// SPDX-License-Identifier: MIT // Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved. #pragma once #include #include "ck/ck.hpp" #include "ck/tensor_operation/gpu/device/tensor_layout.hpp" #include "ck/tensor_operation/gpu/device/device_batched_gemm.hpp" #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" #include "ck/library/tensor_operation_instance/gpu/batched_gemm.hpp" #include "ck/library/utility/check_err.hpp" #include "ck/library/host_tensor/device_memory.hpp" #include "ck/library/host_tensor/host_tensor.hpp" #include "ck/library/host_tensor/host_tensor_generator.hpp" #include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp" namespace ck { namespace profiler { template bool profile_batched_gemm_impl(int do_verification, int init_method, bool do_log, bool time_kernel, int M, int N, int K, int BatchStrideA, int BatchStrideB, int BatchStrideC, int StrideA, int StrideB, int StrideC, int BatchCount) { bool pass = true; auto f_host_tensor_descriptor = [](std::size_t batch_count, std::size_t row, std::size_t col, std::size_t stride, std::size_t batch_stride, auto layout) { if(is_same::value) { return HostTensorDescriptor(std::vector({batch_count, row, col}), std::vector({batch_stride, stride, 1})); } else { return HostTensorDescriptor(std::vector({batch_count, row, col}), std::vector({batch_stride, 1, stride})); } }; Tensor a_g_m_k( f_host_tensor_descriptor(BatchCount, M, K, StrideA, BatchStrideA, ALayout{})); Tensor b_g_k_n( f_host_tensor_descriptor(BatchCount, K, N, StrideB, BatchStrideB, BLayout{})); Tensor c_g_m_n_host_result( f_host_tensor_descriptor(BatchCount, M, N, StrideC, BatchStrideC, CLayout{})); Tensor c_g_m_n_device_result( f_host_tensor_descriptor(BatchCount, M, N, StrideC, BatchStrideC, CLayout{})); std::cout << "a_g_m_k: " << a_g_m_k.mDesc << std::endl; std::cout << "b_g_k_n: " << b_g_k_n.mDesc << std::endl; std::cout << "c_g_m_n: " << c_g_m_n_host_result.mDesc << std::endl; switch(init_method) { case 0: break; case 1: a_g_m_k.GenerateTensorValue(GeneratorTensor_2{-5, 5}); b_g_k_n.GenerateTensorValue(GeneratorTensor_2{-5, 5}); break; default: a_g_m_k.GenerateTensorValue(GeneratorTensor_3{0.0, 1.0}); b_g_k_n.GenerateTensorValue(GeneratorTensor_3{-0.5, 0.5}); } using AElementOp = ck::tensor_operation::element_wise::PassThrough; using BElementOp = ck::tensor_operation::element_wise::PassThrough; using CElementOp = ck::tensor_operation::element_wise::PassThrough; const auto a_element_op = AElementOp{}; const auto b_element_op = BElementOp{}; const auto c_element_op = CElementOp{}; if(do_verification) { using ReferenceBatchedGemmInstance = ck::tensor_operation::host::ReferenceBatchedGemm; auto ref_batched_gemm = ReferenceBatchedGemmInstance{}; auto ref_invoker = ref_batched_gemm.MakeInvoker(); auto ref_argument = ref_batched_gemm.MakeArgument( a_g_m_k, b_g_k_n, c_g_m_n_host_result, a_element_op, b_element_op, c_element_op); ref_invoker.Run(ref_argument); } DeviceMem a_device_buf(sizeof(ADataType) * a_g_m_k.mDesc.GetElementSpace()); DeviceMem b_device_buf(sizeof(BDataType) * b_g_k_n.mDesc.GetElementSpace()); DeviceMem c_device_buf(sizeof(CDataType) * c_g_m_n_device_result.mDesc.GetElementSpace()); a_device_buf.ToDevice(a_g_m_k.mData.data()); b_device_buf.ToDevice(b_g_k_n.mData.data()); c_device_buf.ToDevice(c_g_m_n_device_result.mData.data()); using DeviceOp = ck::tensor_operation::device::DeviceBatchedGemm; // get device op instances const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory< DeviceOp>::GetInstances(); std::cout << "found " << op_ptrs.size() << " instances" << std::endl; std::string best_op_name; float best_ave_time = 0; float best_tflops = 0; float best_gb_per_sec = 0; // profile device op instances for(auto& op_ptr : op_ptrs) { auto argument_ptr = op_ptr->MakeArgumentPointer(static_cast(a_device_buf.GetDeviceBuffer()), static_cast(b_device_buf.GetDeviceBuffer()), static_cast(c_device_buf.GetDeviceBuffer()), M, N, K, StrideA, StrideB, StrideC, BatchStrideA, BatchStrideB, BatchStrideC, BatchCount, ck::tensor_operation::element_wise::PassThrough{}, ck::tensor_operation::element_wise::PassThrough{}, ck::tensor_operation::element_wise::PassThrough{}); auto invoker_ptr = op_ptr->MakeInvokerPointer(); if(op_ptr->IsSupportedArgument(argument_ptr.get())) { // re-init C to zero before profiling next kernel c_device_buf.SetZero(); std::string op_name = op_ptr->GetTypeString(); float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel}); std::size_t flop = std::size_t(2) * BatchCount * M * N * K; std::size_t num_btype = (sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(CDataType) * M * N) * BatchCount; float tflops = static_cast(flop) / 1.E9 / ave_time; float gb_per_sec = num_btype / 1.E6 / ave_time; std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, " << op_name << std::endl; if(tflops > best_tflops) { best_op_name = op_name; best_tflops = tflops; best_ave_time = ave_time; best_gb_per_sec = gb_per_sec; } if(do_verification) { c_device_buf.FromDevice(c_g_m_n_device_result.mData.data()); pass = pass & ck::utils::check_err(c_g_m_n_device_result.mData, c_g_m_n_host_result.mData); if(do_log) { LogRangeAsType(std::cout << "a : ", a_g_m_k.mData, ",") << std::endl; LogRangeAsType(std::cout << "b: ", b_g_k_n.mData, ",") << std::endl; LogRangeAsType(std::cout << "c_host: ", c_g_m_n_host_result.mData, ",") << std::endl; LogRangeAsType( std::cout << "c_device: ", c_g_m_n_device_result.mData, ",") << std::endl; } } } else { std::cout << op_ptr->GetTypeString() << " does not support this problem" << std::endl; } } std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, " << best_gb_per_sec << " GB/s, " << best_op_name << std::endl; return pass; } } // namespace profiler } // namespace ck