#pragma once #include "ck/ck.hpp" #include "ck/tensor_operation/gpu/device/tensor_layout.hpp" #include "ck/tensor_operation/gpu/device/device_conv_backward_weight.hpp" #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" #include "ck/library/utility/check_err.hpp" #include "ck/library/utility/conv_util.hpp" #include "ck/library/host_tensor/device_memory.hpp" #include "ck/library/host_tensor/host_tensor.hpp" #include "ck/library/host_tensor/host_tensor_generator.hpp" #include "ck/library/reference_tensor_operation/cpu/reference_conv_backward_weight.hpp" using F16 = ck::half_t; using F32 = float; using BF16 = ck::bhalf_t; namespace ck { namespace tensor_operation { namespace device { namespace instance { using DeviceConvndBwdWeightNoOpPtr = DeviceConvBwdWeightPtr; void add_device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_f32_instances( std::vector&); void add_device_convnd_bwd_weight_xdl_nhwc_kyxc_nhwk_f32_instances( std::vector&); void add_device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_f32_instances( std::vector&); void add_device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_f16_instances( std::vector&); void add_device_convnd_bwd_weight_xdl_nhwc_kyxc_nhwk_f16_instances( std::vector&); void add_device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_f16_instances( std::vector&); void add_device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_bf16_instances( std::vector&); void add_device_conv2d_bwd_weight_xdl_nhwc_kyxc_nhwk_bf16_instances( std::vector&); void add_device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_bf16_instances( std::vector&); } // namespace instance } // namespace device } // namespace tensor_operation } // namespace ck namespace ck { namespace profiler { using DeviceConvndBwdWeightNoOpPtr = ck::tensor_operation::device::instance::DeviceConvndBwdWeightNoOpPtr; template HostTensorDescriptor get_input_host_tensor_descriptor(const std::vector& dims, int num_dim_spatial = 2) { namespace tl = ck::tensor_layout::convolution; switch(num_dim_spatial) { case 3: { return ck::utils::conv::get_host_tensor_descriptor(dims, InLayout{}); } case 2: { return ck::utils::conv::get_host_tensor_descriptor(dims, InLayout{}); } case 1: { return ck::utils::conv::get_host_tensor_descriptor(dims, InLayout{}); } default: { throw std::runtime_error("Unsupported number of spatial dimensions provided!"); } } } template HostTensorDescriptor get_filters_host_tensor_descriptor(const std::vector& dims, int num_dim_spatial = 2) { namespace tl = ck::tensor_layout::convolution; switch(num_dim_spatial) { case 3: { return ck::utils::conv::get_host_tensor_descriptor(dims, WeiLayout{}); } case 2: { return ck::utils::conv::get_host_tensor_descriptor(dims, WeiLayout{}); } case 1: { return ck::utils::conv::get_host_tensor_descriptor(dims, WeiLayout{}); } default: { throw std::runtime_error("Unsupported number of spatial dimensions provided!"); } } } template HostTensorDescriptor get_output_host_ensor_descriptor(const std::vector& dims, int num_dim_spatial = 2) { namespace tl = ck::tensor_layout::convolution; switch(num_dim_spatial) { case 3: { return ck::utils::conv::get_host_tensor_descriptor(dims, OutLayout{}); } case 2: { return ck::utils::conv::get_host_tensor_descriptor(dims, OutLayout{}); } case 1: { return ck::utils::conv::get_host_tensor_descriptor(dims, OutLayout{}); } default: { throw std::runtime_error("Unsupported number of spatial dimensions provided!"); } } } template void get_device_conv_bwd_weight_op_ptr( InDataType, WeiDataType, OutDataType, std::vector&, int) { std::cout << "can not find device conv bwd weight" << std::endl; exit(1); } template <> void get_device_conv_bwd_weight_op_ptr( F32, F32, F32, std::vector& conv_ptrs, int num_dim_spatial) { switch(num_dim_spatial) { case 1: ck::tensor_operation::device::instance:: add_device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_f32_instances(conv_ptrs); break; case 2: ck::tensor_operation::device::instance:: add_device_convnd_bwd_weight_xdl_nhwc_kyxc_nhwk_f32_instances(conv_ptrs); break; case 