#include #include #include #include #include #include "profile_convnd_fwd.hpp" int profile_gemm(int, char*[]); int profile_gemm_bias_2d(int, char*[]); int profile_gemm_bias_relu(int, char*[]); int profile_gemm_bias_relu_add(int, char*[]); int profile_gemm_reduce(int, char*[]); int profile_batched_gemm(int, char*[]); int profile_grouped_gemm(int, char*[]); int profile_conv_fwd_bias_relu(int, char*[]); int profile_conv_fwd_bias_relu_add(int, char*[]); int profile_conv_fwd_bias_relu_atomic_add(int, char*[]); int profile_convnd_bwd_data(int, char*[], int); int profile_reduce(int, char*[]); int profile_conv_bwd_weight(int, char*[]); int profile_batched_gemm_reduce(int, char*[]); int main(int argc, char* argv[]) { if(strcmp(argv[1], "gemm") == 0) { return profile_gemm(argc, argv); } else if(strcmp(argv[1], "gemm_bias_2d") == 0) { return profile_gemm_bias_2d(argc, argv); } else if(strcmp(argv[1], "gemm_bias_relu") == 0) { return profile_gemm_bias_relu(argc, argv); } else if(strcmp(argv[1], "gemm_bias_relu_add") == 0) { return profile_gemm_bias_relu_add(argc, argv); } else if(strcmp(argv[1], "gemm_reduce") == 0) { return profile_gemm_reduce(argc, argv); } else if(strcmp(argv[1], "batched_gemm") == 0) { return profile_batched_gemm(argc, argv); } else if(strcmp(argv[1], "batched_gemm_reduce") == 0) { return profile_batched_gemm_reduce(argc, argv); } else if(strcmp(argv[1], "grouped_gemm") == 0) { profile_grouped_gemm(argc, argv); } else if(strcmp(argv[1], "conv_fwd") == 0) { return ck::profiler::profile_convnd_fwd(argc, argv); } else if(strcmp(argv[1], "conv_fwd_bias_relu") == 0) { return profile_conv_fwd_bias_relu(argc, argv); } else if(strcmp(argv[1], "conv_fwd_bias_relu_add") == 0) { return profile_conv_fwd_bias_relu_add(argc, argv); } else if(strcmp(argv[1], "conv_fwd_bias_relu_atomic_add") == 0) { return profile_conv_fwd_bias_relu_atomic_add(argc, argv); } else if(strcmp(argv[1], "conv1d_bwd_data") == 0) { return profile_convnd_bwd_data(argc, argv, 1); } else if(strcmp(argv[1], "conv2d_bwd_data") == 0) { return profile_convnd_bwd_data(argc, argv, 2); } else if(strcmp(argv[1], "conv3d_bwd_data") == 0) { return profile_convnd_bwd_data(argc, argv, 3); } else if(strcmp(argv[1], "reduce") == 0) { return profile_reduce(argc, argv); } else if(strcmp(argv[1], "conv2d_bwd_weight") == 0) { return profile_conv_bwd_weight(argc, argv); } else { // clang-format off printf("arg1: tensor operation (gemm: GEMM\n" " gemm_bias_2d: GEMM+Bias(2D)\n" " gemm_bias_relu: GEMM+Bias+ReLU\n" " gemm_bias_relu_add: GEMM+Bias+ReLU+Add\n" " gemm_reduce: GEMM+Reduce\n" " grouped_gemm: Grouped GEMM\n" " conv_fwd: ForwardConvolution\n" " conv_fwd_bias_relu: ForwardConvolution+Bias+ReLU\n" " conv_fwd_bias_relu_add: ForwardConvolution+Bias+ReLU+Add\n" " conv_fwd_bias_relu_atomic_add: ForwardConvolution+Bias+ReLU+AtomicAdd\n" " conv1d_bwd_data: BackwardConvolution data 1 dim\n" " conv2d_bwd_data: BackwardConvolution data 2 dim\n" " conv3d_bwd_data: BackwardConvolution data 3 dim\n" " reduce: REDUCE\n" " conv2d_bwd_weight: Backward Weight Convolution 2d\n"); // clang-format on } return 0; }