// SPDX-License-Identifier: MIT // Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. #include #include #include #include #include #include #include #include "ck/ck.hpp" #include "ck/library/tensor_operation_instance/gpu/convolution_backward_data.hpp" #include "ck/tensor_operation/gpu/device/device_conv_bwd_data.hpp" #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" using PassThrough = ck::tensor_operation::element_wise::PassThrough; struct SimpleDeviceMem { SimpleDeviceMem() = delete; SimpleDeviceMem(std::size_t mem_size) : p_mem_{} { (void)hipMalloc(static_cast(&p_mem_), mem_size); } void* GetDeviceBuffer() { return p_mem_; } ~SimpleDeviceMem() { (void)hipFree(p_mem_); } void* p_mem_; }; std::size_t GetFlops(ck::index_t N, ck::index_t K, ck::index_t C, const std::vector& output_spatial_lengths, const std::vector& weights_spatial_lengths) { // 2 * N * K * C * * return static_cast(2) * N * K * C * std::accumulate(std::begin(output_spatial_lengths), std::end(output_spatial_lengths), static_cast(1), std::multiplies<>()) * std::accumulate(std::begin(weights_spatial_lengths), std::end(weights_spatial_lengths), static_cast(1), std::multiplies<>()); } template std::size_t GetInputByte(ck::index_t N, ck::index_t C, const std::vector& input_spatial_lengths) { // sizeof(InDataType) * (N * C * ) + return sizeof(InDataType) * N * C * std::accumulate(std::begin(input_spatial_lengths), std::end(input_spatial_lengths), static_cast(1), std::multiplies<>()); } template std::size_t GetWeightByte(ck::index_t K, ck::index_t C, const std::vector& weights_spatial_lengths) { // sizeof(WeiDataType) * (K * C * ) + return sizeof(WeiDataType) * K * C * std::accumulate(std::begin(weights_spatial_lengths), std::end(weights_spatial_lengths), static_cast(1), std::multiplies<>()); } template std::size_t GetOutputByte(ck::index_t N, ck::index_t K, const std::vector& output_spatial_lengths) { // sizeof(OutDataType) * (N * K * ); return sizeof(OutDataType) * N * K * std::accumulate(std::begin(output_spatial_lengths), std::end(output_spatial_lengths), static_cast(1), std::multiplies()); } template bool run_conv_bwd_data(ck::index_t N, ck::index_t K, ck::index_t C, const std::vector& in_spatial_lengths, const std::vector& wei_spatial_lengths, const std::vector& out_spatial_lengths) { std::size_t in_mem_size = GetInputByte(N, C, in_spatial_lengths); std::size_t wei_mem_size = GetWeightByte(K, C, wei_spatial_lengths); std::size_t out_mem_size = GetOutputByte(N, K, out_spatial_lengths); SimpleDeviceMem in(in_mem_size); SimpleDeviceMem wei(wei_mem_size); SimpleDeviceMem out(out_mem_size); std::vector filter_strides(NumDimSpatial, 1); std::vector filter_dilations(NumDimSpatial, 1); std::vector input_left_pads(NumDimSpatial, 1); std::vector input_right_pads(NumDimSpatial, 1); using DeviceOp = ck::tensor_operation::device::DeviceConvBwdData; // get device op instances const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory< DeviceOp>::GetInstances(); std::cout << "found " << op_ptrs.size() << " instances" << std::endl; std::string best_op_name; int best_op_id = -1; float best_avg_time = std::numeric_limits::max(); float best_gb_per_sec = 0; float best_tflops = 0; std::size_t flop = GetFlops(N, K, C, out_spatial_lengths, wei_spatial_lengths); std::size_t num_bytes = in_mem_size + wei_mem_size + out_mem_size; // profile device operation instances std::cout << "Run all instances and do timing" << std::endl; for(int i = 0; i < op_ptrs.size(); ++i) { auto& op_ptr = op_ptrs[i]; auto argument_ptr = op_ptr->MakeArgumentPointer(in.GetDeviceBuffer(), wei.GetDeviceBuffer(), out.GetDeviceBuffer(), N, K, C, in_spatial_lengths, wei_spatial_lengths, out_spatial_lengths, filter_strides, filter_dilations, input_left_pads, input_right_pads, PassThrough{}, PassThrough{}, PassThrough{}); auto invoker_ptr = op_ptr->MakeInvokerPointer(); std::string op_name = op_ptr->GetTypeString(); if(op_ptr->IsSupportedArgument(argument_ptr.get())) { float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true}); float tflops = static_cast(flop) / 1.E9 / avg_time; float gb_per_sec = num_bytes / 1.E6 / avg_time; std::cout << "Perf: " << std::setw(10) << avg_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, " << op_name << std::endl; if(tflops > best_tflops) { best_op_id = i; best_op_name = op_name; best_avg_time = avg_time; best_gb_per_sec = gb_per_sec; best_tflops = tflops; } } else { std::cerr << op_name << " does not support this problem" << std::endl; } } if(best_op_id < 0) { std::cerr << "no suitable instance" << std::endl; return false; } std::cout << "Best Perf: " << std::setw(10) << best_avg_time << " ms, " << best_tflops << " TFlops, " << best_gb_per_sec << " GB/s, " << best_op_name << std::endl; // run the best intance { auto& op_ptr = op_ptrs[best_op_id]; std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString() << std::endl; auto argument_ptr = op_ptr->MakeArgumentPointer(in.GetDeviceBuffer(), wei.GetDeviceBuffer(), out.GetDeviceBuffer(), N, K, C, in_spatial_lengths, wei_spatial_lengths, out_spatial_lengths, filter_strides, filter_dilations, input_left_pads, input_right_pads, PassThrough{}, PassThrough{}, PassThrough{}); auto invoker_ptr = op_ptr->MakeInvokerPointer(); if(op_ptr->IsSupportedArgument(argument_ptr.get())) { invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false}); } std::cout << "Done" << std::endl; } return true; }