#pragma once #include "tensor.hpp" #include "common_header.hpp" #include "ConstantTensorDescriptor.hpp" // this is ugly, only for 4d template void ostream_ConstantTensorDescriptor(TConstTensorDesc, std::ostream& os = std::cout) { using namespace ck; static_assert(TConstTensorDesc::nDim == 4, "nDim is not 4"); constexpr auto I0 = Number<0>{}; constexpr auto I1 = Number<1>{}; constexpr auto I2 = Number<2>{}; constexpr auto I3 = Number<3>{}; constexpr auto desc = TConstTensorDesc{}; os << "Lengths: {" << desc.GetLength(I0) << ", " << desc.GetLength(I1) << ", " << desc.GetLength(I2) << ", " << desc.GetLength(I3) << "}, " << "Strides: {" << desc.GetStride(I0) << ", " << desc.GetStride(I1) << ", " << desc.GetStride(I2) << ", " << desc.GetStride(I3) << "}" << std::endl; } // this is ugly, only for 4d template auto make_TensorDescriptor(TConstTensorDesc) { using namespace ck; static_assert(TConstTensorDesc::nDim == 4, "nDim is not 4"); constexpr auto I0 = Number<0>{}; constexpr auto I1 = Number<1>{}; constexpr auto I2 = Number<2>{}; constexpr auto I3 = Number<3>{}; constexpr auto desc = TConstTensorDesc{}; std::initializer_list lengths = { desc.GetLength(I0), desc.GetLength(I1), desc.GetLength(I2), desc.GetLength(I3)}; std::initializer_list strides = { desc.GetStride(I0), desc.GetStride(I1), desc.GetStride(I2), desc.GetStride(I3)}; return TensorDescriptor(lengths, strides); } template void host_direct_convolution(const Tensor& in_nchw, const Tensor& wei_kcyx, Tensor& out_nkhw, ConvStrides, ConvDilations, LowerPads, UpperPads) { using namespace ck; index_t h_pad_low = LowerPads{}.Get(Number<0>{}); index_t w_pad_low = LowerPads{}.Get(Number<1>{}); index_t h_pad_up = UpperPads{}.Get(Number<0>{}); index_t w_pad_up = UpperPads{}.Get(Number<1>{}); auto f = [&](auto n, auto k, auto ho, auto wo) { double v = 0; for(int c = 0; c < wei_kcyx.mDesc.GetLengths()[1]; ++c) { for(int y = 0; y < wei_kcyx.mDesc.GetLengths()[2]; ++y) { int hi = ho * ConvStrides{}[0] + y * ConvDilations{}[0] - h_pad_low; for(int x = 0; x < wei_kcyx.mDesc.GetLengths()[3]; ++x) { int wi = wo * ConvStrides{}[1] + x * ConvDilations{}[1] - w_pad_low; if(hi >= 0 && hi < in_nchw.mDesc.GetLengths()[2] && wi >= 0 && wi < in_nchw.mDesc.GetLengths()[3]) { v += double(in_nchw(n, c, hi, wi)) * double(wei_kcyx(k, c, y, x)); } } } } out_nkhw(n, k, ho, wo) = v; }; auto f_par = make_ParallelTensorFunctor(f, out_nkhw.mDesc.GetLengths()[0], out_nkhw.mDesc.GetLengths()[1], out_nkhw.mDesc.GetLengths()[2], out_nkhw.mDesc.GetLengths()[3]); f_par(std::thread::hardware_concurrency()); } template void host_winograd_3x3_convolution(const Tensor& in_nchw, const Tensor& wei_kcyx, Tensor& out_nkhw, LowerPads, UpperPads) { using namespace ck; constexpr