::
array
<
ck
::
index_t
,
2
>&
window_strides
,
const
std
::
array
<
ck
::
index_t
,
2
>&
in_left_pads
,
const
std
::
array
<
ck
::
index_t
,
2
>&
/*in_right_pads*/
)
{
const
int32_t
reduceLength
=
window_spatial_lengths
[
0
]
*
window_spatial_lengths
[
1
];
using
ReduceOperation
=
typename
ck
::
reduce_binary_operator
<
ReduceOpId
>::
opType
;
auto
elementwise_ops
=
ck
::
reduce_unary_operator
<
ReduceOpId
,
true
,
true
>::
GetElementwiseOperator
(
reduceLength
);
auto
in_elementwise_op
=
std
::
get
<
0
>
(
elementwise_ops
);
auto
acc_elementwise_op
=
std
::
get
<
1
>
(
elementwise_ops
);
if
constexpr
(
!
OutputIndex
)
{
using
Accumulation
=
ck
::
detail
::
AccumulateWithNanCheck
<
PropagateNan
,
ReduceOperation
,
AccDataType
>
;
auto
f_nchw
=
[
&
](
auto
n
,
auto
c
,
auto
ho
,
auto
wo
)
{
auto
accuVal
=
ReduceOperation
::
template
GetIdentityValue
<
AccDataType
>();
for
(
ck
::
index_t
y
=
0
;
y
<
window_spatial_lengths
[
0
];
++
y
)
{
ck
::
index_t
hi
=
ho
*
window_strides
[
0
]
+
y
-
in_left_pads
[
0
];
for
(
ck
::
index_t
x
=
0
;
x
<
window_spatial_lengths
[
1
];
++
x
)
{
ck
::
index_t
wi
=
wo
*
window_strides
[
1
]
+
x
-
in_left_pads
[
1
];
if
(
hi
>=
0
&&
hi
<
static_cast
<
ck
::
index_t
>
(
in
.
mDesc
.
GetLengths
()[
2
])
&&
wi
>=
0
&&
wi
<
static_cast
<
ck
::
index_t
>
(
in
.
mDesc
.
GetLengths
()[
3
]))
{
AccDataType
currVal
=
static_cast
<
AccDataType
>
(
in
(
n
,
c
,
hi
,
wi
));
in_elementwise_op
(
currVal
,
currVal
);
Accumulation
::
Calculate
(
accuVal
,
currVal
);
}
}
}
acc_elementwise_op
(
accuVal
,
accuVal
);
out
(
n
,
c
,
ho
,
wo
)
=
accuVal
;
};
make_ParallelTensorFunctor
(
f_nchw
,
out
.
mDesc
.
GetLengths
()[
0
],
out
.
mDesc
.
GetLengths
()[
1
],
out
.
mDesc
.
GetLengths
()[
2
],
out
.
mDesc
.
GetLengths
()[
3
])(
std
::
thread
::
hardware_concurrency
());
}
else
{
using
Accumulation
=
ck
::
detail
::
AccumulateWithIndexAndNanCheck
<
PropagateNan
,
ReduceOperation
,
AccDataType
,
IndexDataType
>
;
auto
f_nchw
=
[
&
](
auto
n
,
auto
c
,
auto
ho
,
auto
wo
)
{
auto
accuVal
=
ReduceOperation
::
template
GetIdentityValue
<
AccDataType
>();
IndexDataType
accuIndex
=
0
;
for
(
ck
::
index_t
y
=
0
;
y
<
window_spatial_lengths
[
0
];
++
y
)
{
ck
::
index_t
hi
=
ho
*
window_strides
[
0
]
+
y
-
in_left_pads
[
0
];
for
(
ck
::
index_t
x
=
0
;
x
<
window_spatial_lengths
[
1
];
++
x
)
{
ck
::
index_t
wi
=
wo
*
window_strides
[
1
]
+
x
-
in_left_pads
[
1
];
if
(
hi
>=
0
&&
hi
<
in
.
mDesc
.
GetLengths
()[
2
]
&&
wi
>=
0
&&
wi
<
in
.
mDesc
.
GetLengths
()[
3
])
{
AccDataType
currVal
=
static_cast
<
AccDataType
>
(
in
(
n
,
c
,
hi
,
wi
));
IndexDataType
currIndex
=
y
*
window_spatial_lengths
[
1
]
+
x
;
in_elementwise_op
(
currVal
,
currVal
);
Accumulation
::
Calculate
(
accuVal
,
currVal
,
accuIndex
,
currIndex
);
}
}
}
acc_elementwise_op
(
accuVal
,
accuVal
);
out
(
n
,
c
,
ho
,
wo
)
=
accuVal
;
out_indices
(
n
,
c
,
ho
,
wo
)
=
accuIndex
;
};
make_ParallelTensorFunctor
(
f_nchw
,
out
.
mDesc
.
