// SPDX-License-Identifier: MIT // Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved. #include #include #include #include #include #include #include "ck/ck.hpp" #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" #include "ck/tensor_operation/gpu/device/tensor_layout.hpp" #include "ck/library/utility/check_err.hpp" #include "ck/library/utility/fill.hpp" #include "ck/library/utility/host_tensor.hpp" #include "ck/library/utility/convolution_parameter.hpp" #include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp" #include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp" namespace { using InElementOp = ck::tensor_operation::element_wise::PassThrough; using WeiElementOp = ck::tensor_operation::element_wise::PassThrough; using OutElementOp = ck::tensor_operation::element_wise::PassThrough; template , typename FillWeightsOp = ck::utils::FillConstant> Tensor run_reference_convolution_forward(const ck::utils::conv::ConvParam& conv_param, const FillInputOp& fill_input_op = FillInputOp{}, const FillWeightsOp& fill_weights_op = FillWeightsOp{0.5f}) { const auto in_g_n_c_wis_desc = ck::utils::conv::make_input_host_tensor_descriptor_g_n_c_wis_packed(conv_param); const auto wei_g_k_c_xs_desc = ck::utils::conv::make_weight_host_tensor_descriptor_g_k_c_xs_packed(conv_param); const auto out_g_n_k_wos_desc = ck::utils::conv::make_output_host_tensor_descriptor_g_n_k_wos_packed(conv_param); Tensor input(in_g_n_c_wis_desc); Tensor weights(wei_g_k_c_xs_desc); Tensor host_output(out_g_n_k_wos_desc); fill_input_op(input.begin(), input.end()); fill_weights_op(weights.begin(), weights.end()); std::fill(host_output.begin(), host_output.end(), OutDataType(0.f)); auto ref_conv = ck::tensor_operation::host::ReferenceConvFwd(); auto ref_invoker = ref_conv.MakeInvoker(); auto ref_argument = ref_conv.MakeArgument(input, weights, host_output, conv_param.conv_filter_strides_, conv_param.conv_filter_dilations_, conv_param.input_left_pads_, conv_param.input_right_pads_, InElementOp{}, WeiElementOp{}, OutElementOp{}); ref_invoker.Run(ref_argument); return host_output; } } // anonymous namespace // Eeference convolution assume dimensions of tensor descriptors are in GNCDHW/GKCZYX/GNKDHW order, // regardless of physical tensor layouts in memory. // Some tests below assume dimensions of tensor descriptors can be in other order, and therefore // are disabled // TODO: add more tests, which comply with assumption about dimension order of reference convolution // and add tests for more physical layout #if 0 TEST(ReferenceConvolutionFWD, Conv2DGNHWC) { ck::utils::conv::ConvParam conv_param(2, 1, 1, 1, 2, std::vector{3, 3}, std::vector{6, 6}, std::vector{1, 1}, std::vector{1, 1}, std::vector{0, 0}, std::vector{0, 0}); auto out_tensor = run_reference_convolution_forward<2>(conv_param); std::vector ref_dims{1, 1, 4, 4, 1}; std::vector ref_data{130.5, 148.5, 166.5, 184.5, 238.5, 256.5, 274.5, 292.5, 346.5, 364.5, 382.5, 400.5, 454.5, 472.5, 490.5, 508.5}; EXPECT_TRUE(ck::utils::check_err( out_tensor.mDesc.GetLengths(), ref_dims, "Error: wrong output tensor dimensions!")); EXPECT_TRUE(ck::utils::check_err(out_tensor.mData, ref_data, "Error: incorrect results!")); } TEST(ReferenceConvolutionFWD, Conv2DGNHWCStridesDilationsPadding) { ck::utils::conv::ConvParam