std::size_t HoPerTile = 2; constexpr std::size_t WoPerTile = 2; std::size_t N = in_nchw.mDesc.GetLengths()[0]; std::size_t C = in_nchw.mDesc.GetLengths()[1]; std::size_t HI = in_nchw.mDesc.GetLengths()[2]; std::size_t WI = in_nchw.mDesc.GetLengths()[3]; std::size_t K = wei_kcyx.mDesc.GetLengths()[0]; std::size_t Y = wei_kcyx.mDesc.GetLengths()[2]; std::size_t X = wei_kcyx.mDesc.GetLengths()[3]; std::size_t HO = out_nkhw.mDesc.GetLengths()[2]; std::size_t WO = out_nkhw.mDesc.GetLengths()[3]; index_t h_pad_low = LowerPads{}.Get(Number<0>{}); index_t w_pad_low = LowerPads{}.Get(Number<1>{}); index_t h_pad_up = UpperPads{}.Get(Number<0>{}); index_t w_pad_up = UpperPads{}.Get(Number<1>{}); std::size_t HiPerTile = HoPerTile + Y - 1; std::size_t WiPerTile = WoPerTile + X - 1; std::size_t HTile = (HO + HoPerTile - 1) / HoPerTile; std::size_t WTile = (WO + WoPerTile - 1) / WoPerTile; Tensor in_hold({N, C, HTile, WTile, HiPerTile, WiPerTile}); Tensor in_transform({N, C, HTile, WTile, HiPerTile, WiPerTile}); Tensor wei_transform({K, C, HiPerTile, WiPerTile}); Tensor out_transform({N, K, HTile, WTile, HiPerTile, HiPerTile}); Tensor out_hold({N, K, HTile, WTile, HoPerTile, WoPerTile}); auto f_in_hold = [&](auto n, auto c, auto htile, auto wtile) { for(int j = 0; j < HiPerTile; ++j) { int hi = HoPerTile * htile + j - h_pad_low; for(int i = 0; i < WiPerTile; ++i) { int wi = WoPerTile * wtile + i - w_pad_low; if(hi >= 0 && hi < in_nchw.mDesc.GetLengths()[2] && wi >= 0 && wi < in_nchw.mDesc.GetLengths()[3]) { in_hold(n, c, htile, wtile, j, i) = in_nchw(n, c, hi, wi); } else { in_hold(n, c, htile, wtile, j, i) = TIn(0); } } } }; auto f_in_transform = [&](auto n, auto c, auto htile, auto wtile) { in_transform(n, c, htile, wtile, 0, 0) = in_hold(n, c, htile, wtile, 0, 0) - in_hold(n, c, htile, wtile, 0, 2) - in_hold(n, c, htile, wtile, 2, 0) + in_hold(n, c, htile, wtile, 2, 2); in_transform(n, c, htile, wtile, 0, 1) = in_hold(n, c, htile, wtile, 0, 1) + in_hold(n, c, htile, wtile, 0, 2) - in_hold(n, c, htile, wtile, 2, 1) - in_hold(n, c, htile, wtile, 2, 2); in_transform(n, c, htile, wtile, 0, 2) = -in_hold(n, c, htile, wtile, 0, 1) + in_hold(n, c, htile, wtile, 0, 2) + in_hold(n, c, htile, wtile, 2, 1) - in_hold(n, c, htile, wtile, 2, 2); in_transform(n, c, htile, wtile, 0, 3) = in_hold(n, c, htile, wtile, 0, 1) - in_hold(n, c, htile, wtile, 0, 3) - in_hold(n, c, htile, wtile, 2, 1) + in_hold(n, c, htile, wtile, 2, 3); in_transform(n, c, htile, wtile, 1, 0) = in_hold(n, c, htile, wtile, 1, 0) - in_hold(n, c, htile, wtile, 1, 2) + in_hold(n, c, htile, wtile, 2, 0) - in_hold(n, c, htile, wtile, 2, 2); in_transform(n, c, htile, wtile, 1, 1) = in_hold(n, c, htile, wtile, 1, 1) + in_hold(n, c, htile, wtile, 