GetLengths
()[
0
],
out
.
mDesc
.
GetLengths
()[
1
],
out
.
mDesc
.
GetLengths
()[
2
],
out
.
mDesc
.
GetLengths
()[
3
])(
std
::
thread
::
hardware_concurrency
());
};
}
template
<
typename
InDataType
,
typename
OutDataType
,
typename
AccDataType
,
typename
IndexDataType
,
typename
InLayout
,
typename
OutLayout
,
ck
::
ReduceTensorOp
ReduceOpId
,
bool
PropagateNan
,
bool
OutputIndex
>
bool
pool_test
(
bool
do_verification
,
int
init_method
,
bool
time_kernel
,
ck
::
index_t
N
,
ck
::
index_t
C
,
ck
::
index_t
Y
,
ck
::
index_t
X
,
ck
::
index_t
Hi
,
ck
::
index_t
Wi
,
ck
::
index_t
window_stride_h
,
ck
::
index_t
window_stride_w
,
ck
::
index_t
in_left_pad_h
,
ck
::
index_t
in_left_pad_w
,
ck
::
index_t
in_right_pad_h
,
ck
::
index_t
in_right_pad_w
)
{
using
DevicePoolFwdInstance
=
ck
::
tensor_operation
::
device
::
DevicePool2dFwd_Input_N_Hi_Wi_C_Output_N_Ho_Wo_C
<
InDataType
,
// InDataType
OutDataType
,
// OutDataType
AccDataType
,
// AccDataType
ReduceOpId
,
OutputIndex
,
64
,
// BlockSize
64
,
// ReduceMThreadClusterSize
1
,
// ReduceKThreadClusterSize
4
,
// ReduceMThreadSliceSize
1
,
// ReduceKThreadSliceSize
4
>
;
// InSrcOutDstVectorSize
const
ck
::
index_t
Ho
=
(
Hi
+
in_left_pad_h
+
in_right_pad_h
-
Y
)
/
window_stride_h
+
1
;
const
ck
::
index_t
Wo
=
(
Wi
+
in_left_pad_w
+
in_right_pad_w
-
X
)
/
window_stride_w
+
1
;
const
std
::
array
<
ck
::
index_t
,
2
>
window_spatial_lengths
{{
Y
,
X
}};
const
std
::
array
<
ck
::
index_t
,
2
>
window_strides
{{
window_stride_h
,
window_stride_w
}};
const
std
::
array
<
ck
::
index_t
,
2
>
input_left_pads
{{
in_left_pad_h
,
in_left_pad_w
}};
const
std
::
array
<
ck
::
index_t
,
2
>
input_right_pads
{{
in_right_pad_h
,
in_right_pad_w
}};
// tensor layout
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
N_
,
std
::
size_t
C_
,
std
::
size_t
H
,
std
::
size_t
W
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
constexpr
(
ck
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
NCHW
>::
value
)
{
return
HostTensorDescriptor
({
N_
,
C_
,
H
,
W
},
{
C_
*
H
*
W
,
H
*
W
,
W
,
1
_uz
});
}
else
if
constexpr
(
ck
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
NHWC
>::
value
)
{
return
HostTensorDescriptor
({
N_
,
C_
,
H
,
W
},
{
C_
*
H
*
W
,
1
_uz
,
W
*
C_
,
C_
});
}
};
Tensor
<
InDataType
>
in_n_c_hi_wi
(
f_host_tensor_descriptor
(
N
,
C
,
Hi
,
Wi
,
InLayout
{}));
Tensor
<
OutDataType
>
out_n_c_ho_wo_host
(
f_host_tensor_descriptor
(
N
,
C
,
Ho
,
Wo
,
OutLayout
{}));
Tensor
<
IndexDataType
>
out_indices_n_c_ho_wo_host
(
f_host_tensor_descriptor
(
N
,
C
,
Ho
,
Wo
,
OutLayout
{}));
Tensor
<
OutDataType
>
out_n_c_ho_wo_device
(
f_host_tensor_descriptor
(
N
,
C
,
Ho
,
Wo
,
OutLayout
{}));
Tensor
<
IndexDataType
>
out_indices_n_c_ho_wo_device
(
f_host_tensor_descriptor
(
N
,
C
,
Ho
,
Wo
,
OutLayout
{}));
std
::
cout
<<
"in_n_c_hi_wi: "
<<
in_n_c_hi_wi
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"out_n_c_ho_wo: "
<<
out_n_c_ho_wo_host
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_1
<
InDataType
>
{
1
});
break
;
case
2
:
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
5
,
5
});
break
;
default:
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
-
5.0
,
5.0
});
}
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in_n_c_hi_wi
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out_n_c_ho_wo_device
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_indices_device_buf
(
sizeof
(
IndexDataType
)
*
out_indices_n_c_ho_wo_device
.
mDesc
.
