#include #include #include #include #include "nvToolsExt.h" #include "tensor.hpp" #include "ConstantTensorDescriptor.cuh" #include "conv_common.cuh" #include "device_direct_convolution_1.cuh" #include "device_direct_convolution_2.cuh" #include "device_implicit_gemm_convolution_nchw_kcsr.cuh" #include "device_implicit_gemm_convolution_nchw_srck.cuh" //#include "device_winograd_convolution.cuh" struct GeneratorTensor_1 { template double operator()(Is... is) { return 1; } }; struct GeneratorTensor_2 { int min_value = 0; int max_value = 1; template double operator()(Is...) { return (std::rand() % (max_value - min_value)) + min_value; } }; struct GeneratorTensor_3 { template double operator()(Is... is) { #if 0 std::initializer_list ls = {static_cast(is)...}; return std::accumulate(ls.begin(), ls.end(), std::size_t(0)); #elif 1 assert(sizeof...(Is) > 0); std::initializer_list ids = {static_cast(is)...}; std::vector lens(sizeof...(Is), 100); std::vector strides(sizeof...(Is), 1); std::partial_sum(lens.rbegin(), lens.rbegin() + (sizeof...(Is) - 1), strides.rbegin() + 1); return std::inner_product(ids.begin(), ids.end(), strides.begin(), std::size_t(0)) + 1; #endif } }; // this is ugly, only for 4d template void ostream_ConstantTensorDescriptor(TConstTensorDesc, std::ostream& os = std::cout) { static_assert(TConstTensorDesc::nDim == 4, "nDim is not 4"); constexpr auto I0 = Number<0>{}; constexpr auto I1 = Number<1>{}; constexpr auto I2 = Number<2>{}; constexpr auto I3 = Number<3>{}; constexpr auto desc = TConstTensorDesc{}; os << "Lengths: {" << desc.GetLength(I0) << ", " << desc.GetLength(I1) << ", " << desc.GetLength(I2) << ", " << desc.GetLength(I3) << "}, " << "Strides: {" << desc.GetStride(I0) << ", " << desc.GetStride(I1) << ", " << desc.GetStride(I2) << ", " << desc.GetStride(I3) << "}" << std::endl; } // this is ugly, only for 4d template auto make_TensorDescriptor(TConstTensorDesc) { static_assert(TConstTensorDesc::nDim == 4, "nDim is not 4"); constexpr auto I0 = Number<0>{}; constexpr auto I1 = Number<1>{}; constexpr auto I2 = Number<2>{}; constexpr auto I3 = Number<3>{}; constexpr auto desc = TConstTensorDesc{}; std::initializer_list lengths = { desc.GetLength(I0), desc.GetLength(I1), desc.GetLength(I2), desc.GetLength(I3)}; std::initializer_list strides = { desc.GetStride(I0), desc.GetStride(I1), desc.GetStride(I2), desc.GetStride(I3)}; return TensorDescriptor(lengths, strides); } template void host_direct_convolution(const Tensor& in_nchw, const Tensor& wei_kcsr, Tensor& out) { auto f = [&](auto n, auto k, auto ho, auto wo) { double v = 0; for(int c = 0; c < wei_kcsr.mDesc.GetLengths()[1]; ++c) { for(int y = 0; y < wei_kcsr.mDesc.GetLengths()[2]; ++y) { int hi = ho + y; for(int x = 0; x < wei_kcsr.mDesc.GetLengths()[3]; ++x) { int wi = wo + x; v += in_nchw(n, c, hi, wi) * wei_kcsr(k, c, y, x); } } } out(n, k, ho, wo) = v; }; auto f_par = make_ParallelTensorFunctor(f, out.mDesc.GetLengths()[0], out.mDesc.GetLengths()[1], out.mDesc.GetLengths()[2], out.mDesc.GetLengths()[3]); f_par(std::thread::hardware_concurrency()); } template