1, 2) + in_hold(n, c, htile, wtile, 2, 1) + in_hold(n, c, htile, wtile, 2, 2); in_transform(n, c, htile, wtile, 1, 2) = -in_hold(n, c, htile, wtile, 1, 1) + in_hold(n, c, htile, wtile, 1, 2) - in_hold(n, c, htile, wtile, 2, 1) + in_hold(n, c, htile, wtile, 2, 2); in_transform(n, c, htile, wtile, 1, 3) = in_hold(n, c, htile, wtile, 1, 1) - in_hold(n, c, htile, wtile, 1, 3) + in_hold(n, c, htile, wtile, 2, 1) - in_hold(n, c, htile, wtile, 2, 3); in_transform(n, c, htile, wtile, 2, 0) = -in_hold(n, c, htile, wtile, 1, 0) + in_hold(n, c, htile, wtile, 1, 2) + in_hold(n, c, htile, wtile, 2, 0) - in_hold(n, c, htile, wtile, 2, 2); in_transform(n, c, htile, wtile, 2, 1) = -in_hold(n, c, htile, wtile, 1, 1) - in_hold(n, c, htile, wtile, 1, 2) + in_hold(n, c, htile, wtile, 2, 1) + in_hold(n, c, htile, wtile, 2, 2); in_transform(n, c, htile, wtile, 2, 2) = in_hold(n, c, htile, wtile, 1, 1) - in_hold(n, c, htile, wtile, 1, 2) - in_hold(n, c, htile, wtile, 2, 1) + in_hold(n, c, htile, wtile, 2, 2); in_transform(n, c, htile, wtile, 2, 3) = -in_hold(n, c, htile, wtile, 1, 1) + in_hold(n, c, htile, wtile, 1, 3) + in_hold(n, c, htile, wtile, 2, 1) - in_hold(n, c, htile, wtile, 2, 3); in_transform(n, c, htile, wtile, 3, 0) = in_hold(n, c, htile, wtile, 1, 0) - in_hold(n, c, htile, wtile, 1, 2) - in_hold(n, c, htile, wtile, 3, 0) + in_hold(n, c, htile, wtile, 3, 2); in_transform(n, c, htile, wtile, 3, 1) = in_hold(n, c, htile, wtile, 1, 1) + in_hold(n, c, htile, wtile, 1, 2) - in_hold(n, c, htile, wtile, 3, 1) - in_hold(n, c, htile, wtile, 3, 2); in_transform(n, c, htile, wtile, 3, 2) = -in_hold(n, c, htile, wtile, 1, 1) + in_hold(n, c, htile, wtile, 1, 2) + in_hold(n, c, htile, wtile, 3, 1) - in_hold(n, c, htile, wtile, 3, 2); in_transform(n, c, htile, wtile, 3, 3) = in_hold(n, c, htile, wtile, 1, 1) - in_hold(n, c, htile, wtile, 1, 3) - in_hold(n, c, htile, wtile, 3, 1) + in_hold(n, c, htile, wtile, 3, 3); }; auto f_wei_transform = [&](auto k, auto c) { wei_transform(k, c, 0, 0) = double(wei_kcyx(k, c, 0, 0)); wei_transform(k, c, 0, 1) = 0.5 * double(wei_kcyx(k, c, 0, 0)) + 0.5 * double(wei_kcyx(k, c, 0, 1)) + 0.5 * double(wei_kcyx(k, c, 0, 2)); wei_transform(k, c, 0, 2) = 0.5 * double(wei_kcyx(k, c, 0, 0)) - 0.5 * double(wei_kcyx(k, c, 0, 1)) + 0.5 * double(wei_kcyx(k, c, 0, 2)); wei_transform(k, c, 0, 3) = double(wei_kcyx(k, c, 0, 2)); wei_transform(k, c, 1, 0) = 0.5 * double(wei_kcyx(k, c, 0, 0)) + 0.5 * double(wei_kcyx(k, c, 1, 0)) + 0.5 * double(wei_kcyx(k, c, 2, 0)); wei_transform(k, c, 1, 1) = 0.25 * double(wei_kcyx(k, c, 0, 0)) + 0.25 * double(wei_kcyx(k, c, 0, 1)) + 0.25 * double(wei_kcyx(k, c, 0, 2)) + 0.25 * double(wei_kcyx(k, c, 1, 0)) + 0.25 * double(wei_kcyx(k, c, 1, 