#pragma once #include "threadwise_gemm.hip.hpp" template struct Blockwise1dStridedBatchedGemmBlockABlockBThreadC { unsigned mMyThreadOffsetA = 0; unsigned mMyThreadOffsetB = 0; struct MatrixIndex { unsigned batch; unsigned row; unsigned col; }; __device__ Blockwise1dStridedBatchedGemmBlockABlockBThreadC() { constexpr auto a_block_mtx = BlockMatrixA{}; constexpr auto b_block_mtx = BlockMatrixB{}; const auto c_thread_mtx_index = GetBeginOfThreadMatrixC(get_thread_local_1d_id()); mMyThreadOffsetA = c_thread_mtx_index.batch * BlockMatrixStrideA + ((!TransA) ? a_block_mtx.Get1dIndex(c_thread_mtx_index.row, 0) : a_block_mtx.Get1dIndex(0, c_thread_mtx_index.row)); mMyThreadOffsetB = c_thread_mtx_index.batch * BlockMatrixStrideB + ((!TransB) ? b_block_mtx.Get1dIndex(0, c_thread_mtx_index.col) : b_block_mtx.Get1dIndex(c_thread_mtx_index.col, 0)); #if 0 if(get_thread_local_1d_id() == 0 && get_block_1d_id() == 0) { print_ConstantMatrixDescriptor(BlockMatrixA{}, "a_block_mtx: "); print_ConstantMatrixDescriptor(BlockMatrixB{}, "b_block_mtx: "); print_ConstantMatrixDescriptor(ThreadMatrixC{}, "c_thread_mtx: "); printf("%u %u, %u %u %u, %u %u\n", get_block_1d_id(), get_thread_local_1d_id(), c_thread_mtx_index.batch, c_thread_mtx_index.row, c_thread_mtx_index.col, mMyThreadOffsetA, mMyThreadOffsetB); } #endif } __device__ MatrixIndex GetBeginOfThreadMatrixC(unsigned thread_id) const { if(TransA && (!TransB) && (!TransC)) { constexpr auto a_block_mtx = BlockMatrixA{}; constexpr auto b_block_mtx = BlockMatrixB{}; static_assert(a_block_mtx.NRow() == b_block_mtx.NRow(), "wrong! k dimension not consistent!"); constexpr unsigned MPerBlock = a_block_mtx.NCol(); constexpr unsigned NPerBlock = b_block_mtx.NCol(); constexpr auto c_thread_mtx = ThreadMatrixC{}; // divide thread work constexpr unsigned MPerThread = c_thread_mtx.NRow(); constexpr unsigned NPerThread = c_thread_mtx.NCol(); static_assert(BatchSize % BatchPerThread == 0, "BatchSize % BatchPerThread != 0"); static_assert(MPerBlock % MPerThread == 0, "MPerBlock % MPerThread != 0"); static_assert(NPerBlock % NPerThread == 0, "NPerBlock % NPerThread != 0"); constexpr unsigned BatchThreadWork = (BatchSize + BatchPerThread - 1) / BatchPerThread; constexpr unsigned MThreadWork = (MPerBlock + MPerThread - 1) / MPerThread; constexpr unsigned NThreadWork = (NPerBlock + NPerThread - 1) / NPerThread; static_assert(BlockSize == BatchThreadWork * MThreadWork * NThreadWork, "wrong! wrong BlockSize"); if(DistributeThreadAlongColumnFirst) { // num of operations can be reduced const unsigned b_work_id = thread_id / (MThreadWork * NThreadWork); unsigned itmp = thread_id - b_work_id * (MThreadWork * NThreadWork); const unsigned m_work_id = itmp / NThreadWork; const unsigned n_work_id = itmp - m_work_id * NThreadWork; return MatrixIndex{ b_work_id * BatchPerThread, m_work_id * MPerThread, n_work_id * NPerThread}; } else { // not implemented assert(false); } } else { // not implemented assert(false); } } // this should be optimized away if input is known __device__ static MatrixIndex GetDistanceFromBeginOfThreadMatrixC(unsigned