void host_winograd_3x3_convolution(const Tensor& in_nchw, const Tensor& wei_kcsr, Tensor& out) { constexpr std::size_t OutTileSizeH = 2; constexpr std::size_t OutTileSizeW = 2; std::size_t N = in_nchw.mDesc.GetLengths()[0]; std::size_t C = in_nchw.mDesc.GetLengths()[1]; std::size_t HI = in_nchw.mDesc.GetLengths()[2]; std::size_t WI = in_nchw.mDesc.GetLengths()[3]; std::size_t K = wei_kcsr.mDesc.GetLengths()[0]; std::size_t S = wei_kcsr.mDesc.GetLengths()[2]; std::size_t R = wei_kcsr.mDesc.GetLengths()[3]; std::size_t HO = out.mDesc.GetLengths()[2]; std::size_t WO = out.mDesc.GetLengths()[3]; std::size_t InTileSizeH = OutTileSizeH + S - 1; std::size_t InTileSizeW = OutTileSizeW + R - 1; std::size_t Y = (HO + OutTileSizeH - 1) / OutTileSizeH; std::size_t X = (WO + OutTileSizeW - 1) / OutTileSizeW; Tensor in_hold({N, C, Y, X, InTileSizeH, InTileSizeW}); Tensor in_transform({N, C, Y, X, InTileSizeH, InTileSizeW}); Tensor wei_transform({K, C, InTileSizeH, InTileSizeW}); Tensor out_transform({N, K, Y, X, InTileSizeH, InTileSizeH}); Tensor out_hold({N, K, Y, X, OutTileSizeH, OutTileSizeW}); auto f_in_hold = [&](auto n, auto c, auto y, auto x) { for(int j = 0; j < InTileSizeH; ++j) { std::size_t hi = OutTileSizeH * y + j; for(int i = 0; i < InTileSizeW; ++i) { std::size_t wi = OutTileSizeW * x + i; in_hold(n, c, y, x, j, i) = in_nchw(n, c, hi, wi); } } }; auto f_in_transform = [&](auto n, auto c, auto y, auto x) { in_transform(n, c, y, x, 0, 0) = in_hold(n, c, y, x, 0, 0) - in_hold(n, c, y, x, 0, 2) - in_hold(n, c, y, x, 2, 0) + in_hold(n, c, y, x, 2, 2); in_transform(n, c, y, x, 0, 1) = in_hold(n, c, y, x, 0, 1) + in_hold(n, c, y, x, 0, 2) - in_hold(n, c, y, x, 2, 1) - in_hold(n, c, y, x, 2, 2); in_transform(n, c, y, x, 0, 2) = -in_hold(n, c, y, x, 0, 1) + in_hold(n, c, y, x, 0, 2) + in_hold(n, c, y, x, 2, 1) - in_hold(n, c, y, x, 2, 2); in_transform(n, c, y, x, 0, 3) = in_hold(n, c, y, x, 0, 1) - in_hold(n, c, y, x, 0, 3) - in_hold(n, c, y, x, 2, 1) + in_hold(n, c, y, x, 2, 3); in_transform(n, c, y, x, 1, 0) = in_hold(n, c, y, x, 1, 0) - in_hold(n, c, y, x, 1, 2) + in_hold(n, c, y, x, 2, 0) - in_hold(n, c, y, x, 2, 2); in_transform(n, c, y, x, 1, 1) = in_hold(n, c, y, x, 1, 1) + in_hold(n, c, y, x, 1, 2) + in_hold(n, c, y, x, 2, 1) + in_hold(n, c, y, x, 2, 2); in_transform(n, c, y, x, 1, 2) = -in_hold(n, c, y, x, 1, 1) + in_hold(n, c, y, x, 1, 2) - in_hold(n, c, y, x, 2, 1) + in_hold(n, c, y, x, 2, 2); in_transform(n, c, y, x, 1, 3) = in_hold(n, c, y, x, 1, 1) - in_hold(n, c, y, x, 1, 3) + in_hold(n, c, y, x, 2, 1) - in_hold(n, c, y, x, 2, 3); in_transform(n, c, y, x, 2, 0) = -in_hold(n, c, y, x, 1, 0) + in_hold(n, c, y, x, 1, 2) + in_hold(n, c, y, x, 2, 0) - in_hold(n, c, y, x, 2, 2); in_transform(n, c, y, x, 2, 1) = -in_hold(n, c, y, x, 1, 1) - in_hold(n, c, y, x, 1, 2) + in_hold(n, c, y, x, 2, 1) + in_hold(n, c, y, x, 2, 2); in_transform(n, c, y, x, 2, 2) = in_hold(n, c, y, x, 1, 1) - in_hold(n, c, y, x, 1, 2) - in_hold(n, c, y, x, 2, 