3: ck::tensor_operation::device::instance:: add_device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_f32_instances(conv_ptrs); break; default: break; } } template <> void get_device_conv_bwd_weight_op_ptr( F16, F16, F16, std::vector& conv_ptrs, int num_dim_spatial) { switch(num_dim_spatial) { case 1: ck::tensor_operation::device::instance:: add_device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_f16_instances(conv_ptrs); break; case 2: ck::tensor_operation::device::instance:: add_device_convnd_bwd_weight_xdl_nhwc_kyxc_nhwk_f16_instances(conv_ptrs); break; case 3: ck::tensor_operation::device::instance:: add_device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_f16_instances(conv_ptrs); break; default: break; } } template <> void get_device_conv_bwd_weight_op_ptr( BF16, BF16, BF16, std::vector& conv_ptrs, int num_dim_spatial) { switch(num_dim_spatial) { case 1: ck::tensor_operation::device::instance:: add_device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_bf16_instances(conv_ptrs); break; case 2: ck::tensor_operation::device::instance:: add_device_conv2d_bwd_weight_xdl_nhwc_kyxc_nhwk_bf16_instances(conv_ptrs); break; case 3: ck::tensor_operation::device::instance:: add_device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_bf16_instances(conv_ptrs); break; default: break; } } template void show_data_nhwc_layout(Tensor& nhwc) { std::cout << "["; for(int n = 0; n < ck::type_convert(nhwc.mDesc.GetLengths()[0]); n++) { std::cout << "["; for(int hi = 0; hi < ck::type_convert(nhwc.mDesc.GetLengths()[2]); hi++) { std::cout << "["; for(int wi = 0; wi < ck::type_convert(nhwc.mDesc.GetLengths()[3]); wi++) { std::cout << "["; for(int c = 0; c < ck::type_convert(nhwc.mDesc.GetLengths()[1]); c++) { std::cout << static_cast(nhwc(n, c, hi, wi)) << " "; } std::cout << "]"; } std::cout << "]"; } std::cout << "]"; } std::cout << "]"; } template bool profile_convnd_bwd_weight_impl(int do_verification, int init_method, bool do_log, bool time_kernel, ck::index_t N, ck::index_t K, ck::index_t C, std::vector input_spatial_lengths, std::vector filter_spatial_lengths, std::vector output_spatial_lengths, std::vector conv_filter_strides, std::vector conv_filter_dilations, std::vector input_left_pads, std::vector input_right_pads, ck::index_t split_k) { using InElementOp = ck::tensor_operation::element_wise::PassThrough; using WeiElementOp = ck::tensor_operation::element_wise::PassThrough; using OutElementOp = ck::tensor_operation::element_wise::PassThrough; const auto in_element_op = InElementOp{}; const auto wei_element_op = WeiElementOp{}; const auto out_element_op = OutElementOp{}; std::vector input_dims{static_cast(N), static_cast(C)}; input_dims.insert( std::end(input_dims), std::begin(input_spatial_lengths), std::end(input_spatial_lengths)); std::vector filter_dims{static_cast(K), static_cast(C)}; filter_dims.insert(std::end(filter_dims), std::begin(filter_spatial_lengths), std::end(filter_spatial_lengths)); std::vector output_dims{static_cast(N), static_cast(K)}; output_dims.insert(std::end(output_dims), std::begin(output_spatial_lengths), std::end(output_spatial_lengths)); Tensor input(get_input_host_tensor_descriptor(input_dims, NDimSpatial)); Tensor weights_host_result( get_filters_host_tensor_descriptor(filter_dims, NDimSpatial)); Tensor weights_device_result( get_filters_host_tensor_descriptor(filter_dims, NDimSpatial)); Tensor output( get_output_host_ensor_descriptor(output_dims, NDimSpatial)); std::cout << "input: " << input.mDesc << std::endl; std::cout << "weights: " << weights_host_result.mDesc << std::endl; std::cout << "output: " << output.mDesc << std::endl; switch(init_method) { case 0: break; case 1: input.GenerateTensorValue(GeneratorTensor_2{-2, 2}); output.GenerateTensorValue(GeneratorTensor_2{-2, 2}); break; default: input.GenerateTensorValue(GeneratorTensor_1{1}); output.GenerateTensorValue(GeneratorTensor_1{1}); } DeviceMem in_device_buf(sizeof(InDataType) * input.mDesc.GetElementSpace()); DeviceMem