#pragma once #include "common.hip.hpp" #include "threadwise_gemm.hip.hpp" // if following number are power of 2, index calculation shall be greatly reduced: // MPerThreadSubC, NPerThreadSubC, MLevel0Cluster, NLevel0Cluster, MLevel1Cluster, NLevel1Cluster template struct BlockwiseGemmBlockABlockBThreadCTransANormalBNormalC_v2 { struct MatrixIndex { index_t row; index_t col; }; index_t mMyThreadOffsetA; index_t mMyThreadOffsetB; __device__ BlockwiseGemmBlockABlockBThreadCTransANormalBNormalC_v2() { constexpr index_t ThreadPerLevel1Cluster = MLevel0Cluster * NLevel0Cluster * MLevel1Cluster * NLevel1Cluster; static_assert(BlockSize == ThreadPerLevel1Cluster, "wrong! wrong blocksize\n"); constexpr auto a_block_mtx = BlockMatrixA{}; constexpr auto b_block_mtx = BlockMatrixB{}; constexpr auto c_thread_mtx = ThreadMatrixC{}; static_assert(a_block_mtx.NRow() == b_block_mtx.NRow(), "wrong! K dimension not consistent\n"); constexpr index_t M = a_block_mtx.NCol(); // A is transposed constexpr index_t N = b_block_mtx.NCol(); constexpr index_t K = a_block_mtx.NRow(); constexpr index_t MPerThread = c_thread_mtx.NRow(); constexpr index_t NPerThread = c_thread_mtx.NCol(); static_assert((MPerThread % MPerThreadSubC == 0) && (NPerThread % NPerThreadSubC == 0), "wrong! Cannot evenly divide thread work among repeat \n"); constexpr index_t MRepeat = MPerThread / MPerThreadSubC; constexpr index_t NRepeat = NPerThread / NPerThreadSubC; static_assert((M % MRepeat == 0) && (N % NRepeat == 0), "wrong! Cannot evenly divide work among repeat\n"); constexpr index_t MPerLevel1Cluster = M / MRepeat; constexpr index_t NPerLevel1Cluster = N / NRepeat; static_assert((MPerLevel1Cluster % MLevel1Cluster == 0) && (NPerLevel1Cluster % NLevel1Cluster == 0), "wrong! Cannot evenly divide work among Level1Cluster\n"); constexpr index_t MPerLevel0Cluster = MPerLevel1Cluster / MLevel1Cluster; constexpr index_t NPerLevel0Cluster = NPerLevel1Cluster / NLevel1Cluster; static_assert((MPerLevel0Cluster % MLevel0Cluster == 0) && (NPerLevel0Cluster % NLevel0Cluster == 0), "wrong! Cannot evenly divide work among Level0Cluster\n"); static_assert((MPerThreadSubC == MPerLevel0Cluster / MLevel0Cluster) && (NPerThreadSubC == NPerLevel0Cluster / NLevel0Cluster), "wrong! thread work size is wrong\n"); auto c_thread_mtx_index = GetBeginOfThreadMatrixC(get_thread_local_1d_id()); mMyThreadOffsetA = a_block_mtx.Get1dIndex(0, c_thread_mtx_index.row); mMyThreadOffsetB = b_block_mtx.Get1dIndex(0, c_thread_mtx_index.col); } __device__ static MatrixIndex GetBeginOfThreadMatrixC(index_t thread_id) { constexpr index_t ThreadPerLevel0Cluster = MLevel0Cluster * NLevel0Cluster; index_t level1_id = thread_id / ThreadPerLevel0Cluster; index_t level1_m_id = level1_id / NLevel1Cluster; index_t level1_n_id = level1_id % NLevel1Cluster; index_t level0_id = thread_id % ThreadPerLevel0Cluster; index_t level0_m_id = level0_id / NLevel0Cluster; index_t level0_n_id = level0_id % NLevel0Cluster; constexpr index_t MPerLevel0Cluster = MPerThreadSubC * MLevel0Cluster; constexpr index_t NPerLevel0Cluster = NPerThreadSubC * NLevel0Cluster; return MatrixIndex{level1_m_id * MPerLevel0Cluster + level0_m_id * MPerThreadSubC, level1_n_id * NPerLevel0Cluster + level0_n_id * NPerThreadSubC}; } // this should be optimized away if input is known __device__ static MatrixIndex GetDistanceFromBeginOfThreadMatrixC(index_t m_in_c, index_t n_in_c) { constexpr auto c_thread_mtx = ThreadMatrixC{}; constexpr index_t MPerThread = c_thread_mtx.NRow(); constexpr index_t NPerThread = c_thread_mtx.NCol(); constexpr index_t MRepeat = MPerThread / MPerThreadSubC; constexpr index_t NRepeat = NPerThread / NPerThreadSubC; constexpr index_t MPerLevel1Cluster = MPerThreadSubC * MLevel0Cluster * MLevel1Cluster; constexpr index_t NPerLevel1Cluster = NPerThreadSubC * NLevel0Cluster * NLevel1Cluster; index_t m_repeat = m_in_c / MPerThreadSubC; index_t n_repeat = n_in_c / NPerThreadSubC; index_t m_in_sub_c = m_in_c % MPerThreadSubC; index_t n_in_sub_c = n_in_c % NPerThreadSubC; return MatrixIndex{m_repeat * MPerLevel1Cluster + m_in_sub_c, n_repeat * NPerLevel1Cluster + n_in_sub_c}; } #if DEVICE_BACKEND_HIP // TODO: this is not working correctly template __device__ void Run_asm(const FloatA* __restrict__ p_a_block, const FloatB* __restrict__ p_b_block, FloatC* __restrict__ p_c_thread) const { constexpr auto True = integral_constant{}; constexpr auto False = integral_constant{}; constexpr auto a_block_mtx = BlockMatrixA{}; constexpr auto b_block_mtx = BlockMatrixB{}; constexpr auto c_thread_mtx = ThreadMatrixC{}; constexpr index_t M = a_block_mtx.NCol(); constexpr index_t N = b_block_mtx.NCol(); constexpr index_t K = a_block_mtx.NRow(); constexpr index_t MPerThread = c_thread_mtx.NRow(); constexpr index_t NPerThread = c_thread_mtx.NCol(); // thread A, B for GEMM constexpr auto a_thread_mtx = make_ConstantMatrixDescriptor(Number{}, Number{}); constexpr auto b_thread_mtx = make_ConstantMatrixDescriptor(Number{}, Number{}); // thread A-sub, B-sub for copy constexpr auto a_thread_sub_mtx = make_ConstantMatrixDescriptor( Number{}, Number{}, Number{}); constexpr auto b_thread_sub_mtx = make_ConstantMatrixDescriptor( Number{}, Number{}, Number{}); FloatA p_a_thread[a_thread_mtx.GetElementSpace()]; FloatB p_b_thread[b_thread_mtx.GetElementSpace()]; constexpr index_t MPerLevel1Cluster = MPerThreadSubC * MLevel0Cluster * MLevel1Cluster; constexpr index_t NPerLevel1Cluster = NPerThreadSubC * NLevel0Cluster * NLevel1Cluster; // assertion for inline asm static_assert(is_same::value && is_same::value && is_same::value, "Run_asm only deal with float\n"); static_assert(MPerThreadSubC == 4 && NPerThreadSubC == 4 && KPerThreadLoop == 1 && MPerThread == 8 && NPerThread == 8, "Run_asm cannot deal with this GEMM shape yet\n"); using Float4 = vector_type::MemoryType; Float4* reg_a = (Float4*)(p_a_thread); Float4* reg_b = (Float4*)(p_b_thread); Float4* reg_c = (Float4*)(p_c_thread); reg_a[0] = *reinterpret_cast(&p_a_block[mMyThreadOffsetA]); reg_b[0] = *reinterpret_cast(&p_b_block[mMyThreadOffsetB]); reg_b[1] = *reinterpret_cast(&p_b_block[mMyThreadOffsetB + NPerLevel1Cluster]); reg_a[1] = *reinterpret_cast(&p_a_block[mMyThreadOffsetA + MPerLevel1Cluster]); outerProduct4x4(reg_a[0], reg_b[0], reg_c[0], reg_c[2], reg_c[4], reg_c[6]); outerProduct4x4(reg_a[0], reg_b[1], reg_c[1], reg_c[3], reg_c[5], reg_c[7]); #pragma unroll for(index_t k = 1; k < K; ++k) { reg_a[0] = *reinterpret_cast(&p_a_block[mMyThreadOffsetA + k * M]); outerProduct4x4(reg_a[1], reg_b[0], reg_c[8], reg_c[10], reg_c[12], reg_c[14]); reg_b[0] = *reinterpret_cast(&p_b_block[mMyThreadOffsetB + k * N]); outerProduct4x4(reg_a[1], reg_b[1], reg_c[9], reg_c[11], reg_c[13], reg_c[15]); reg_b[1] = *reinterpret_cast( &p_b_block[mMyThreadOffsetB + k * N + NPerLevel1Cluster]); reg_a[1] = *reinterpret_cast( &p_a_block[mMyThreadOffsetA + k * M + MPerLevel1Cluster]); outerProduct4x4(reg_a[0], reg_b[0], reg_c[0], reg_c[2], reg_c[4], reg_c[6]); outerProduct4x4(reg_a[0], reg_b[1], reg_c[1], reg_c[3], reg_c[5], reg_c[7]); } outerProduct4x4(reg_a[1], reg_b[0], reg_c[8], reg_c[10], reg_c[12], reg_c[14]); outerProduct4x4(reg_a[1], reg_b[1], reg_c[9], reg_c[11], reg_c[13], reg_c[15]); } #endif template __device__ void Run(const FloatA* const __restrict__ p_a_block, const FloatB* const __restrict__ p_b_block, FloatC* const __restrict__ p_c_thread) const { constexpr auto True = integral_constant{}; constexpr auto False = integral_constant{}; constexpr auto a_block_mtx = BlockMatrixA{}; constexpr auto b_block_mtx = BlockMatrixB{}; constexpr auto c_thread_mtx = ThreadMatrixC{}; constexpr index_t M = a_block_mtx.NCol(); constexpr index_t N = b_block_mtx.NCol(); constexpr index_t K = a_block_mtx.NRow(); constexpr index_t MPerThread = c_thread_mtx.NRow(); constexpr index_t NPerThread = c_thread_mtx.NCol(); // thread A, B for GEMM constexpr auto a_thread_mtx = make_ConstantMatrixDescriptor(Number{}, Number{}); constexpr auto b_thread_mtx = make_ConstantMatrixDescriptor(Number{}, Number{}); // thread A-sub, B-sub for copy constexpr auto a_thread_sub_mtx = make_ConstantMatrixDescriptor( Number{}, Number{}, Number{}); constexpr auto b_thread_sub_mtx = make_ConstantMatrixDescriptor( Number{}, Number{}, Number{}); FloatA p_a_thread[a_thread_mtx.GetElementSpace()]; FloatB p_b_thread[b_thread_mtx.GetElementSpace()]; constexpr index_t MPerLevel1Cluster = MPerThreadSubC * MLevel0Cluster * MLevel1Cluster; constexpr index_t NPerLevel1Cluster = NPerThreadSubC * NLevel0Cluster * NLevel1Cluster; constexpr index_t MRepeat = MPerThread / MPerThreadSubC; constexpr index_t NRepeat = NPerThread / NPerThreadSubC; const FloatA* const p_a_block_thread_offset = p_a_block + mMyThreadOffsetA; #pragma unroll // loop over k for(index_t k_begin = 0; k_begin < K; k_begin += KPerThreadLoop) { #pragma unroll // copy A-sub to form A for(index_t m_repeat = 0; m_repeat < MRepeat; ++m_repeat) { threadwise_matrix_copy( a_block_mtx, p_a_block + a_block_mtx.Get1dIndex(k_begin, m_repeat * MPerLevel1Cluster) + mMyThreadOffsetA, a_thread_mtx, p_a_thread + a_thread_mtx.Get1dIndex(0, m_repeat * MPerThreadSubC), a_thread_sub_mtx.GetLengths(), Number{}); } #pragma unroll // copy B-sub to form B for(index_t n_repeat = 0; n_repeat < NRepeat; ++n_repeat) { threadwise_matrix_copy( b_block_mtx, p_b_block + b_block_mtx.Get1dIndex(k_begin, n_repeat * NPerLevel1Cluster) + mMyThreadOffsetB, b_thread_mtx, p_b_thread + b_thread_mtx.Get1dIndex(0, n_repeat * NPerThreadSubC), b_thread_sub_mtx.GetLengths(), Number{}); } // C = A * B threadwise_gemm(a_thread_mtx, True, p_a_thread, b_thread_mtx, False, p_b_thread, c_thread_mtx, False, p_c_thread); } } template __device__ void Run_RegisterDoubleBuffer(FloatA* const p_a_block, FloatB* const p_b_block, FloatC* p_c_thread) const { constexpr auto True = integral_constant{}; constexpr auto False = integral_constant{}; constexpr auto a_block_mtx = BlockMatrixA{}; constexpr auto b_block_mtx = BlockMatrixB{}; constexpr auto c_thread_mtx = ThreadMatrixC{}; constexpr