1) + in_hold(n, c, y, x, 2, 2); in_transform(n, c, y, x, 2, 3) = -in_hold(n, c, y, x, 1, 1) + in_hold(n, c, y, x, 1, 3) + in_hold(n, c, y, x, 2, 1) - in_hold(n, c, y, x, 2, 3); in_transform(n, c, y, x, 3, 0) = in_hold(n, c, y, x, 1, 0) - in_hold(n, c, y, x, 1, 2) - in_hold(n, c, y, x, 3, 0) + in_hold(n, c, y, x, 3, 2); in_transform(n, c, y, x, 3, 1) = in_hold(n, c, y, x, 1, 1) + in_hold(n, c, y, x, 1, 2) - in_hold(n, c, y, x, 3, 1) - in_hold(n, c, y, x, 3, 2); in_transform(n, c, y, x, 3, 2) = -in_hold(n, c, y, x, 1, 1) + in_hold(n, c, y, x, 1, 2) + in_hold(n, c, y, x, 3, 1) - in_hold(n, c, y, x, 3, 2); in_transform(n, c, y, x, 3, 3) = in_hold(n, c, y, x, 1, 1) - in_hold(n, c, y, x, 1, 3) - in_hold(n, c, y, x, 3, 1) + in_hold(n, c, y, x, 3, 3); }; auto f_wei_transform = [&](auto k, auto c) { wei_transform(k, c, 0, 0) = wei_kcsr(k, c, 0, 0); wei_transform(k, c, 0, 1) = 0.5 * wei_kcsr(k, c, 0, 0) + 0.5 * wei_kcsr(k, c, 0, 1) + 0.5 * wei_kcsr(k, c, 0, 2); wei_transform(k, c, 0, 2) = 0.5 * wei_kcsr(k, c, 0, 0) - 0.5 * wei_kcsr(k, c, 0, 1) + 0.5 * wei_kcsr(k, c, 0, 2); wei_transform(k, c, 0, 3) = wei_kcsr(k, c, 0, 2); wei_transform(k, c, 1, 0) = 0.5 * wei_kcsr(k, c, 0, 0) + 0.5 * wei_kcsr(k, c, 1, 0) + 0.5 * wei_kcsr(k, c, 2, 0); wei_transform(k, c, 1, 1) = 0.25 * wei_kcsr(k, c, 0, 0) + 0.25 * wei_kcsr(k, c, 0, 1) + 0.25 * wei_kcsr(k, c, 0, 2) + 0.25 * wei_kcsr(k, c, 1, 0) + 0.25 * wei_kcsr(k, c, 1, 1) + 0.25 * wei_kcsr(k, c, 1, 2) + 0.25 * wei_kcsr(k, c, 2, 0) + 0.25 * wei_kcsr(k, c, 2, 1) + 0.25 * wei_kcsr(k, c, 2, 2); wei_transform(k, c, 1, 2) = 0.25 * wei_kcsr(k, c, 0, 0) - 0.25 * wei_kcsr(k, c, 0, 1) + 0.25 * wei_kcsr(k, c, 0, 2) + 0.25 * wei_kcsr(k, c, 1, 0) - 0.25 * wei_kcsr(k, c, 1, 1) + 0.25 * wei_kcsr(k, c, 1, 2) + 0.25 * wei_kcsr(k, c, 2, 0) - 0.25 * wei_kcsr(k, c, 2, 1) + 0.25 * wei_kcsr(k, c, 2, 2); wei_transform(k, c, 1, 3) = 0.5 * wei_kcsr(k, c, 0, 2) + 0.5 * wei_kcsr(k, c, 1, 2) + 0.5 * wei_kcsr(k, c, 2, 2); wei_transform(k, c, 2, 0) = 0.5 * wei_kcsr(k, c, 0, 0) - 0.5 * wei_kcsr(k, c, 1, 0) + 0.5 * wei_kcsr(k, c, 2, 0); wei_transform(k, c, 2, 1) = 0.25 * wei_kcsr(k, c, 0, 0) + 0.25 * wei_kcsr(k, c, 0, 1) + 0.25 * wei_kcsr(k, c, 0, 2) - 0.25 * wei_kcsr(k, c, 1, 0) - 0.25 * wei_kcsr(k, c, 1, 1) - 0.25 * wei_kcsr(k, c, 1, 2) + 0.25 * wei_kcsr(k, c, 2, 0) + 0.25 * wei_kcsr(k, c, 2, 1) + 0.25 * wei_kcsr(k, c, 2, 2); wei_transform(k, c, 2, 2) = 0.25 * wei_kcsr(k, c, 0, 0) - 0.25 * wei_kcsr(k, c, 0, 1) + 0.25 * wei_kcsr(k, c, 0, 2) - 0.25 * wei_kcsr(k, c, 1, 0) + 0.25 * wei_kcsr(k, c, 1, 1) - 0.25 * wei_kcsr(k, c, 1, 2) + 0.25 * wei_kcsr(k, c, 2, 0) - 0.25 * wei_kcsr(k, c, 2, 1) + 0.25 * wei_kcsr(k, c, 2, 2); wei_transform(k, c, 2, 3) = 0.5 * wei_kcsr(k, c, 0, 2) - 0.5 * wei_kcsr(k, c, 1, 2) + 0.5 * wei_kcsr(k, c, 2, 2); wei_transform(k, c, 3, 0) = wei_kcsr(k, c, 2, 0); wei_transform(k, c, 3, 1) = 0.5 * wei_kcsr(k, c, 2, 0) + 0.5 * wei_kcsr(k, c, 2, 1) + 0.5 * wei_kcsr(k, c, 2, 2); wei_transform(k, c, 3, 2) = 0.5 * wei_kcsr(k, c, 2, 0) - 0.5 * wei_kcsr(k, c, 2, 1) + 0.5 * wei_kcsr(k, c, 