1)) + 0.25 * double(wei_kcyx(k, c, 1, 2)) + 0.25 * double(wei_kcyx(k, c, 2, 0)) + 0.25 * double(wei_kcyx(k, c, 2, 1)) + 0.25 * double(wei_kcyx(k, c, 2, 2)); wei_transform(k, c, 1, 2) = 0.25 * double(wei_kcyx(k, c, 0, 0)) - 0.25 * double(wei_kcyx(k, c, 0, 1)) + 0.25 * double(wei_kcyx(k, c, 0, 2)) + 0.25 * double(wei_kcyx(k, c, 1, 0)) - 0.25 * double(wei_kcyx(k, c, 1, 1)) + 0.25 * double(wei_kcyx(k, c, 1, 2)) + 0.25 * double(wei_kcyx(k, c, 2, 0)) - 0.25 * double(wei_kcyx(k, c, 2, 1)) + 0.25 * double(wei_kcyx(k, c, 2, 2)); wei_transform(k, c, 1, 3) = 0.5 * double(wei_kcyx(k, c, 0, 2)) + 0.5 * double(wei_kcyx(k, c, 1, 2)) + 0.5 * double(wei_kcyx(k, c, 2, 2)); wei_transform(k, c, 2, 0) = 0.5 * double(wei_kcyx(k, c, 0, 0)) - 0.5 * double(wei_kcyx(k, c, 1, 0)) + 0.5 * double(wei_kcyx(k, c, 2, 0)); wei_transform(k, c, 2, 1) = 0.25 * double(wei_kcyx(k, c, 0, 0)) + 0.25 * double(wei_kcyx(k, c, 0, 1)) + 0.25 * double(wei_kcyx(k, c, 0, 2)) - 0.25 * double(wei_kcyx(k, c, 1, 0)) - 0.25 * double(wei_kcyx(k, c, 1, 1)) - 0.25 * double(wei_kcyx(k, c, 1, 2)) + 0.25 * double(wei_kcyx(k, c, 2, 0)) + 0.25 * double(wei_kcyx(k, c, 2, 1)) + 0.25 * double(wei_kcyx(k, c, 2, 2)); wei_transform(k, c, 2, 2) = 0.25 * double(wei_kcyx(k, c, 0, 0)) - 0.25 * double(wei_kcyx(k, c, 0, 1)) + 0.25 * double(wei_kcyx(k, c, 0, 2)) - 0.25 * double(wei_kcyx(k, c, 1, 0)) + 0.25 * double(wei_kcyx(k, c, 1, 1)) - 0.25 * double(wei_kcyx(k, c, 1, 2)) + 0.25 * double(wei_kcyx(k, c, 2, 0)) - 0.25 * double(wei_kcyx(k, c, 2, 1)) + 0.25 * double(wei_kcyx(k, c, 2, 2)); wei_transform(k, c, 2, 3) = 0.5 * double(wei_kcyx(k, c, 0, 2)) - 0.5 * double(wei_kcyx(k, c, 1, 2)) + 0.5 * double(wei_kcyx(k, c, 2, 2)); wei_transform(k, c, 3, 0) = double(wei_kcyx(k, c, 2, 0)); wei_transform(k, c, 3, 1) = 0.5 * double(wei_kcyx(k, c, 2, 0)) + 0.5 * double(wei_kcyx(k, c, 2, 1)) + 0.5 * double(wei_kcyx(k, c, 2, 2)); wei_transform(k, c, 3, 2) = 0.5 * double(wei_kcyx(k, c, 2, 0)) - 0.5 * double(wei_kcyx(k, c, 2, 1)) + 0.5 * double(wei_kcyx(k, c, 2, 2)); wei_transform(k, c, 3, 3) = double(wei_kcyx(k, c, 2, 2)); }; auto f_out_transform = [&](auto n, auto k, auto htile, auto wtile) { for(int j = 0; j < HiPerTile; ++j) { for(int i = 0; i < WiPerTile; ++i) { double v = 0; for(int c = 0; c < C; ++c) { v += in_transform(n, c, htile, wtile, j, i) * wei_transform(k, c, j, i); } out_transform(n, k, htile, wtile, j, i) = v; } } }; auto f_out_hold = [&](auto n, auto k, auto htile, auto wtile) { out_hold(n, k, htile, wtile, 0, 0) = out_transform(n, k, htile, wtile, 0, 0) + out_transform(n, k, htile, wtile, 0, 1) + out_transform(n, k, htile, wtile, 0, 2) + out_transform(n, k, htile, wtile, 1, 0) + out_transform(n, k, htile, wtile, 1, 1) + out_transform(n, k, htile, wtile, 