index_t M = a_block_mtx.NCol(); constexpr index_t N = b_block_mtx.NCol(); constexpr index_t K = a_block_mtx.NRow(); constexpr index_t MPerThread = c_thread_mtx.NRow(); constexpr index_t NPerThread = c_thread_mtx.NCol(); // thread A, B for GEMM constexpr auto a_thread_mtx = make_ConstantMatrixDescriptor(Number{}, Number{}); constexpr auto b_thread_mtx = make_ConstantMatrixDescriptor(Number{}, Number{}); // thread A-sub, B-sub for copy constexpr auto a_thread_sub_mtx = make_ConstantMatrixDescriptor( Number{}, Number{}, Number{}); constexpr auto b_thread_sub_mtx = make_ConstantMatrixDescriptor( Number{}, Number{}, Number{}); // register FloatA p_a_thread_0[a_thread_mtx.GetElementSpace()]; FloatB p_b_thread_0[b_thread_mtx.GetElementSpace()]; FloatA p_a_thread_1[a_thread_mtx.GetElementSpace()]; FloatB p_b_thread_1[b_thread_mtx.GetElementSpace()]; constexpr index_t MPerLevel1Cluster = MPerThreadSubC * MLevel0Cluster * MLevel1Cluster; constexpr index_t NPerLevel1Cluster = NPerThreadSubC * NLevel0Cluster * NLevel1Cluster; constexpr index_t MRepeat = MPerThread / MPerThreadSubC; constexpr index_t NRepeat = NPerThread / NPerThreadSubC; // preload A, B #pragma unroll for(index_t m_repeat = 0; m_repeat < MRepeat; ++m_repeat) { // copy A-sub to form A threadwise_matrix_copy(a_block_mtx, p_a_block + mMyThreadOffsetA + m_repeat * MPerLevel1Cluster, a_thread_sub_mtx, p_a_thread_0 + m_repeat * MPerThreadSubC, a_thread_sub_mtx.GetLengths(), Number{}); } #pragma unroll for(index_t n_repeat = 0; n_repeat < NRepeat; ++n_repeat) { // copy B-sub to form B threadwise_matrix_copy(b_block_mtx, p_b_block + mMyThreadOffsetB + n_repeat * NPerLevel1Cluster, b_thread_sub_mtx, p_b_thread_0 + n_repeat * NPerThreadSubC, b_thread_sub_mtx.GetLengths(), Number{}); } bool even_loop = true; #pragma unroll for(index_t k_begin = 0; k_begin + KPerThreadLoop < K; k_begin += KPerThreadLoop, even_loop = !even_loop) { // loop over k FloatA* p_a_thread_now = even_loop ? p_a_thread_0 : p_a_thread_1; FloatB* p_b_thread_now = even_loop ? p_b_thread_0 : p_b_thread_1; FloatA* p_a_thread_next = even_loop ? p_a_thread_1 : p_a_thread_0; FloatB* p_b_thread_next = even_loop ? p_b_thread_1 : p_b_thread_0; // preload next A, B #pragma unroll for(index_t m_repeat = 0; m_repeat < MRepeat; ++m_repeat) { // copy A-sub to form A threadwise_matrix_copy(a_block_mtx, p_a_block + mMyThreadOffsetA + (k_begin + 1) * a_block_mtx.RowStride() + m_repeat * MPerLevel1Cluster, a_thread_sub_mtx, p_a_thread_next + m_repeat * MPerThreadSubC, a_thread_sub_mtx.GetLengths(), Number{}); } #pragma unroll for(index_t n_repeat = 0; n_repeat < NRepeat; ++n_repeat) { // copy B-sub to form B threadwise_matrix_copy(b_block_mtx, p_b_block + mMyThreadOffsetB + (k_begin + 1) * b_block_mtx.RowStride() + n_repeat * NPerLevel1Cluster, b_thread_sub_mtx, p_b_thread_next + n_repeat * NPerThreadSubC, b_thread_sub_mtx.GetLengths(), Number{}); } // C = A * B threadwise_gemm(a_thread_mtx, True, p_a_thread_now, b_thread_mtx, False, p_b_thread_now, c_thread_mtx, False, p_c_thread); } // last loop { FloatA* p_a_thread_now = even_loop ? p_a_thread_0 : p_a_thread_1; FloatB* p_b_thread_now = even_loop ? p_b_thread_0 : p_b_thread_1; // C = A * B threadwise_gemm(a_thread_mtx, True, p_a_thread_now, b_thread_mtx, False, p_b_thread_now, c_thread_mtx, False, p_c_thread); } } };