2, 2); wei_transform(k, c, 3, 3) = wei_kcsr(k, c, 2, 2); }; auto f_out_transform = [&](auto n, auto k, auto y, auto x) { for(int j = 0; j < InTileSizeH; ++j) { for(int i = 0; i < InTileSizeW; ++i) { double v = 0; for(int c = 0; c < C; ++c) { v += in_transform(n, c, y, x, j, i) * wei_transform(k, c, j, i); } out_transform(n, k, y, x, j, i) = v; } } }; auto f_out_hold = [&](auto n, auto k, auto y, auto x) { out_hold(n, k, y, x, 0, 0) = out_transform(n, k, y, x, 0, 0) + out_transform(n, k, y, x, 0, 1) + out_transform(n, k, y, x, 0, 2) + out_transform(n, k, y, x, 1, 0) + out_transform(n, k, y, x, 1, 1) + out_transform(n, k, y, x, 1, 2) + out_transform(n, k, y, x, 2, 0) + out_transform(n, k, y, x, 2, 1) + out_transform(n, k, y, x, 2, 2); out_hold(n, k, y, x, 0, 1) = out_transform(n, k, y, x, 0, 1) - out_transform(n, k, y, x, 0, 2) - out_transform(n, k, y, x, 0, 3) + out_transform(n, k, y, x, 1, 1) - out_transform(n, k, y, x, 1, 2) - out_transform(n, k, y, x, 1, 3) + out_transform(n, k, y, x, 2, 1) - out_transform(n, k, y, x, 2, 2) - out_transform(n, k, y, x, 2, 3); out_hold(n, k, y, x, 1, 0) = out_transform(n, k, y, x, 1, 0) + out_transform(n, k, y, x, 1, 1) + out_transform(n, k, y, x, 1, 2) - out_transform(n, k, y, x, 2, 0) - out_transform(n, k, y, x, 2, 1) - out_transform(n, k, y, x, 2, 2) - out_transform(n, k, y, x, 3, 0) - out_transform(n, k, y, x, 3, 1) - out_transform(n, k, y, x, 3, 2); out_hold(n, k, y, x, 1, 1) = out_transform(n, k, y, x, 1, 1) - out_transform(n, k, y, x, 1, 2) - out_transform(n, k, y, x, 1, 3) - out_transform(n, k, y, x, 2, 1) + out_transform(n, k, y, x, 2, 2) + out_transform(n, k, y, x, 2, 3) - out_transform(n, k, y, x, 3, 1) + out_transform(n, k, y, x, 3, 2) + out_transform(n, k, y, x, 3, 3); }; auto f_out = [&](auto n, auto k, auto y, auto x) { for(int j = 0; j < OutTileSizeH; ++j) { std::size_t ho = OutTileSizeH * y + j; for(int i = 0; i < OutTileSizeW; ++i) { std::size_t wo = OutTileSizeW * x + i; out(n, k, ho, wo) = out_hold(n, k, y, x, j, i); } } }; std::size_t num_thread = std::thread::hardware_concurrency(); make_ParallelTensorFunctor(f_in_hold, N, C, Y, X)(num_thread); make_ParallelTensorFunctor(f_in_transform, N, C, Y, X)(num_thread); make_ParallelTensorFunctor(f_wei_transform, K, C)(num_thread); make_ParallelTensorFunctor(f_out_transform, N, K, Y, X)(num_thread); make_ParallelTensorFunctor(f_out_hold, N, K, Y, X)(num_thread); make_ParallelTensorFunctor(f_out, N, K, Y, X)(num_thread); } template void check_error(const Tensor& ref, const Tensor& result) { float error = 0; float max_diff = -1; float ref_value = 0, result_value = 0; for(int i = 0; i < ref.mData.size(); ++i) { error += std::abs(ref.mData[i] - result.mData[i]); float diff = std::abs(ref.mData[i] - result.mData[i]); if(max_diff < diff) { max_diff = diff; ref_value = ref.mData[i]; result_value = result.mData[i]; } } std::cout << "error: " << error << std::endl; std::cout << "max_diff: " << max_diff << ", " << ref_value << ", " << result_value << std::endl; } int main() { #if 0 constexpr