batch_in_c, unsigned m_in_c, unsigned n_in_c) { return MatrixIndex{batch_in_c, m_in_c, n_in_c}; } template __device__ void Run(const FloatA* __restrict__ p_a_block, const FloatB* __restrict__ p_b_block, FloatC* __restrict__ p_c_thread, Accumulator f_accum) const { if(TransA && (!TransB) && (!TransC)) { constexpr auto True = integral_constant{}; constexpr auto False = integral_constant{}; constexpr auto a_block_mtx = BlockMatrixA{}; constexpr auto b_block_mtx = BlockMatrixB{}; constexpr auto c_thread_mtx = ThreadMatrixC{}; constexpr unsigned KPerBlock = a_block_mtx.NRow(); // A is transposed constexpr unsigned MPerThread = c_thread_mtx.NRow(); constexpr unsigned NPerThread = c_thread_mtx.NCol(); // a is transposed, b is not constexpr auto a_thread_mtx = make_ConstantMatrixDescriptor(Number{}, Number{}); constexpr auto b_thread_mtx = make_ConstantMatrixDescriptor(Number{}, Number{}); FloatA p_a_thread[a_thread_mtx.GetElementSpace()]; FloatB p_b_thread[b_thread_mtx.GetElementSpace()]; // loop over k for(unsigned k_begin = 0; k_begin < KPerBlock; k_begin += KPerThreadLoop) { // read first batch of a, b threadwise_matrix_copy(a_block_mtx, p_a_block + mMyThreadOffsetA + k_begin * a_block_mtx.RowStride(), a_thread_mtx, p_a_thread, a_thread_mtx.GetLengths()); threadwise_matrix_copy(b_block_mtx, p_b_block + mMyThreadOffsetB + k_begin * b_block_mtx.RowStride(), b_thread_mtx, p_b_thread, b_thread_mtx.GetLengths()); // loop over batch for(unsigned ib = 0; ib + 1 < BatchPerThread; ++ib) { // do current batch of gemm threadwise_gemm(a_thread_mtx, True, p_a_thread, b_thread_mtx, False, p_b_thread, c_thread_mtx, False, p_c_thread + ib * ThreadMatrixStrideC, f_accum); // read next batch of a, b if(BlockMatrixStrideA != 0) { threadwise_matrix_copy(a_block_mtx, p_a_block + mMyThreadOffsetA + (ib + 1) * BlockMatrixStrideA + +k_begin * a_block_mtx.RowStride(), a_thread_mtx, p_a_thread, a_thread_mtx.GetLengths()); } if(BlockMatrixStrideB != 0) { threadwise_matrix_copy(b_block_mtx, p_b_block + mMyThreadOffsetB + (ib + 1) * BlockMatrixStrideB + k_begin * b_block_mtx.RowStride(), b_thread_mtx, p_b_thread, b_thread_mtx.GetLengths()); } } // do last batch of gemm threadwise_gemm(a_thread_mtx, True, p_a_thread, b_thread_mtx, False, p_b_thread, c_thread_mtx, False, p_c_thread + (BatchPerThread - 1) * ThreadMatrixStrideC, f_accum); } } } }; template struct BlockwiseBatchGemmBlockABlockBThreadCTransANormalBNormalC_V2 { unsigned mMyThreadOffsetA = 0; unsigned mMyThreadOffsetB = 0; struct MatrixIndex { unsigned batch; unsigned row; unsigned col; }; __device__ BlockwiseBatchGemmBlockABlockBThreadCTransANormalBNormalC_V2() { static_assert(BatchSize % BatchPerThread == 0, "wrong! BatchSize is not dividable by BatchPerThread"); constexpr unsigned BatchThreadWork = BatchSize / BatchPerThread; constexpr unsigned ThreadPerLevel1Cluster = MLevel0Cluster * NLevel0Cluster * MLevel1Cluster * NLevel1Cluster; static_assert(BlockSize == BatchThreadWork * ThreadPerLevel1Cluster, "wrong! wrong blocksize\n"); constexpr auto a_block_mtx = BlockMatrixA{}; constexpr