#include #include #include #include #include #include #include "config.hpp" #include "print.hpp" #include "device.hpp" #include "host_tensor.hpp" #include "host_tensor_generator.hpp" #include "device_tensor.hpp" #include "tensor_layout.hpp" #include "element_wise_operation.hpp" #include "device_conv2d_backward_weight_xdl_c_shuffle_nhwc_kyxc_nhwk.hpp" #include "reference_conv_backward_weight.hpp" using InDataType = ck::half_t; using WeiDataType = ck::half_t; using OutDataType = ck::half_t; using AccDataType = float; template using S = ck::Sequence; using InLayout = ck::tensor_layout::convolution::NHWC; using WeiLayout = ck::tensor_layout::convolution::KYXC; using OutLayout = ck::tensor_layout::convolution::NHWK; using InElementOp = ck::tensor_operation::element_wise::PassThrough; using WeiElementOp = ck::tensor_operation::element_wise::PassThrough; using OutElementOp = ck::tensor_operation::element_wise::PassThrough; // clang-format off using DeviceConvWrWInstance = ck::tensor_operation::device:: DeviceConv2dWrWXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< InDataType, // InDataType WeiDataType, // WeiDataType OutDataType, // OutDataType AccDataType, // AccDataType InElementOp, // InElementwiseOperation WeiElementOp, // WeiElementwiseOperation OutElementOp, // OutElementwiseOperation 256, // BlockSize 128, // MPerBlock 128, // NPerBlock 4, // K0PerBlock 8, // K1 32, // MPerXdl 32, // NPerXdl 2, // MXdlPerWave 2, // NXdlPerWave S<1, 4, 16, 4>, // ABlockTransferThreadClusterLengths_K0_M_K1 S<0, 3, 1, 2>, // ABlockTransferThreadClusterArrangeOrder S<0, 2, 1, 3>, // ABlockTransferSrcAccessOrder 2, // ABlockTransferSrcVectorDim 8, // ABlockTransferSrcScalarPerVector 2, // ABlockTransferDstScalarPerVector_K1 true, // ABlockLdsAddExtraM S<1, 4, 16, 4>, // BBlockTransferThreadClusterLengths_K0_N_K1 S<0, 3, 1, 2>, // BBlockTransferThreadClusterArrangeOrder S<0, 2, 1, 3>, // BBlockTransferSrcAccessOrder 2, // BBlockTransferSrcVectorDim 8, // BBlockTransferSrcScalarPerVector 2, // BBlockTransferDstScalarPerVector_K1 true, // BBlockLdsAddExtraN 1, // CShuffleMXdlPerWavePerShuffle 1, // CShuffleNXdlPerWavePerShuffle S<1, 32, 1, 4>, // CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock 8>; // CBlockTransferScalarPerVector_NWaveNPerXdl // clang-format on using ReferenceConvWrwInstance = ck::tensor_operation::host:: ReferenceConvWrw; int main(int argc, char* argv[]) { bool do_verification = 0; int init_method = 0; int nrepeat = 5; int do_log = 0; int split_k = 4; // Conv shape ck::index_t N = 128; ck::index_t K = 256; ck::index_t C = 1024; ck::index_t Y = 3; ck::index_t X = 3; ck::index_t Hi = 14; ck::index_t Wi = 14; ck::index_t conv_stride_h = 2; ck::index_t conv_stride_w = 2; ck::index_t conv_dilation_h = 1; ck::index_t conv_dilation_w = 1; ck::index_t in_left_pad_h = 0; ck::index_t in_left_pad_w = 0; ck::index_t in_right_pad_h = 0; ck::index_t in_right_pad_w = 0; if(argc == 6) { do_verification = std::stoi(argv[1]); init_method = std::stoi(argv[2]); nrepeat = std::stoi(argv[3]); do_log = std::stoi(argv[4]); split_k = std::stoi(argv[5]); } else if(argc == 21) { do_verification = std::stoi(argv[1]); init_method = std::stoi(argv[2]); nrepeat = std::stoi(argv[3]); do_log = std::stoi(argv[4]); split_k = std::stoi(argv[5]); N = std::stoi(argv[6]); K = std::stoi(argv[7]); C = std::stoi(argv[8]); Y = std::stoi(argv[9]); X = std::stoi(argv[10]); Hi = std::stoi(argv[11]); Wi = std::stoi(argv[12]); conv_stride_h = std::stoi(argv[13]); conv_stride_w = std::stoi(argv[14]); conv_dilation_h = std::stoi(argv[15]); conv_dilation_w = std::stoi(argv[16]); in_left_pad_h = std::stoi(argv[17]); in_left_pad_w = std::stoi(argv[18]); in_right_pad_h = std::stoi(argv[19]); in_right_pad_w = std::stoi(argv[20]); } else { printf("arg1: verification (0=no, 1=yes)\n"); printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n"); printf("arg3: run kernel # of times (>1)\n"); printf("arg4: is show log (0=no, 1=yes)\n"); printf("arg5: split-k \n"); printf("arg6 to 19: N, K, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, " "RightPx\n"); exit(0); } const ck::index_t YEff = (Y - 1) * conv_dilation_h + 1; const ck::index_t XEff = (X - 1) * conv_dilation_w + 1; const ck::index_t Ho = (Hi + in_left_pad_h + in_right_pad_h - YEff) / conv_stride_h + 1; const ck::index_t Wo = (Wi + in_left_pad_w + in_right_pad_w - XEff) / conv_stride_w + 1; const std::vector conv_filter_strides{{conv_stride_h, conv_stride_w}}; const std::vector conv_filter_dilations{{conv_dilation_h, conv_dilation_w}}; const std::vector input_left_pads{{in_left_pad_h, in_left_pad_w}}; const std::vector input_right_pads{{in_right_pad_h, in_right_pad_w}}; // tensor layout auto f_host_tensor_descriptor = [](std::size_t N_, std::size_t C_, std::size_t H, std::size_t W, auto layout) { if constexpr(ck::is_same::value || ck::is_same::value || ck::is_same::value) { return HostTensorDescriptor(std::vector({N_, C_, H, W}), std::vector({C_ * H * W, H * W, W, 1})); } else if constexpr(ck::is_same::value || ck::is_same::value || ck::is_same::value) { return HostTensorDescriptor(std::vector({N_, C_, H, W}), std::vector({C_ * H * W, 1, W * C_, C_})); } }; Tensor in_n_c_hi_wi(f_host_tensor_descriptor(N, C, Hi, Wi, InLayout{})); Tensor wei_k_c_y_x_host_result(f_host_tensor_descriptor(K, C, Y, X, WeiLayout{})); Tensor wei_k_c_y_x_device_result( f_host_tensor_descriptor(K, C, Y, X, WeiLayout{})); Tensor out_n_k_ho_wo(f_host_tensor_descriptor(N, K, Ho, Wo, OutLayout{})); std::cout << "in_n_c_hi_wi: " << in_n_c_hi_wi.mDesc << std::endl; std::cout << "wei_k_c_y_x: " << wei_k_c_y_x_host_result.mDesc << std::endl; std::cout << "out_n_k_ho_wo: " << out_n_k_ho_wo.mDesc << std::endl; switch(init_method) { case 0: break; case 1: in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_2{-5, 5}); out_n_k_ho_wo.GenerateTensorValue(GeneratorTensor_2{-5, 5}); break; default: in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_1{1}); out_n_k_ho_wo.GenerateTensorValue(GeneratorTensor_1{1}); } wei_k_c_y_x_device_result.GenerateTensorValue(GeneratorTensor_1{0}); DeviceMem in_device_buf(sizeof(InDataType) * in_n_c_hi_wi.mDesc.GetElementSpace()); DeviceMem wei_device_buf(sizeof(WeiDataType) * wei_k_c_y_x_device_result.mDesc.GetElementSpace()); DeviceMem out_device_buf(sizeof(OutDataType) * out_n_k_ho_wo.mDesc.GetElementSpace()); in_device_buf.ToDevice(in_n_c_hi_wi.mData.data()); out_device_buf.ToDevice(out_n_k_ho_wo.mData.data()); wei_device_buf.ToDevice(wei_k_c_y_x_device_result.mData.data()); // do GEMM auto conv = DeviceConvWrWInstance{}; auto invoker = conv.MakeInvoker(); auto argument = conv.MakeArgument(static_cast(in_device_buf.GetDeviceBuffer()), static_cast(wei_device_buf.GetDeviceBuffer()), static_cast(out_device_buf.GetDeviceBuffer()), N, K, C, std::vector{{Hi, Wi}}, std::vector{{Y, X}}, std::vector{{Ho, Wo}}, conv_filter_strides, conv_filter_dilations, input_left_pads, input_right_pads, InElementOp{}, WeiElementOp{}, OutElementOp{}, split_k); if(!conv.IsSupportedArgument(argument)) { std::cout << "wrong! device_conv with the specified compilation parameters does " "not support this Conv problem" << std::endl; return 1; } float ave_time = invoker.Run(argument, nrepeat); std::size_t flop = std::size_t(2) * N * K * Ho * Wo * C * Y * X; std::size_t num_btype = sizeof(InDataType) * (N * C * Hi * Wi) + sizeof(WeiDataType) * (K * C * Y * X) + sizeof(OutDataType) * (N * K * Ho * Wo); float tflops = static_cast(flop) / 1.E9 / ave_time; float gb_per_sec = num_btype / 1.E6 / ave_time; std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s" << std::endl; if(do_verification) { auto ref_conv = ReferenceConvWrwInstance{}; auto ref_invoker = ref_conv.MakeInvoker(); auto ref_argument = ref_conv.MakeArgument(in_n_c_hi_wi, wei_k_c_y_x_host_result, out_n_k_ho_wo, conv_filter_strides, conv_filter_dilations, input_left_pads, input_right_pads, InElementOp{}, WeiElementOp{}, OutElementOp{}); ref_invoker.Run(ref_argument); wei_device_buf.FromDevice(wei_k_c_y_x_device_result.mData.data()); if(do_log) { LogRangeAsType(std::cout << "out: ", out_n_k_ho_wo.mData, ",") << std::endl; LogRangeAsType(std::cout << "in : ", in_n_c_hi_wi.mData, ",") << std::endl; LogRangeAsType( std::cout << "wei_device(after): ", wei_k_c_y_x_device_result.mData, ",") << std::endl; LogRangeAsType(std::cout << "wei_host : ", wei_k_c_y_x_host_result.mData, ",") << std::endl; } check_error(wei_k_c_y_x_host_result, wei_k_c_y_x_device_result); } }