// SPDX-License-Identifier: MIT // Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved. #include #include #include #include "ck/ck.hpp" #include "ck/tensor_operation/gpu/device/tensor_layout.hpp" #include "ck/tensor_operation/gpu/device/device_normalization.hpp" #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" #include "ck/library/tensor_operation_instance/gpu/layernorm.hpp" using XDataType = ck::half_t; using GammaDataType = ck::half_t; using BetaDataType = ck::half_t; using YDataType = ck::half_t; using AccDataType = float; using PassThrough = ck::tensor_operation::element_wise::PassThrough; constexpr int Rank = 2; constexpr int NumReduceDim = 1; struct SimpleDeviceMem { SimpleDeviceMem() = delete; SimpleDeviceMem(std::size_t mem_size) : p_mem_{} { (void)hipMalloc(static_cast(&p_mem_), mem_size); } void* GetDeviceBuffer() { return p_mem_; } ~SimpleDeviceMem() { (void)hipFree(p_mem_); } void* p_mem_; }; int main(int argc, char* argv[]) { ck::index_t M = 1024; ck::index_t N = 1024; ck::index_t Stride = 1024; auto xy_size = (M - 1) * Stride + N; SimpleDeviceMem x_device_buf(sizeof(XDataType) * xy_size); SimpleDeviceMem gamma_device_buf(sizeof(GammaDataType) * N); SimpleDeviceMem beta_device_buf(sizeof(BetaDataType) * N); SimpleDeviceMem y_device_buf(sizeof(YDataType) * xy_size); using DeviceOp = ck::tensor_operation::device::DeviceLayernorm; // get device op instances const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory< DeviceOp>::GetInstances(); std::cout << "found " << op_ptrs.size() << " instances" << std::endl; std::string best_op_name; bool found = false; int best_op_id = -1; float best_ave_time = std::numeric_limits::max(); float best_gb_per_sec = 0; // profile device operation instances std::cout << "Run all instances and do timing" << std::endl; for(int i = 0; i < op_ptrs.size(); ++i) { auto& op_ptr = op_ptrs[i]; auto argument_ptr = op_ptr->MakeArgumentPointer({M, N}, // lengths {Stride, 1}, // xStrides {0, 1}, // gammaStrides {0, 1}, // betaStrides {Stride, 1}, // yStrides {1}, // reduceDims 1e-4, x_device_buf.GetDeviceBuffer(), gamma_device_buf.GetDeviceBuffer(), beta_device_buf.GetDeviceBuffer(), y_device_buf.GetDeviceBuffer(), PassThrough{}); auto invoker_ptr = op_ptr->MakeInvokerPointer(); std::string op_name = op_ptr->GetTypeString(); if(op_ptr->IsSupportedArgument(argument_ptr.get())) { float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true}); std::size_t num_byte = sizeof(XDataType) * M * N + sizeof(GammaDataType) * N + sizeof(BetaDataType) * N + sizeof(YDataType) * M * N; float gb_per_sec = num_byte / 1.E6 / ave_time; std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << gb_per_sec << " GB/s, " << op_name << std::endl; if(ave_time < best_ave_time) { found = true; best_op_id = i; best_op_name = op_name; best_ave_time = ave_time; best_gb_per_sec = gb_per_sec; } } else { std::cout << op_name << " does not support this problem" << std::endl; } } std::cout << "Best Perf: " << best_ave_time << " ms, " << best_gb_per_sec << " GB/s, " << best_op_name << std::endl; // run the best intance { auto& op_ptr = op_ptrs[best_op_id]; std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString() << std::endl; auto argument_ptr = op_ptr->MakeArgumentPointer({M, N}, // lengths {Stride, 1}, // xStrides {1}, // gammaStrides {1}, // betaStrides {Stride, 1}, // yStrides {1}, // reduceDims 1e-4, x_device_buf.GetDeviceBuffer(), gamma_device_buf.GetDeviceBuffer(), beta_device_buf.GetDeviceBuffer(), y_device_buf.GetDeviceBuffer(), PassThrough{}); auto invoker_ptr = op_ptr->MakeInvokerPointer(); if(op_ptr->IsSupportedArgument(argument_ptr.get())) { invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false}); } std::cout << "Done" << std::endl; } return 0; }