wei_device_buf(sizeof(WeiDataType) * weights_device_result.mDesc.GetElementSpace()); DeviceMem out_device_buf(sizeof(OutDataType) * output.mDesc.GetElementSpace()); in_device_buf.ToDevice(input.mData.data()); out_device_buf.ToDevice(output.mData.data()); // reset input to zero wei_device_buf.SetZero(); if(do_verification) { auto RunReference = [&](auto& ref_conv) { auto ref_invoker = ref_conv.MakeInvoker(); auto ref_argument = ref_conv.MakeArgument(input, weights_host_result, output, conv_filter_strides, conv_filter_dilations, input_left_pads, input_right_pads, InElementOp{}, WeiElementOp{}, OutElementOp{}); ref_invoker.Run(ref_argument); }; auto ref_conv = ck::tensor_operation::host::ReferenceConvBwdWeight(); RunReference(ref_conv); } // add device Conv instances std::vector conv_ptrs; get_device_conv_bwd_weight_op_ptr( InDataType{}, WeiDataType{}, OutDataType{}, conv_ptrs, NDimSpatial); if(conv_ptrs.size() <= 0) { throw std::runtime_error("wrong! no device Conv instance found"); } std::string best_conv_name; float best_ave_time = 0; float best_tflops = 0; float best_gb_per_sec = 0; // profile device Conv instances bool success = true; for(auto& conv_ptr : conv_ptrs) { // using atomic, so need to reset input, setzero is done in invoker // if(split_k > 1) //{ // wei_device_buf.SetZero(); //} auto argument_ptr = conv_ptr->MakeArgumentPointer( static_cast(in_device_buf.GetDeviceBuffer()), static_cast(wei_device_buf.GetDeviceBuffer()), static_cast(out_device_buf.GetDeviceBuffer()), N, K, C, input_spatial_lengths, filter_spatial_lengths, output_spatial_lengths, conv_filter_strides, conv_filter_dilations, input_left_pads, input_right_pads, in_element_op, wei_element_op, out_element_op, split_k); if(!conv_ptr->IsSupportedArgument(argument_ptr.get())) { std::cout << "wrong! device_conv with the specified compilation parameters does " "not support this Conv problem" << std::endl; continue; } auto invoker_ptr = conv_ptr->MakeInvokerPointer(); std::string conv_name = conv_ptr->GetTypeString(); float ave_time = 0; if(std::is_same::value && split_k > 1) { // alloc work space size_t bwd_weight_workspace_size = conv_ptr->GetWorkSpaceSize(argument_ptr.get()); if(bwd_weight_workspace_size <= 0) { printf("wrong work space size\n"); exit(1); } DeviceMem wei_work_space_device_buf(bwd_weight_workspace_size); wei_work_space_device_buf.SetZero(); conv_ptr->SetWorkSpacePointer(argument_ptr.get(), wei_work_space_device_buf.GetDeviceBuffer()); ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel}); } else { ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel}); } std::size_t flop = ck::utils::conv::get_flops(N, C, K, filter_spatial_lengths, output_spatial_lengths); std::size_t num_btype = ck::utils::conv::get_btype( N, C, K, input_spatial_lengths, filter_spatial_lengths, output_spatial_lengths); float tflops = static_cast(flop) / 1.E9 / ave_time; float gb_per_sec = num_btype / 1.E6 / ave_time; std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s" << std::endl; if(tflops > best_tflops) { best_conv_name = conv_name; best_tflops = tflops; best_ave_time = ave_time; best_gb_per_sec = gb_per_sec; } if(do_verification) { wei_device_buf.FromDevice(weights_device_result.mData.data()); float max_error = check_error(weights_host_result, weights_device_result); if(max_error > 8) { std::cout << "Fail Info: " << conv_ptr->GetTypeString() << std::endl; success = false; } else { std::cout << "Pass Info: " << conv_ptr->GetTypeString() << std::endl; } check_error(weights_host_result, weights_device_result); if(do_log) { std::cout << "in : "; show_data_nhwc_layout(output); std::cout << std::endl; std::cout << "wei: "; show_data_nhwc_layout(weights_host_result); std::cout << std::endl; std::cout << "out : "; show_data_nhwc_layout(input); std::cout << std::endl; std::cout << "wei_device: "; show_data_nhwc_layout(weights_device_result); std::cout << std::endl; } } } std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, " << best_gb_per_sec << " GB/s, " << best_conv_name << std::endl; return success; } } // namespace profiler } // namespace ck