#include #include #include #include #include #include "data_type.hpp" #include "element_wise_operation.hpp" #include "conv_test_util.hpp" #include "host_tensor.hpp" #include "tensor_layout.hpp" #include "test_util.hpp" // Forward declarations for conv instances. using DeviceConvFwdNoOpPtr = ck::tensor_operation::device::DeviceConvFwdPtr; namespace ck { namespace tensor_operation { namespace device { namespace device_conv3d_fwd_instance { void add_device_conv3d_fwd_xdl_ndhwc_kzyxc_ndhwk_bf16_instances(std::vector&); void add_device_conv3d_fwd_xdl_ndhwc_kzyxc_ndhwk_f16_instances(std::vector&); void add_device_conv3d_fwd_xdl_ndhwc_kzyxc_ndhwk_f32_instances(std::vector&); void add_device_conv3d_fwd_xdl_ndhwc_kzyxc_ndhwk_int8_instances(std::vector&); } // namespace device_conv3d_fwd_instance } // namespace device } // namespace tensor_operation } // namespace ck namespace { bool TestConv3DNDHWC() { bool res{true}; ck::conv_util::ConvParams params; params.num_dim_spatial = 3; params.N = 2; params.K = 16; params.C = 4; params.filter_spatial_lengths = std::vector{3, 3, 3}; params.input_spatial_lengths = std::vector{16, 16, 16}; params.conv_filter_strides = std::vector{1, 1, 1}; params.conv_filter_dilations = std::vector{1, 1, 1}; params.input_left_pads = std::vector{1, 1, 1}; params.input_right_pads = std::vector{1, 1, 1}; auto host_tensors = test::conv::GetHostTensors(params); const Tensor& input = std::get<0>(host_tensors); const Tensor& weights = std::get<1>(host_tensors); Tensor& host_output = std::get<2>(host_tensors); Tensor& device_output = std::get<3>(host_tensors); test::conv::RunReferenceConv<3>(params, input, weights, host_output); test::conv::RunConv<3>(params, input, weights, device_output); res = res && test::check_err( device_output.mData, host_output.mData, "Error: incorrect results!", 1e-5f, 1e-4f); return res; } bool TestConv3DNDHWC2GBInput() { // >2GB Input ck::conv_util::ConvParams params; params.num_dim_spatial = 3; params.N = 2; params.K = 16; params.C = 32; params.filter_spatial_lengths = std::vector{3, 3, 3}; params.input_spatial_lengths = std::vector{32, 1000, 1000}; params.conv_filter_strides = std::vector{1, 1, 1}; params.conv_filter_dilations = std::vector{1, 1, 1}; params.input_left_pads = std::vector{1, 1, 1}; params.input_right_pads = std::vector{1, 1, 1}; auto host_tensors = test::conv::GetHostTensors(params, false); const Tensor& input = std::get<0>(host_tensors); const Tensor& weights = std::get<1>(host_tensors); Tensor& device_output = std::get<3>(host_tensors); try { test::conv::RunConv<3>(params, input, weights, device_output); } catch(const std::runtime_error& err) { std::string err_msg{"Error! device_conv with the specified compilation parameters does " "not support this Conv problem"}; if(err.what() != err_msg) { return false; } return true; } std::cout << "Error: Failure checking oversized tensor!" << std::endl; return false; } bool TestConv3DNDHWC2GBFilters() { // >2GB Filters ck::conv_util::ConvParams params; params.num_dim_spatial = 3; params.N = 2; params.K = 16; params.C = 32; params.filter_spatial_lengths = std::vector{4, 1000, 1000}; params.input_spatial_lengths = std::vector{16, 16, 16}; params.conv_filter_strides = std::vector{1, 1, 1}; params.conv_filter_dilations = std::vector{1, 1, 1}; params.input_left_pads = std::vector{1, 1, 1}; params.input_right_pads = std::vector{1, 1, 1}; auto host_tensors = test::conv::GetHostTensors(params, false); const Tensor& input = std::get<0>(host_tensors); const Tensor& weights = std::get<1>(host_tensors); Tensor& device_output = std::get<3>(host_tensors); try { test::conv::RunConv<3>(params, input, weights, device_output); } catch(const std::runtime_error& err) { std::string err_msg{"Error! device_conv with the specified compilation parameters does " "not support this Conv problem"}; if(err.what() != err_msg) { return false; } return true; } std::cout << "Error: Failure checking oversized tensor!" << std::endl; return false; } bool