auto b_block_mtx = BlockMatrixB{}; constexpr auto c_thread_mtx = ThreadMatrixC{}; static_assert(a_block_mtx.NRow() == b_block_mtx.NRow(), "wrong! K dimension not consistent\n"); constexpr unsigned M = a_block_mtx.NCol(); // A is transposed constexpr unsigned N = b_block_mtx.NCol(); constexpr unsigned K = a_block_mtx.NRow(); constexpr unsigned MPerThread = c_thread_mtx.NRow(); constexpr unsigned NPerThread = c_thread_mtx.NCol(); static_assert((MPerThread % MPerThreadSubC == 0) && (NPerThread % NPerThreadSubC == 0), "wrong! Cannot evenly divide thread work among repeat \n"); constexpr unsigned MRepeat = MPerThread / MPerThreadSubC; constexpr unsigned NRepeat = NPerThread / NPerThreadSubC; static_assert((M % MRepeat == 0) && (N % NRepeat == 0), "wrong! Cannot evenly divide work among repeat\n"); constexpr unsigned MPerLevel1Cluster = M / MRepeat; constexpr unsigned NPerLevel1Cluster = N / NRepeat; static_assert((MPerLevel1Cluster % MLevel1Cluster == 0) && (NPerLevel1Cluster % NLevel1Cluster == 0), "wrong! Cannot evenly divide work among Level1Cluster\n"); constexpr unsigned MPerLevel0Cluster = MPerLevel1Cluster / MLevel1Cluster; constexpr unsigned NPerLevel0Cluster = NPerLevel1Cluster / NLevel1Cluster; static_assert((MPerLevel0Cluster % MLevel0Cluster == 0) && (NPerLevel0Cluster % NLevel0Cluster == 0), "wrong! Cannot evenly divide work among Level0Cluster\n"); static_assert((MPerThreadSubC == MPerLevel0Cluster / MLevel0Cluster) && (NPerThreadSubC == NPerLevel0Cluster / NLevel0Cluster), "wrong! thread work size is wrong\n"); const auto c_thread_mtx_index = GetBeginOfThreadMatrixC(get_thread_local_1d_id()); mMyThreadOffsetA = c_thread_mtx_index.batch * BlockMatrixStrideA + a_block_mtx.Get1dIndex(0, c_thread_mtx_index.row); mMyThreadOffsetB = c_thread_mtx_index.batch * BlockMatrixStrideB + b_block_mtx.Get1dIndex(0, c_thread_mtx_index.col); #if 0 if(get_thread_local_1d_id() == 0 && get_block_1d_id() == 0) { print_ConstantMatrixDescriptor(BlockMatrixA{}, "a_block_mtx: "); print_ConstantMatrixDescriptor(BlockMatrixB{}, "b_block_mtx: "); print_ConstantMatrixDescriptor(ThreadMatrixC{}, "c_thread_mtx: "); printf("%u %u, %u %u %u, %u %u\n", get_block_1d_id(), get_thread_local_1d_id(), c_thread_mtx_index.batch, c_thread_mtx_index.row, c_thread_mtx_index.col, mMyThreadOffsetA, mMyThreadOffsetB); } #endif } __device__ MatrixIndex GetBeginOfThreadMatrixC(unsigned thread_id) const { constexpr unsigned BatchThreadWork = BatchSize / BatchPerThread; constexpr unsigned ThreadPerLevel1Cluster = MLevel0Cluster * NLevel0Cluster * MLevel1Cluster * NLevel1Cluster; constexpr unsigned ThreadPerLevel0Cluster = MLevel0Cluster * NLevel0Cluster; unsigned batch_work_id = thread_id / ThreadPerLevel1Cluster; unsigned cluster_id = thread_id - batch_work_id * ThreadPerLevel1Cluster; unsigned level1_id = cluster_id / ThreadPerLevel0Cluster; unsigned level1_m_id = level1_id / NLevel1Cluster; unsigned level1_n_id = level1_id % NLevel1Cluster; unsigned level0_id = cluster_id % ThreadPerLevel0Cluster; unsigned level0_m_id = level0_id / NLevel0Cluster; unsigned