GetElementSpaceSize
());
in_device_buf
.
ToDevice
(
in_n_c_hi_wi
.
mData
.
data
());
auto
pool
=
DevicePoolFwdInstance
{};
auto
invoker_ptr
=
pool
.
MakeInvokerPointer
();
auto
argument_ptr
=
pool
.
MakeArgumentPointer
(
static_cast
<
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
static_cast
<
IndexDataType
*>
(
out_indices_device_buf
.
GetDeviceBuffer
()),
N
,
C
,
std
::
array
<
ck
::
index_t
,
2
>
{{
Hi
,
Wi
}},
std
::
array
<
ck
::
index_t
,
2
>
{{
Y
,
X
}},
std
::
array
<
ck
::
index_t
,
2
>
{{
Ho
,
Wo
}},
window_strides
,
input_left_pads
,
input_right_pads
);
if
(
!
pool
.
IsSupportedArgument
(
argument_ptr
.
get
()))
{
throw
std
::
runtime_error
(
"wrong! device_op with the specified compilation parameters does "
"not support this problem"
);
}
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
N
*
C
*
Ho
*
Wo
*
Y
*
X
;
std
::
size_t
num_btype
=
sizeof
(
InDataType
)
*
(
N
*
C
*
Hi
*
Wi
)
+
sizeof
(
OutDataType
)
*
(
N
*
C
*
Ho
*
Wo
);
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
pool_host_verify
<
InDataType
,
OutDataType
,
AccDataType
,
IndexDataType
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
(
in_n_c_hi_wi
,
out_n_c_ho_wo_host
,
out_indices_n_c_ho_wo_host
,
window_spatial_lengths
,
window_strides
,
input_left_pads
,
input_right_pads
);
out_device_buf
.
FromDevice
(
out_n_c_ho_wo_device
.
mData
.
data
());
pass
=
pass
&&
ck
::
utils
::
check_err
(
out_n_c_ho_wo_device
,
out_n_c_ho_wo_host
);
if
constexpr
(
OutputIndex
)
{
out_indices_device_buf
.
FromDevice
(
out_indices_n_c_ho_wo_device
.
mData
.
data
());
pass
=
pass
&&
ck
::
utils
::
check_err
(
out_indices_n_c_ho_wo_device
,
out_indices_n_c_ho_wo_host
);
};
}
return
(
pass
);
};
example/13_pool2d_fwd/pool2d_fwd_fp16.cpp
0 → 100644
View file @
4cccaba1
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "pool2d_fwd_common.hpp"
using
InDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
using
IndexDataType
=
int32_t
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
NHWC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NHWC
;
#if 1
static
constexpr
auto
ReduceOpId
=
ck
::
ReduceTensorOp
::
MAX
;
#else
static
constexpr
auto
ReduceOpId
=
ck
::
ReduceTensorOp
::
AVG
;
#endif
static
constexpr
bool
OutputIndex
=
false
;
static
constexpr
bool
PropagateNan
=
false
;
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
;
int
init_method
;
bool
time_kernel
;
// Pool shape
ck
::
index_t
N
=
128
;
ck
::
index_t
C
=
192
;
ck
::
index_t
Y
=
3
;
ck
::
index_t
X
=
3
;
ck
::
index_t
Hi
=
71
;
ck
::
index_t
Wi
=
71
;
ck
::
index_t
window_stride_h
=
2
;
ck
::
index_t
window_stride_w
=
2
;
ck
::
index_t
in_left_pad_h
=
1
;
ck
::
index_t
in_left_pad_w
=
1
;
ck
::
index_t
in_right_pad_h
=
1
;
ck
::
index_t
in_right_pad_w
=
1
;
if
(
argc
==
1
)
{
do_verification
=
true
;
init_method
=
1
;
time_kernel
=
true
;
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
static_cast
<
bool
>
(
std
::
stoi
(
argv
[
3
]));
}
else
if
(
argc
==
16
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
static_cast
<
bool
>
(
std
::
stoi
(
argv
[
3
]));
N
=
std
::
stoi
(
argv
[
4
]);
C
=
std
::
stoi
(
argv
[
5
]);
Y
=
std
::
stoi
(
argv
[
6
]);
X
=
std
::
stoi
(
argv
[
7
]);
Hi
=
std
::
stoi
(
argv
[
8
]);
Wi
=
std
::
stoi
(
argv
[
9
]);
window_stride_h
=
std
::
stoi
(
argv
[
10
]);
window_stride_w
=
std
::
stoi
(
argv
[
11
]);
in_left_pad_h
=
std
::
stoi
(
argv
[
12
]);
in_left_pad_w
=
std
::
stoi
(
argv
[
13
]);
in_right_pad_h
=
std
::
stoi
(
argv
[
14
]);
in_right_pad_w
=
std
::
stoi
(
argv
[
15
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg4 to 15: N, C, Y, X, Hi, Wi, Sy, Sx, LeftPy, LeftPx, RightPy, "
"RightPx
\n
"
);
exit
(
0
);
}
bool
pass
=
pool_test
<
InDataType
,
OutDataType
,
AccDataType
,
IndexDataType
,
InLayout
,
OutLayout
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
(
do_verification
,
init_method
,
time_kernel
,
N
,
C
,
Y
,
X
,
Hi
,
Wi
,
window_stride_h
,
window_stride_w
,
in_left_pad_h
,
in_left_pad_w
,
in_right_pad_h
,
in_right_pad_w
);
return
(
pass
?