TestConv3DNDHWC2GBOutput() { // >2GB Output ck::conv_util::ConvParams params; params.num_dim_spatial = 3; params.N = 2; params.K = 16; params.C = 2; params.filter_spatial_lengths = std::vector{1, 1, 1}; params.input_spatial_lengths = std::vector{1000, 1000, 30}; params.conv_filter_strides = std::vector{1, 1, 1}; params.conv_filter_dilations = std::vector{1, 1, 1}; params.input_left_pads = std::vector{2, 2, 2}; params.input_right_pads = std::vector{2, 2, 2}; auto host_tensors = test::conv::GetHostTensors(params, false); const Tensor& input = std::get<0>(host_tensors); const Tensor& weights = std::get<1>(host_tensors); Tensor& device_output = std::get<3>(host_tensors); try { test::conv::RunConv<3>(params, input, weights, device_output); } catch(const std::runtime_error& err) { std::string err_msg{"Error! device_conv with the specified compilation parameters does " "not support this Conv problem"}; if(err.what() != err_msg) { return false; } return true; } std::cout << "Error: Failure checking oversized tensor!" << std::endl; return false; } template bool TestConv3DNDHWCInstances(const std::vector& conv_ptrs) { ck::conv_util::ConvParams params; params.N = 64; params.num_dim_spatial = 3; params.filter_spatial_lengths = std::vector{3, 3, 2}; params.input_spatial_lengths = std::vector{32, 32, 2}; params.conv_filter_strides = std::vector{2, 2, 2}; params.conv_filter_dilations = std::vector{1, 1, 1}; params.input_left_pads = std::vector{1, 1, 1}; params.input_right_pads = std::vector{1, 1, 1}; auto host_tensors = test::conv::GetHostTensors(params); const Tensor& input = std::get<0>(host_tensors); const Tensor& weights = std::get<1>(host_tensors); Tensor& host_output = std::get<2>(host_tensors); Tensor& device_output = std::get<3>(host_tensors); test::conv::RunReferenceConv<3>(params, input, weights, host_output); return test::conv::RunConvInstances<3>( params, conv_ptrs, input, weights, device_output, host_output); } bool TestConv3DNDHWCBF16Instances() { std::vector conv_ptrs; ck::tensor_operation::device::device_conv3d_fwd_instance:: add_device_conv3d_fwd_xdl_ndhwc_kzyxc_ndhwk_bf16_instances(conv_ptrs); return TestConv3DNDHWCInstances(conv_ptrs); } bool TestConv3DNDHWCF16Instances() { std::vector conv_ptrs; ck::tensor_operation::device::device_conv3d_fwd_instance:: add_device_conv3d_fwd_xdl_ndhwc_kzyxc_ndhwk_f16_instances(conv_ptrs); return TestConv3DNDHWCInstances(conv_ptrs); } bool TestConv3DNDHWCF32Instances() { std::vector conv_ptrs; ck::tensor_operation::device::device_conv3d_fwd_instance:: add_device_conv3d_fwd_xdl_ndhwc_kzyxc_ndhwk_f32_instances(conv_ptrs); return TestConv3DNDHWCInstances(conv_ptrs); } bool TestConv3DNDHWCInt8Instances() { std::vector conv_ptrs; ck::tensor_operation::device::device_conv3d_fwd_instance:: add_device_conv3d_fwd_xdl_ndhwc_kzyxc_ndhwk_int8_instances(conv_ptrs); return TestConv3DNDHWCInstances(conv_ptrs); } } // anonymous namespace int main() { bool res{true}; res = TestConv3DNDHWC(); std::cout << "TestConv3DNDHWC ..... " << (res ? "SUCCESS" : "FAILURE") << std::endl; res = TestConv3DNDHWC2GBInput(); std::cout << "\nTestConv3DNDHWC2GBInput ..... " << (res ? "SUCCESS" : "FAILURE") << std::endl; res = TestConv3DNDHWC2GBFilters(); std::cout << "\nTestConv3DNDHWC2GBFilters ..... " << (res ? "SUCCESS" : "FAILURE") << std::endl; res = TestConv3DNDHWC2GBOutput(); std::cout << "\nTestConv3DNDHWC2GBOutput ..... " << (res ? "SUCCESS" : "FAILURE") << std::endl; res = TestConv3DNDHWCBF16Instances(); std::cout << "\nTestConv3DNDHWCBF16Instances ..... " << (res ? "SUCCESS" : "FAILURE") << std::endl; res = TestConv3DNDHWCF16Instances(); std::cout << "\nTestConv3DNDHWCF16Instances ..... " << (res ? "SUCCESS" : "FAILURE") << std::endl; res = TestConv3DNDHWCF32Instances(); std::cout << "\nTestConv3DNDHWCF32Instances ..... " << (res ? "SUCCESS" : "FAILURE") << std::endl; res = TestConv3DNDHWCInt8Instances(); std::cout << "\nTestConv3DNDHWCInt8Instances ..... " << (res ? "SUCCESS" : "FAILURE") << std::endl; return 0; }