unsigned N = 1; constexpr unsigned C = 1; constexpr unsigned HI = 34; constexpr unsigned WI = 34; constexpr unsigned K = 1; constexpr unsigned S = 3; constexpr unsigned R = 3; #elif 1 constexpr unsigned N = 64; constexpr unsigned C = 256; constexpr unsigned HI = 34; constexpr unsigned WI = 34; constexpr unsigned K = 64; constexpr unsigned S = 3; constexpr unsigned R = 3; #elif 0 constexpr unsigned N = 64; constexpr unsigned C = 64; constexpr unsigned HI = 56; constexpr unsigned WI = 56; constexpr unsigned K = 64; constexpr unsigned S = 3; constexpr unsigned R = 3; #elif 0 constexpr unsigned N = 64; constexpr unsigned C = 256; constexpr unsigned HI = 36; constexpr unsigned WI = 36; constexpr unsigned K = 64; constexpr unsigned S = 5; constexpr unsigned R = 5; #endif auto in_nchw_desc = make_ConstantTensorDescriptor(Sequence{}); auto wei_kcsr_desc = make_ConstantTensorDescriptor(Sequence{}); auto out_nkhw_desc = get_convolution_output_default_4d_tensor_descriptor(in_nchw_desc, wei_kcsr_desc); ostream_ConstantTensorDescriptor(in_nchw_desc, std::cout << "in_nchw_desc: "); ostream_ConstantTensorDescriptor(wei_kcsr_desc, std::cout << "wei_kcsr_desc: "); ostream_ConstantTensorDescriptor(out_nkhw_desc, std::cout << "out_nkhw_desc: "); Tensor in_nchw(make_TensorDescriptor(in_nchw_desc)); Tensor wei_kcsr(make_TensorDescriptor(wei_kcsr_desc)); Tensor out_nkhw_host(make_TensorDescriptor(out_nkhw_desc)); Tensor out_nkhw_device(make_TensorDescriptor(out_nkhw_desc)); std::size_t num_thread = std::thread::hardware_concurrency(); #if 0 in_nchw.GenerateTensorValue(GeneratorTensor_1{}, num_thread); wei_kcsr.GenerateTensorValue(GeneratorTensor_1{}, num_thread); #elif 0 in_nchw.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread); wei_kcsr.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread); #endif for(int i = 0; i < 40; ++i) { #if 0 device_direct_convolution_1(in_nchw_desc, in_nchw, wei_kcsr_desc, wei_kcsr, out_nkhw_desc, out_nkhw_device); #elif 0 device_direct_convolution_2( in_nchw_desc, in_nchw, wei_kcsr_desc, wei_kcsr, out_nkhw_desc, out_nkhw_device); #elif 1 device_implicit_gemm_convolution_nchw_kcsr( in_nchw_desc, in_nchw, wei_kcsr_desc, wei_kcsr, out_nkhw_desc, out_nkhw_device); #elif 1 device_implicit_gemm_convolution_nchw_srck( in_nchw_desc, in_nchw, wei_kcsr_desc, wei_kcsr, out_nkhw_desc, out_nkhw_device); #elif 0 device_winograd_convolution( in_nchw_desc, in_nchw, wei_kcsr_desc, wei_kcsr, out_nkhw_desc, out_nkhw_device); #endif } #if 0 host_winograd_3x3_convolution(in_nchw, wei_kcsr, out_nkhw_host); check_error(out_nkhw_host, out_nkhw_device); #elif 0 host_direct_convolution(in_nchw, wei_kcsr, out_nkhw_host); check_error(out_nkhw_host, out_nkhw_device); #endif #if 0 LogRange(std::cout << "in_nchw : ", in_nchw.mData, ",") << std::endl; LogRange(std::cout << "wei_kcsr: ", wei_kcsr.mData, ",") << std::endl; LogRange(std::cout << "out_nkhw_host : ", out_nkhw_host.mData, ",") << std::endl; LogRange(std::cout << "out_nkhw_device: ", out_nkhw_device.mData, ",") << std::endl; #endif }