0
:
1
);
}
example/13_pool2d_fwd/pool2d_fwd_fp32.cpp
0 → 100644
View file @
4cccaba1
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "pool2d_fwd_common.hpp"
using
InDataType
=
float
;
using
OutDataType
=
float
;
using
AccDataType
=
float
;
using
IndexDataType
=
int32_t
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
NHWC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NHWC
;
#if 1
static
constexpr
auto
ReduceOpId
=
ck
::
ReduceTensorOp
::
MAX
;
#else
static
constexpr
auto
ReduceOpId
=
ck
::
ReduceTensorOp
::
AVG
;
#endif
static
constexpr
bool
OutputIndex
=
false
;
static
constexpr
bool
PropagateNan
=
false
;
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
;
int
init_method
;
bool
time_kernel
;
// Pool shape
ck
::
index_t
N
=
128
;
ck
::
index_t
C
=
192
;
ck
::
index_t
Y
=
3
;
ck
::
index_t
X
=
3
;
ck
::
index_t
Hi
=
71
;
ck
::
index_t
Wi
=
71
;
ck
::
index_t
window_stride_h
=
2
;
ck
::
index_t
window_stride_w
=
2
;
ck
::
index_t
in_left_pad_h
=
1
;
ck
::
index_t
in_left_pad_w
=
1
;
ck
::
index_t
in_right_pad_h
=
1
;
ck
::
index_t
in_right_pad_w
=
1
;
if
(
argc
==
1
)
{
do_verification
=
true
;
init_method
=
1
;
time_kernel
=
true
;
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
static_cast
<
bool
>
(
std
::
stoi
(
argv
[
3
]));
}
else
if
(
argc
==
16
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
static_cast
<
bool
>
(
std
::
stoi
(
argv
[
3
]));
N
=
std
::
stoi
(
argv
[
4
]);
C
=
std
::
stoi
(
argv
[
5
]);
Y
=
std
::
stoi
(
argv
[
6
]);
X
=
std
::
stoi
(
argv
[
7
]);
Hi
=
std
::
stoi
(
argv
[
8
]);
Wi
=
std
::
stoi
(
argv
[
9
]);
window_stride_h
=
std
::
stoi
(
argv
[
10
]);
window_stride_w
=
std
::
stoi
(
argv
[
11
]);
in_left_pad_h
=
std
::
stoi
(
argv
[
12
]);
in_left_pad_w
=
std
::
stoi
(
argv
[
13
]);
in_right_pad_h
=
std
::
stoi
(
argv
[
14
]);
in_right_pad_w
=
std
::
stoi
(
argv
[
15
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg4 to 15: N, C, Y, X, Hi, Wi, Sy, Sx, LeftPy, LeftPx, RightPy, "
"RightPx
\n
"
);
exit
(
0
);
}
bool
pass
=
pool_test
<
InDataType
,
OutDataType
,
AccDataType
,
IndexDataType
,
InLayout
,
OutLayout
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
(
do_verification
,
init_method
,
time_kernel
,
N
,
C
,
Y
,
X
,
Hi
,
Wi
,
window_stride_h
,
window_stride_w
,
in_left_pad_h
,
in_left_pad_w
,
in_right_pad_h
,
in_right_pad_w
);
return
(
pass
?
0
:
1
);
}
Prev
1
2
3
4
5
6
7
8
9
10
…
18
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment