// SPDX-License-Identifier: MIT // Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved. #pragma once #include #include "ck/ck.hpp" #include "ck/utility/reduction_enums.hpp" #include "ck/utility/reduction_functions_accumulate.hpp" #include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp" #include "ck/tensor_operation/gpu/device/impl/device_pool2d_fwd_nhwc_nhwc.hpp" #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" #include "ck/library/utility/check_err.hpp" #include "ck/library/utility/device_memory.hpp" #include "ck/library/utility/host_tensor.hpp" #include "ck/library/utility/host_tensor_generator.hpp" #include "ck/library/utility/literals.hpp" #include "ck/library/reference_tensor_operation/cpu/reference_pool_fwd.hpp" template bool pool_test(bool do_verification, int init_method, bool time_kernel, ck::index_t N, ck::index_t C, ck::index_t Y, ck::index_t X, ck::index_t Hi, ck::index_t Wi, ck::index_t window_stride_h, ck::index_t window_stride_w, ck::index_t in_left_pad_h, ck::index_t in_left_pad_w, ck::index_t in_right_pad_h, ck::index_t in_right_pad_w) { using DevicePoolFwdInstance = ck::tensor_operation::device::DevicePool2dFwd_Input_N_Hi_Wi_C_Output_N_Ho_Wo_C< InDataType, // InDataType OutDataType, // OutDataType IndexDataType, // IndexDataType ComputeDataType, // ComputeDataType ReduceOpId, OutputIndex, 64, // BlockSize 64, // ReduceMThreadClusterSize 1, // ReduceKThreadClusterSize 4, // ReduceMThreadSliceSize 1, // ReduceKThreadSliceSize 4>; // InSrcOutDstVectorSize const ck::index_t Ho = (Hi + in_left_pad_h + in_right_pad_h - Y) / window_stride_h + 1; const ck::index_t Wo = (Wi + in_left_pad_w + in_right_pad_w - X) / window_stride_w + 1; const std::vector window_spatial_lengths{Y, X}; const std::vector window_strides{window_stride_h, window_stride_w}; const std::vector input_left_pads{in_left_pad_h, in_left_pad_w}; const std::vector input_right_pads{in_right_pad_h, in_right_pad_w}; // tensor layout auto f_host_tensor_descriptor = [](std::size_t N_, std::size_t C_, std::size_t H, std::size_t W, auto layout) { using namespace ck::literals; if constexpr(ck::is_same::value) { return HostTensorDescriptor({N_, C_, H, W}, {C_ * H * W, H * W, W, 1_uz}); } else if constexpr(ck::is_same::value) { return HostTensorDescriptor({N_, C_, H, W}, {C_ * H * W, 1_uz, W * C_, C_}); } }; Tensor in_n_c_hi_wi(f_host_tensor_descriptor(N, C, Hi, Wi, InLayout{})); Tensor out_n_c_ho_wo_host(f_host_tensor_descriptor(N, C, Ho, Wo, OutLayout{})); Tensor out_indices_n_c_ho_wo_host( f_host_tensor_descriptor(N, C, Ho, Wo, OutLayout{})); Tensor out_n_c_ho_wo_device(f_host_tensor_descriptor(N, C, Ho, Wo, OutLayout{})); Tensor out_indices_n_c_ho_wo_device( f_host_tensor_descriptor(N, C, Ho, Wo, OutLayout{})); std::cout << "in_n_c_hi_wi: " << in_n_c_hi_wi.mDesc << std::endl; std::cout << "out_n_c_ho_wo: " << out_n_c_ho_wo_host.mDesc << std::endl; switch(init_method) { case 0: break; case 1: in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_1{1}); break; case 2: in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_2{-5, 5}); break; default: in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_3{-5.0, 5.0}); } DeviceMem in_device_buf(sizeof(InDataType) * in_n_c_hi_wi.mDesc.GetElementSpaceSize()); DeviceMem out_device_buf(sizeof(OutDataType) * out_n_c_ho_wo_device.mDesc.GetElementSpaceSize()); DeviceMem out_indices_device_buf(sizeof(IndexDataType) * out_indices_n_c_ho_wo_device.mDesc.GetElementSpaceSize()); in_device_buf.ToDevice(in_n_c_hi_wi.mData.data()); auto pool = DevicePoolFwdInstance{}; auto invoker_ptr = pool.MakeInvokerPointer(); auto argument_ptr = pool.MakeArgumentPointer( static_cast(in_device_buf.GetDeviceBuffer()), static_cast(out_device_buf.GetDeviceBuffer()), static_cast(out_indices_device_buf.GetDeviceBuffer()), {N, C, Hi, Wi}, {Y, X}, {N, C, Ho, Wo}, {C * Hi * Wi, 1, Wi * C, C}, {C * Ho * Wo, 1, Wo * C, C}, {C * Ho * Wo, 1, Wo * C, C}, window_strides, input_left_pads, input_right_pads, {2, 3}); if(!pool.IsSupportedArgument(argument_ptr.get())) { throw std::runtime_error("wrong! device_op with the specified compilation parameters does " "not support this problem"); } float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel}); std::size_t flop = std::size_t(2) * N * C * Ho * Wo * Y * X; std::size_t num_btype = sizeof(InDataType) * (N * C * Hi * Wi) + sizeof(OutDataType) * (N * C * Ho * Wo); float tflops = static_cast(flop) / 1.E9 / ave_time; float gb_per_sec = num_btype / 1.E6 / ave_time; std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s" << std::endl; bool pass = true; if(do_verification) { using ReferencePoolingFwdInstance = ck::tensor_operation::host::ReferencePoolingFwd<4, 2, InDataType, OutDataType, ComputeDataType, IndexDataType, ReduceOpId, PropagateNan, OutputIndex>; auto ref_pooling = ReferencePoolingFwdInstance{}; auto ref_pooling_invoker = ref_pooling.MakeInvoker(); auto ref_pooling_argument = ref_pooling.MakeArgument(in_n_c_hi_wi, out_n_c_ho_wo_host, out_indices_n_c_ho_wo_host, window_spatial_lengths, window_strides, input_left_pads, input_right_pads); ref_pooling_invoker.Run(ref_pooling_argument); out_device_buf.FromDevice(out_n_c_ho_wo_device.mData.data()); pass = pass && ck::utils::check_err(out_n_c_ho_wo_device, out_n_c_ho_wo_host); if constexpr(OutputIndex) { out_indices_device_buf.FromDevice(out_indices_n_c_ho_wo_device.mData.data()); pass = pass && ck::utils::check_err(out_indices_n_c_ho_wo_device, out_indices_n_c_ho_wo_host); }; } return (pass); };