conv_param(2, 1, 1, 2, 2, std::vector{3, 3}, std::vector{12, 12}, std::vector{2, 2}, std::vector{2, 2}, std::vector{1, 1}, std::vector{1, 1}); auto out_tensor = run_reference_convolution_forward<2>(conv_param); std::vector ref_dims = std::vector{1, 5, 5, 2}; std::vector ref_data{ 210., 210., 327., 327., 351., 351., 375., 375., 399., 399., 459., 459., 706.5, 706.5, 742.5, 742.5, 778.5, 778.5, 814.5, 814.5, 747., 747., 1138.5, 1138.5, 1174.5, 1174.5, 1210.5, 1210.5, 1246.5, 1246.5, 1035., 1035., 1570.5, 1570.5, 1606.5, 1606.5, 1642.5, 1642.5, 1678.5, 1678.5, 1323., 1323., 2002.5, 2002.5, 2038.5, 2038.5, 2074.5, 2074.5, 2110.5, 2110.5}; EXPECT_TRUE(ck::utils::check_err( out_tensor.mDesc.GetLengths(), ref_dims, "Error: wrong output tensor dimensions!")); EXPECT_TRUE(ck::utils::check_err(out_tensor.mData, ref_data, "Error: incorrect results!")); } TEST(ReferenceConvolutionFWD, Conv1DGNWC) { ck::utils::conv::ConvParam conv_param(1, 1, 1, 1, 2, std::vector{3}, std::vector{6}, std::vector{1}, std::vector{1}, std::vector{0}, std::vector{0}); auto out_tensor = run_reference_convolution_forward<1, float, float, float, ck::tensor_layout::convolution::GNWC, ck::tensor_layout::convolution::GKXC, ck::tensor_layout::convolution::GNWK>(conv_param); std::vector ref_dims{1, 1, 4, 1}; std::vector ref_data{7.5, 13.5, 19.5, 25.5}; EXPECT_TRUE(ck::utils::check_err( out_tensor.mDesc.GetLengths(), ref_dims, "Error: wrong output tensor dimensions!")); EXPECT_TRUE(ck::utils::check_err(out_tensor.mData, ref_data, "Error: incorrect results!")); } TEST(ReferenceConvolutionFWD, Conv1DGNWCStridesDilationsPadding) { ck::utils::conv::ConvParam conv_param(1, 1, 1, 2, 2, std::vector{3}, std::vector{12}, std::vector{2}, std::vector{2}, std::vector{1}, std::vector{1}); auto out_tensor = run_reference_convolution_forward<1, float, float, float, ck::tensor_layout::convolution::GNWC, ck::tensor_layout::convolution::GKXC, ck::tensor_layout::convolution::GNWK>(conv_param); std::vector ref_dims{1, 1, 5, 2}; std::vector ref_data{9., 9., 19.5, 19.5, 31.5, 31.5, 43.5, 43.5, 55.5, 55.5}; EXPECT_TRUE(ck::utils::check_err( out_tensor.mDesc.GetLengths(), ref_dims, "Error: wrong output tensor dimensions!")); EXPECT_TRUE(ck::utils::check_err(out_tensor.mData, ref_data, "Error: incorrect results!")); } TEST(ReferenceConvolutionFWD, Conv1DGNWCSameOutputSize) { ck::utils::conv::ConvParam conv_param(1, 1, 2, 16, 4, std::vector{3}, std::vector{16}, std::vector{1}, std::vector{1}, std::vector{1}, std::vector{1}); auto out_tensor2 = run_reference_convolution_forward<1, float, float, float, ck::tensor_layout::convolution::GNWC, ck::tensor_layout::convolution::GKXC, ck::tensor_layout::convolution::GNWK>( conv_param, ck::utils::FillMonotonicSeq{0.f, 0.1f}); std::vector ref_dims{1, 2, 16, 16}; std::vector ref_data{ 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 3.3, 3.3, 3.3, 3.3, 3.3, 3.3, 3.3, 3.3, 3.3, 3.3, 3.3, 3.3, 3.3, 3.3, 3.3, 3.3, 5.7, 5.7, 5.7, 5.7, 5.7, 5.7, 5.7, 5.7, 5.7, 5.7, 5.7, 5.7, 5.7, 5.7, 5.7, 5.7, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 10.5, 10.5, 10.5, 10.5, 10.5, 10.5, 10.5, 10.5, 10.5, 10.5, 10.5, 10.5, 10.5, 10.5, 10.5, 10.5, 12.900001, 12.900001, 12.900001, 12.900001, 12.900001, 12.900001, 12.900001, 12.900001, 12.900001, 12.900001, 12.900001, 12.900001, 12.900001, 12.900001, 12.900001, 12.900001, 15.3, 15.3, 15.3, 15.3, 15.3, 15.3, 15.3, 15.3, 15.3, 15.3, 15.3, 15.3, 15.3, 15.3, 15.3, 15.3, 17.7, 17.7, 17.7, 17.7, 17.7, 17.7, 17.7, 17.7, 17.7, 17.7, 17.7, 17.7, 17.7, 17.7, 17.7, 17.7, 20.1, 20.1, 20.1, 20.1, 20.1, 20.1, 20.1, 20.1, 20.1, 20.1, 20.1, 20.1, 20.1, 20.1, 20.1, 20.1, 22.5, 22.5, 22.5, 22.5, 22.5, 22.5, 22.5, 22.5, 22.5, 22.5, 22.5, 22.5, 22.5, 22.5, 22.5, 22.5, 24.900002, 24.900002, 24.900002, 24.900002, 24.900002, 24.900002, 24.900002, 24.900002, 24.900002, 24.900002, 24.900002, 24.900002, 24.900002, 24.900002, 24.900002, 24.900002, 27.300001, 27.300001, 27.300001, 27.300001, 27.300001, 27.300001, 27.300001, 27.300001, 27.300001, 27.300001, 27.300001, 27.300001, 27.300001, 27.300001, 27.300001, 27.300001, 29.7, 29.7, 29.7, 29.7, 29.7, 29.7, 29.7, 29.7, 29.7, 29.7, 29.7, 29.7, 29.7, 29.7, 29.7, 29.7, 32.100002, 32.100002, 32.100002, 32.100002, 32.100002, 32.100002, 32.100002, 32.100002, 32.100002, 32.100002, 32.100002, 32.100002, 32.100002, 32.100002, 32.100002, 32.100002, 34.5, 34.5, 34.5, 34.5, 34.5, 34.5, 34.5, 34.5, 34.5, 34.5, 34.5, 34.5, 34.5, 34.5, 34.5, 34.5, 23.8, 23.8, 23.8, 23.8, 23.8, 23.8, 23.8, 23.8, 23.8, 23.8, 23.8, 23.8, 23.8, 23.8, 23.8, 23.8, 27., 27., 27., 27., 27., 27., 27., 27., 27., 27., 27., 27., 27., 27., 27., 27., 41.7, 41.7, 41.7, 41.7, 41.7, 41.7, 41.7, 41.7, 41.7, 41.7, 41.7, 41.7, 41.7, 41.7, 41.7, 41.7, 44.100002, 44.100002, 44.100002, 44.100002, 44.100002, 44.100002, 44.100002, 44.100002, 44.100002, 44.100002, 44.100002, 44.100002, 44.100002, 44.100002, 44.100002, 44.100002, 46.5, 46.5, 46.5, 46.5, 46.5, 46.5, 46.5, 46.5, 46.5, 46.5, 46.5, 46.5, 46.5, 46.5, 46.5, 46.5, 48.899998, 48.899998, 48.899998, 48.899998, 48.899998, 48.899998, 48.899998, 48.899998, 48.899998, 48.899998, 48.899998, 48.899998, 48.899998, 48.899998, 48.899998, 48.899998, 51.3, 51.3, 51.3, 51.3, 51.3, 51.3, 51.3, 51.3, 51.3, 51.3, 51.3, 51.3, 51.3, 51.3, 51.3, 51.3, 53.7, 53.7, 53.7, 53.7, 53.7, 53.7, 53.7, 53.7, 53.7, 53.7, 53.7, 53.7, 53.7, 53.7, 53.7, 53.7, 56.100002, 56.100002, 56.100002, 56.100002, 56.100002, 56.100002, 56.100002, 56.100002, 56.100002, 56.100002, 56.100002, 56.100002, 56.100002, 56.100002, 56.100002, 56.100002, 58.5, 58.5, 58.5, 58.5, 58.5, 58.5, 58.5, 58.5, 58.5, 58.5, 58.5, 58.5, 58.5, 58.5, 58.5, 58.5, 60.899998, 60.899998, 60.899998, 60.899998, 60.899998, 60.899998, 60.899998, 60.899998, 60.899998, 60.899998, 60.899998, 60.899998, 60.899998, 60.899998, 60.899998, 60.899998, 63.3, 63.3, 63.3, 63.3, 63.3, 63.3, 63.3, 63.3, 63.3, 63.3, 63.3, 63.3, 63.3, 63.3, 63.3, 63.3, 65.7, 65.7, 65.7, 65.7, 65.7, 65.7, 65.7, 65.7, 65.7, 65.7, 65.7, 65.7, 65.7, 65.7, 65.7, 65.7, 68.1, 68.1, 68.1, 68.1, 68.1, 68.1, 68.1, 68.1, 68.1, 68.1, 68.1, 68.1, 68.1, 68.1, 68.1, 68.1, 70.5, 70.5, 70.5, 70.5, 70.5, 70.5, 70.5, 70.5, 70.5, 70.5, 70.5, 70.5, 70.5, 70.5, 70.5, 70.5, 72.9, 72.9, 72.9, 72.9, 72.9, 72.9, 72.9, 72.9, 72.9, 72.9, 72.9, 72.9, 72.9, 72.9, 72.9, 72.9, 49.4, 49.4, 49.4, 49.4, 49.4, 49.4, 49.4, 49.4, 49.4, 49.4, 49.4, 49.4, 49.4, 49.4, 49.4, 49.4}; EXPECT_TRUE(ck::utils::check_err( out_tensor2.mDesc.GetLengths(), ref_dims, "Error: wrong output tensor dimensions!")); EXPECT_TRUE(ck::utils::check_err(out_tensor2.mData, ref_data, "Error: incorrect results!")); } #endif TEST(ReferenceConvolutionFWD, Conv3DGNCDHW) { ck::utils::conv::ConvParam conv_param(3, 1, 1, 1, 2, std::vector{3, 3, 3}, std::vector{6, 6, 6}, std::vector{1, 1, 1}, std::vector{1, 1, 1}, std::vector{0, 0, 0}, std::vector{0, 0, 0}); auto out_tensor = run_reference_convolution_forward<3, float, float, float, ck::tensor_layout::convolution::GNCDHW, ck::tensor_layout::convolution::GKCZYX, ck::tensor_layout::convolution::GNKDHW>( conv_param, ck::utils::FillMonotonicSeq{0.f, 0.1f}); std::vector ref_dims{1, 1, 1, 4, 4, 4}; std::vector ref_data{ 407.7, 410.40002, 413.09998, 415.80002, 423.90002, 426.6, 429.30002, 432., 440.1, 442.80002, 445.5, 448.2, 456.30002, 459., 461.7, 464.40002, 504.90002, 507.6, 510.30002, 513., 521.1, 523.8, 526.5, 529.2001, 537.3, 540., 542.7001, 545.4, 553.5, 556.2001, 558.9, 561.6, 602.10004, 604.8, 607.5, 610.2, 618.3, 621., 623.7, 626.4, 634.5, 637.2, 639.9, 642.60004, 650.7, 653.4, 656.10004, 658.8, 699.3, 702., 704.7, 707.4, 715.5, 718.2, 720.9, 723.60004, 731.7, 734.4001, 737.10004, 739.8, 747.9001, 750.60004, 753.3, 756.}; EXPECT_TRUE(ck::utils::check_err(out_tensor.mDesc.GetLengths(), ref_dims, "Error [case 1]: wrong output tensor dimensions!")); EXPECT_TRUE( ck::utils::check_err(out_tensor.mData, ref_data, "Error [case 1]: incorrect results!")); } TEST(ReferenceConvolutionFWD, Conv3DGNCDHWStridesDilations) { ck::utils::conv::ConvParam conv_param(3, 1, 1, 2, 2, std::vector{3, 3, 3}, std::vector{12, 12, 12}, std::vector{3, 3, 3}, std::vector{1, 1, 1}, std::vector{0, 0, 0}, std::vector{0, 0, 0}); auto out_tensor = run_reference_convolution_forward<3, float, float, float, ck::tensor_layout::convolution::GNCDHW, ck::tensor_layout::convolution::GKCZYX, ck::tensor_layout::convolution::GNKDHW>( conv_param, ck::utils::FillMonotonicSeq{0.f, 0.1f}); std::vector ref_dims{1, 1, 2, 4, 4, 4}; std::vector ref_data{ 2756.7002, 2764.7998, 2772.9001, 2781., 2853.9001, 2862., 2870.1, 2878.2002, 2951.1, 2959.2002, 2967.2998, 2975.4001, 3048.2998, 3056.4001, 3064.5, 3072.6, 3923.1, 3931.2, 3939.2998, 3947.4, 4020.2998, 4028.4001, 4036.5002, 4044.5999, 4117.5, 4125.6, 4133.7, 4141.8, 4214.7, 4222.8, 4230.9004, 4239., 5089.5, 5097.5996, 5105.7, 5113.8, 5186.7, 5194.8, 5202.9, 5211., 5283.9004, 5292., 5300.0996, 5308.2, 5381.0996, 5389.2, 5397.3, 5405.4004, 6255.9004, 6264.0005, 6272.1, 6280.2, 6353.1, 6361.2, 6369.301, 6377.4, 6450.301, 6458.4, 6466.5, 6474.6, 6547.5, 6555.6, 6563.699, 6571.801, 2756.7002, 2764.7998, 2772.9001, 2781., 2853.9001, 2862., 2870.1, 2878.2002, 2951.1, 2959.2002, 2967.2998, 2975.4001, 3048.2998, 3056.4001, 3064.5, 3072.6, 3923.1, 3931.2, 3939.2998, 3947.4, 4020.2998, 4028.4001, 4036.5002, 4044.5999, 4117.5, 4125.6, 4133.7, 4141.8, 4214.7, 4222.8, 4230.9004, 4239., 5089.5, 5097.5996, 5105.7, 5113.8, 5186.7, 5194.8, 5202.9, 5211., 5283.9004, 5292., 5300.0996, 5308.2, 5381.0996, 5389.2, 5397.3, 5405.4004, 6255.9004, 6264.0005, 6272.1, 6280.2, 6353.1, 6361.2, 6369.301, 6377.4, 6450.301, 6458.4, 6466.5, 6474.6, 6547.5, 6555.6, 6563.699, 6571.801}; EXPECT_TRUE(ck::utils::check_err(out_tensor.mDesc.GetLengths(), ref_dims, "Error [case 2]: wrong output tensor dimensions!")); EXPECT_TRUE(ck::utils::check_err( out_tensor.mData, ref_data, "Error [case 2]: incorrect results!", 1e-4f, 1e-6f)); }