level0_n_id = level0_id % NLevel0Cluster; constexpr unsigned MPerLevel0Cluster = MPerThreadSubC * MLevel0Cluster; constexpr unsigned NPerLevel0Cluster = NPerThreadSubC * NLevel0Cluster; return MatrixIndex{batch_work_id * BatchPerThread, level1_m_id * MPerLevel0Cluster + level0_m_id * MPerThreadSubC, level1_n_id * NPerLevel0Cluster + level0_n_id * NPerThreadSubC}; } // this should be optimized away if input is known __device__ static MatrixIndex GetDistanceFromBeginOfThreadMatrixC(unsigned batch_in_c, unsigned m_in_c, unsigned n_in_c) { constexpr auto c_thread_mtx = ThreadMatrixC{}; constexpr unsigned MPerThread = c_thread_mtx.NRow(); constexpr unsigned NPerThread = c_thread_mtx.NCol(); constexpr unsigned MRepeat = MPerThread / MPerThreadSubC; constexpr unsigned NRepeat = NPerThread / NPerThreadSubC; constexpr unsigned MPerLevel1Cluster = MPerThreadSubC * MLevel0Cluster * MLevel1Cluster; constexpr unsigned NPerLevel1Cluster = NPerThreadSubC * NLevel0Cluster * NLevel1Cluster; unsigned m_repeat = m_in_c / MPerThreadSubC; unsigned n_repeat = n_in_c / NPerThreadSubC; unsigned m_in_sub_c = m_in_c % MPerThreadSubC; unsigned n_in_sub_c = n_in_c % NPerThreadSubC; return MatrixIndex{batch_in_c, m_repeat * MPerLevel1Cluster + m_in_sub_c, n_repeat * NPerLevel1Cluster + n_in_sub_c}; } template __device__ void Run(const FloatA* __restrict__ p_a_block, const FloatB* __restrict__ p_b_block, FloatC* __restrict__ p_c_thread, Accumulator f_accum) const { constexpr auto True = integral_constant{}; constexpr auto False = integral_constant{}; constexpr auto a_block_mtx = BlockMatrixA{}; constexpr auto b_block_mtx = BlockMatrixB{}; constexpr auto c_thread_mtx = ThreadMatrixC{}; constexpr unsigned KPerBlock = a_block_mtx.NRow(); // A is transposed constexpr unsigned MPerThread = c_thread_mtx.NRow(); constexpr unsigned NPerThread = c_thread_mtx.NCol(); // thread A, B for GEMM // A is transposed, b is not constexpr auto a_thread_mtx = make_ConstantMatrixDescriptor(Number{}, Number{}); constexpr auto b_thread_mtx = make_ConstantMatrixDescriptor(Number{}, Number{}); // thread A-sub, B-sub for copy constexpr auto a_thread_sub_mtx = make_ConstantMatrixDescriptor( Number{}, Number{}, Number{}); constexpr auto b_thread_sub_mtx = make_ConstantMatrixDescriptor( Number{}, Number{}, Number{}); FloatA p_a_thread[a_thread_mtx.GetElementSpace()]; FloatB p_b_thread[b_thread_mtx.GetElementSpace()]; constexpr unsigned MPerLevel1Cluster = MPerThreadSubC * MLevel0Cluster * MLevel1Cluster; constexpr unsigned NPerLevel1Cluster = NPerThreadSubC * NLevel0Cluster * NLevel1Cluster; constexpr unsigned MRepeat = MPerThread / MPerThreadSubC; constexpr unsigned NRepeat = NPerThread / NPerThreadSubC; // loop over k #pragma unroll for(unsigned k_begin = 0; k_begin < KPerBlock; k_begin += KPerThreadLoop) { // read first batch of A, B // copy A-sub to form A #pragma unroll for(unsigned m_repeat = 0; m_repeat < MRepeat; ++m_repeat) { threadwise_matrix_copy( a_block_mtx, p_a_block + a_block_mtx.Get1dIndex(k_begin, m_repeat * MPerLevel1Cluster) + mMyThreadOffsetA, a_thread_mtx, p_a_thread + a_thread_mtx.Get1dIndex(0, m_repeat * MPerThreadSubC), a_thread_sub_mtx.GetLengths()); } // copy B-sub to form B #pragma unroll for(unsigned n_repeat = 0; n_repeat < NRepeat; ++n_repeat) { threadwise_matrix_copy( b_block_mtx, p_b_block + b_block_mtx.Get1dIndex(k_begin, n_repeat * NPerLevel1Cluster) + mMyThreadOffsetB, b_thread_mtx, p_b_thread + b_thread_mtx.Get1dIndex(0, n_repeat * NPerThreadSubC), b_thread_sub_mtx.GetLengths()); } // loop over batch #pragma unroll for(unsigned ib = 0; ib + 1 < BatchPerThread; ++ib) { // do current batch of gemm threadwise_gemm(a_thread_mtx, True, p_a_thread, b_thread_mtx, False, p_b_thread, c_thread_mtx, False, p_c_thread + ib * ThreadMatrixStrideC, f_accum); // read next batch of a, b if(BlockMatrixStrideA != 0) { #pragma unroll for(unsigned m_repeat = 0; m_repeat < MRepeat; ++m_repeat) { threadwise_matrix_copy( a_block_mtx, p_a_block + a_block_mtx.Get1dIndex(k_begin, m_repeat * MPerLevel1Cluster) + (ib + 1) * BlockMatrixStrideA + mMyThreadOffsetA, a_thread_mtx, p_a_thread + a_thread_mtx.Get1dIndex(0, m_repeat * MPerThreadSubC), a_thread_sub_mtx.GetLengths()); } } if(BlockMatrixStrideB != 0) { #pragma unroll for(unsigned n_repeat = 0; n_repeat < NRepeat; ++n_repeat) { threadwise_matrix_copy( b_block_mtx, p_b_block + b_block_mtx.Get1dIndex(k_begin, n_repeat * NPerLevel1Cluster) + (ib + 1) * BlockMatrixStrideB + mMyThreadOffsetB, b_thread_mtx, p_b_thread + b_thread_mtx.Get1dIndex(0, n_repeat * NPerThreadSubC), b_thread_sub_mtx.GetLengths()); } } } // do last batch of gemm threadwise_gemm(a_thread_mtx, True, p_a_thread, b_thread_mtx, False, p_b_thread, c_thread_mtx, False, p_c_thread + (BatchPerThread - 1) * ThreadMatrixStrideC, f_accum); } } template __device__ void Run_v3(const FloatA* __restrict__ p_a_block, const FloatB* __restrict__ p_b_block, FloatC* __restrict__ p_c_thread, Accumulator f_accum) const { constexpr auto True = integral_constant{}; constexpr auto False = integral_constant{}; constexpr auto a_block_mtx = BlockMatrixA{}; constexpr auto b_block_mtx = BlockMatrixB{}; constexpr auto c_thread_mtx = ThreadMatrixC{}; constexpr unsigned KPerBlock = a_block_mtx.NRow(); // A is transposed constexpr unsigned MPerThread = c_thread_mtx.NRow(); constexpr unsigned NPerThread = c_thread_mtx.NCol(); // thread A, B for GEMM // A is transposed, b is not constexpr auto a_thread_mtx = make_ConstantMatrixDescriptor(Number{}, Number{}); constexpr auto b_thread_mtx = make_ConstantMatrixDescriptor(Number{}, Number{}); // thread A-sub, B-sub for copy constexpr auto a_thread_sub_mtx = make_ConstantMatrixDescriptor( Number{}, Number{}, Number{}); constexpr auto b_thread_sub_mtx = make_ConstantMatrixDescriptor( Number{}, Number{}, Number{}); FloatA p_a_thread[a_thread_mtx.GetElementSpace()]; FloatB p_b_thread[b_thread_mtx.GetElementSpace()]; constexpr unsigned MPerLevel1Cluster = MPerThreadSubC * MLevel0Cluster * MLevel1Cluster; constexpr unsigned NPerLevel1Cluster = NPerThreadSubC * NLevel0Cluster * NLevel1Cluster; constexpr unsigned MRepeat = MPerThread / MPerThreadSubC; constexpr unsigned NRepeat = NPerThread / NPerThreadSubC; // loop over k //#pragma unroll for(unsigned k_begin = 0; k_begin < KPerBlock; k_begin += KPerThreadLoop) { // read first batch of A, B // copy A-sub to form A //#pragma unroll for(unsigned m_repeat = 0; m_repeat < MRepeat; ++m_repeat) { for(unsigned i = 0; i < a_thread_sub_mtx.NRow(); ++i) { #if 1 for(unsigned j = 0; j < a_thread_sub_mtx.NCol(); ++j) { p_a_thread[a_thread_mtx.Get1dIndex(i, m_repeat * MPerThreadSubC + j)] = p_a_block[a_block_mtx.Get1dIndex(k_begin + i, m_repeat * MPerLevel1Cluster + j) + mMyThreadOffsetA]; } #else static_assert(a_thread_sub_mtx.NCol() == 4, "asm only read 4xfp32"); #endif } } // copy B-sub to form B //#pragma unroll for(unsigned n_repeat = 0; n_repeat < NRepeat; ++n_repeat) { for(unsigned i = 0; i < b_thread_sub_mtx.NRow(); ++i) { for(unsigned j = 0; j < b_thread_sub_mtx.NCol(); ++j) { p_b_thread[b_thread_mtx.Get1dIndex(i, n_repeat * NPerThreadSubC + j)] = p_b_block[b_block_mtx.Get1dIndex(k_begin + i, n_repeat * MPerLevel1Cluster + j) + mMyThreadOffsetB]; } } } // loop over batch //#pragma unroll for(unsigned ib = 0; ib + 1 < BatchPerThread; ++ib) { // do current batch of gemm for(unsigned k = 0; k < a_thread_mtx.NRow(); ++k) { #if 0 for(unsigned i = 0; i < c_thread_mtx.NRow(); ++i) { for(unsigned j = 0; j < c_thread_mtx.NCol(); ++j) { const unsigned aindex = a_thread_mtx.Get1dIndex(k, i); // A is transposed const unsigned bindex = b_thread_mtx.Get1dIndex(k, j); const unsigned cindex = c_thread_mtx.Get1dIndex(i, j) + ib * ThreadMatrixStrideC; f_accum(p_c_thread[cindex], p_a_thread[aindex] * p_b_thread[bindex]); } } #elif 1 static_assert(c_thread_mtx.NRow() == 16 && c_thread_mtx.NCol() == 4, "asm is only for 16x4"); const unsigned bindex = b_thread_mtx.Get1dIndex(k, 0); for(unsigned i = 0; i < c_thread_mtx.NRow(); ++i) { const unsigned aindex = a_thread_mtx.Get1dIndex(k, i); // A is transposed const unsigned cindex = c_thread_mtx.Get1dIndex(i, 0); asm volatile("\n \ v_mac_f32 %0, %4, %5 \n \ v_mac_f32 %1, %4, %6 \n \ v_mac_f32 %2, %4, %7 \n \ v_mac_f32 %3, %4, %8 \n \ " : "=v"(p_c_thread[cindex + 0]), "=v"(p_c_thread[cindex + 1]), "=v"(p_c_thread[cindex + 2]), "=v"(p_c_thread[cindex + 3]) : "v"(p_a_thread[aindex]), "v"(p_b_thread[bindex + 0]), "v"(p_b_thread[bindex + 1]), "v"(p_b_thread[bindex + 2]), "v"(p_b_thread[bindex + 3]), "0"(p_c_thread[cindex + 0]), "1"(p_c_thread[cindex + 1]), "2"(p_c_thread[cindex + 2]), "3"(p_c_thread[cindex + 3])); } #endif } // read next batch of a, b if(BlockMatrixStrideA != 0) { //#pragma unroll for(unsigned m_repeat = 0; m_repeat < MRepeat; ++m_repeat) { for(unsigned i = 0; i < a_thread_sub_mtx.NRow(); ++i) { for(unsigned j = 0; j < a_thread_sub_mtx.NCol(); ++j) { p_a_thread[a_thread_mtx.Get1dIndex(i, m_repeat * MPerThreadSubC + j)] = p_a_block[a_block_mtx.Get1dIndex( k_begin + i, m_repeat * MPerLevel1Cluster + j) + (ib + 1) * BlockMatrixStrideA + mMyThreadOffsetA]; } } } } if(BlockMatrixStrideB != 0) { //#pragma unroll for(unsigned n_repeat = 0; n_repeat < NRepeat; ++n_repeat) { for(unsigned i = 0; i < b_thread_sub_mtx.NRow(); ++i) { for(unsigned j = 0; j < b_thread_sub_mtx.NCol(); ++j) { p_b_thread[b_thread_mtx.Get1dIndex(i, n_repeat * NPerThreadSubC + j)] = p_b_block[b_block_mtx.Get1dIndex( k_begin + i, n_repeat * MPerLevel1Cluster + j) + (ib + 1) * BlockMatrixStrideB + mMyThreadOffsetB]; } } } } } // do last batch of gemm for(unsigned k = 0; k < a_thread_mtx.NRow(); ++k) { #if 0 for(unsigned i = 0; i < c_thread_mtx.NRow(); ++i) { for(unsigned j = 0; j < c_thread_mtx.NCol(); ++j) { const unsigned aindex = a_thread_mtx.Get1dIndex(k, i); // A is transposed const unsigned bindex = b_thread_mtx.Get1dIndex(k, j); const unsigned cindex = c_thread_mtx.Get1dIndex(i, j) + (BatchPerThread - 1) * ThreadMatrixStrideC; f_accum(p_c_thread[cindex], p_a_thread[aindex] * p_b_thread[bindex]); } } #elif 1 static_assert(c_thread_mtx.NRow() == 16 && c_thread_mtx.NCol() == 4, "asm is only for 16x4"); const unsigned bindex = b_thread_mtx.Get1dIndex(k, 0); for(unsigned i = 0; i < c_thread_mtx.NRow(); ++i) { const unsigned aindex = a_thread_mtx.Get1dIndex(k, i); // A is transposed const unsigned cindex = c_thread_mtx.Get1dIndex(i, 0) + (BatchPerThread - 1) * ThreadMatrixStrideC; asm volatile("\n \ v_mac_f32 %0, %4, %5 \n \ v_mac_f32 %1, %4, %6 \n \ v_mac_f32 %2, %4, %7 \n \ v_mac_f32 %3, %4, %8 \n \ " : "=v"(p_c_thread[cindex + 0]), "=v"(p_c_thread[cindex + 1]), "=v"(p_c_thread[cindex + 2]), "=v"(p_c_thread[cindex + 3]) : "v"(p_a_thread[aindex]), "v"(p_b_thread[bindex + 0]), "v"(p_b_thread[bindex + 1]), "v"(p_b_thread[bindex + 2]), "v"(p_b_thread[bindex + 3]), "0"(p_c_thread[cindex + 0]), "1"(p_c_thread[cindex + 1]), "2"(p_c_thread[cindex + 2]), "3"(p_c_thread[cindex + 3])); } #endif } } } template __device__ void CopyThreadMatrixCToBlockMatrixC(const FloatC* __restrict__ p_c_thread, FloatC* __restrict__ p_c_block) const { constexpr auto c_block_mtx = BlockMatrixC{}; constexpr auto c_thread_mtx = ThreadMatrixC{}; constexpr unsigned MPerThread = c_thread_mtx.NRow(); constexpr unsigned NPerThread = c_thread_mtx.NCol(); constexpr auto c_thread_sub_mtx = make_ConstantMatrixDescriptor( Number{}, Number{}, Number{}); constexpr unsigned MPerLevel1Cluster = MPerThreadSubC * MLevel0Cluster * MLevel1Cluster; constexpr unsigned NPerLevel1Cluster = NPerThreadSubC * NLevel0Cluster * NLevel1Cluster; constexpr unsigned MRepeat = MPerThread / MPerThreadSubC; constexpr unsigned NRepeat = NPerThread / NPerThreadSubC; const auto c_thread_mtx_begin = GetBeginOfThreadMatrixC(get_thread_local_1d_id()); const unsigned c_thread_offset = c_thread_mtx_begin.batch * BlockMatrixStrideC + c_block_mtx.Get1dIndex(c_thread_mtx_begin.row, c_thread_mtx_begin.col); for(unsigned m_repeat = 0; m_repeat < MRepeat; ++m_repeat) { for(unsigned n_repeat = 0; n_repeat < NRepeat; ++n_repeat) { threadwise_matrix_copy( c_thread_sub_mtx, p_c_thread + c_thread_sub_mtx.Get1dIndex(m_repeat * MPerLevel1Cluster, n_repeat * NPerLevel1Cluster), c_block_mtx, p_c_block + c_block_mtx.Get1dIndex(m_repeat * MPerLevel1Cluster, n_repeat * NPerLevel1Cluster) + c_thread_offset, c_thread_sub_mtx.GetLengths()); } } } };