1, 2) + out_transform(n, k, htile, wtile, 2, 0) + out_transform(n, k, htile, wtile, 2, 1) + out_transform(n, k, htile, wtile, 2, 2); out_hold(n, k, htile, wtile, 0, 1) = out_transform(n, k, htile, wtile, 0, 1) - out_transform(n, k, htile, wtile, 0, 2) - out_transform(n, k, htile, wtile, 0, 3) + out_transform(n, k, htile, wtile, 1, 1) - out_transform(n, k, htile, wtile, 1, 2) - out_transform(n, k, htile, wtile, 1, 3) + out_transform(n, k, htile, wtile, 2, 1) - out_transform(n, k, htile, wtile, 2, 2) - out_transform(n, k, htile, wtile, 2, 3); out_hold(n, k, htile, wtile, 1, 0) = out_transform(n, k, htile, wtile, 1, 0) + out_transform(n, k, htile, wtile, 1, 1) + out_transform(n, k, htile, wtile, 1, 2) - out_transform(n, k, htile, wtile, 2, 0) - out_transform(n, k, htile, wtile, 2, 1) - out_transform(n, k, htile, wtile, 2, 2) - out_transform(n, k, htile, wtile, 3, 0) - out_transform(n, k, htile, wtile, 3, 1) - out_transform(n, k, htile, wtile, 3, 2); out_hold(n, k, htile, wtile, 1, 1) = out_transform(n, k, htile, wtile, 1, 1) - out_transform(n, k, htile, wtile, 1, 2) - out_transform(n, k, htile, wtile, 1, 3) - out_transform(n, k, htile, wtile, 2, 1) + out_transform(n, k, htile, wtile, 2, 2) + out_transform(n, k, htile, wtile, 2, 3) - out_transform(n, k, htile, wtile, 3, 1) + out_transform(n, k, htile, wtile, 3, 2) + out_transform(n, k, htile, wtile, 3, 3); }; auto f_out = [&](auto n, auto k, auto htile, auto wtile) { for(int j = 0; j < HoPerTile; ++j) { std::size_t ho = HoPerTile * htile + j; for(int i = 0; i < WoPerTile; ++i) { std::size_t wo = WoPerTile * wtile + i; out_nkhw(n, k, ho, wo) = out_hold(n, k, htile, wtile, j, i); } } }; std::size_t num_thread = std::thread::hardware_concurrency(); make_ParallelTensorFunctor(f_in_hold, N, C, HTile, WTile)(num_thread); make_ParallelTensorFunctor(f_in_transform, N, C, HTile, WTile)(num_thread); make_ParallelTensorFunctor(f_wei_transform, K, C)(num_thread); make_ParallelTensorFunctor(f_out_transform, N, K, HTile, WTile)(num_thread); make_ParallelTensorFunctor(f_out_hold, N, K, HTile, WTile)(num_thread); make_ParallelTensorFunctor(f_out, N, K, HTile, WTile)(num_thread); } template void check_error(const Tensor& ref, const Tensor& result) { float error = 0; float max_diff = -1; float ref_value = 0, result_value = 0; for(int i = 0; i < ref.mData.size(); ++i) { error += std::abs(double(ref.mData[i]) - double(result.mData[i])); float diff = std::abs(double(ref.mData[i]) - double(result.mData[i])); if(max_diff < diff) { max_diff = diff; ref_value = ref.mData[i]; result_value = result.mData[i]; } } std::cout << "error: " << error << std::endl; std::cout << "max_diff: " << max_diff << ", " << ref_value << ", " << result_value << std::endl; }