// SPDX-License-Identifier: MIT // Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved. #include #include #include "ck/ck.hpp" #include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp" #include "ck/tensor_operation/gpu/device/impl/device_elementwise_impl.hpp" #include "ck/library/utility/algorithm.hpp" #include "ck/library/utility/check_err.hpp" #include "ck/library/utility/device_memory.hpp" #include "ck/library/utility/host_tensor.hpp" #include "ck/library/utility/host_tensor_generator.hpp" using F16 = ck::half_t; using F32 = float; using ABDataType = F16; using CDataType = F16; using Add = ck::tensor_operation::element_wise::Add; using DeviceElementwiseAddInstance = ck::tensor_operation::device::DeviceElementwiseImpl, ck::Tuple, Add, 4, 8, ck::Sequence<8, 8>, ck::Sequence<8>>; template void host_elementwise4D(HostTensorC& C, const HostTensorA& A, const HostTensorB& B, const std::vector& shape, Functor functor) { using ctype = ck::remove_reference_t; for(std::size_t n = 0; n < shape[0]; ++n) for(std::size_t c = 0; c < shape[1]; ++c) for(std::size_t h = 0; h < shape[2]; ++h) for(std::size_t w = 0; w < shape[3]; ++w) { auto a_val = A(n, c, h, w); auto b_val = B(n, c, h, w); ctype c_val = 0; functor(c_val, a_val, b_val); C(n, c, h, w) = c_val; } } int main() { bool do_verification = true; bool time_kernel = false; std::vector nchw = {4, 16, 32, 32}; Tensor a(nchw); Tensor b(nchw); Tensor c(nchw); a.GenerateTensorValue(GeneratorTensor_3{0.0, 1.0}); b.GenerateTensorValue(GeneratorTensor_3{0.0, 1.0}); DeviceMem a_device_buf(sizeof(ABDataType) * a.mDesc.GetElementSpaceSize()); DeviceMem b_device_buf(sizeof(ABDataType) * b.mDesc.GetElementSpaceSize()); DeviceMem c_device_buf(sizeof(CDataType) * c.mDesc.GetElementSpaceSize()); a_device_buf.ToDevice(a.mData.data()); b_device_buf.ToDevice(b.mData.data()); std::array input = {a_device_buf.GetDeviceBuffer(), b_device_buf.GetDeviceBuffer()}; std::array output = {c_device_buf.GetDeviceBuffer()}; std::array abc_lengths; std::array a_strides; std::array b_strides; std::array c_strides; ck::ranges::copy(nchw, abc_lengths.begin()); ck::ranges::copy(a.mDesc.GetStrides(), a_strides.begin()); ck::ranges::copy(b.mDesc.GetStrides(), b_strides.begin()); ck::ranges::copy(c.mDesc.GetStrides(), c_strides.begin()); auto broadcastAdd = DeviceElementwiseAddInstance{}; auto argument = broadcastAdd.MakeArgumentPointer( abc_lengths, {a_strides, b_strides}, {c_strides}, input, output, Add{}); if(!broadcastAdd.IsSupportedArgument(argument.get())) { throw std::runtime_error( "The runtime parameters seems not supported by the device instance, exiting!"); }; auto broadcastAdd_invoker_ptr = broadcastAdd.MakeInvokerPointer(); float ave_time = broadcastAdd_invoker_ptr->Run(argument.get(), StreamConfig{nullptr, time_kernel}); std::cout << "Perf: " << ave_time << " ms" << std::endl; bool pass = true; if(do_verification) { c_device_buf.FromDevice(c.mData.data()); Tensor host_c(nchw); host_elementwise4D, Tensor, Tensor, Add>( host_c, a, b, nchw, Add{}); pass &= ck::utils::check_err(c, host_c, "Error: Incorrect results c", 1e-3, 1e-3); } return pass ? 0 : 1; }