Unverified Commit de37550f authored by Anthony Chang's avatar Anthony Chang Committed by GitHub
Browse files

Input/output permutation for fused attention (#460)



* reopen masking att instance due to CI is upgraded

* re-enable instances previously failed on 9110

* enable ksize-kpadding pair validity test

* add non-masked attention+permute test; expose masking boolean to attention kernel handles

* disable bench

* fix test

* move files

* bulk rename batched_gemm_masking_scale_softmax_gemm_permute to batched_gemm_softmax_gemm_permute

* format

* amend rename

* disable bench in test

* add mask/no-mask test for non-permute attention kernels

* disable broken kernel instance

* example working

add non-permuted problem statement

evaluating whether overhead comes from permutation or the extra kernel arg

* interface for bias addition without implementing it

* test and profiler running

* tidy

* mask type determined by enum class

* unify example code

* move masking specialization to its own header

* align formats

* extract helper functions

* experiment merging dims for attn w/ permute; shows perf parity with attn wo/ permute

* add tensor specialization to template args

since tensor spec packed shows perf parity when permutation isn't needed

remove redundant template args

comment on 'packed' tensor specialization

* grouped attention with input/output permute example

* format

* clean up

* refactor acc0 tile visitor
Co-authored-by: wangshaojie6's avatarshaojiewang <wsjmessi@163.com>
Co-authored-by: default avatarChao Liu <chao.liu2@amd.com>
parent cd517326
...@@ -2,9 +2,11 @@ add_example_executable(example_batched_gemm_scale_softmax_gemm_xdl_fp16 batched_ ...@@ -2,9 +2,11 @@ add_example_executable(example_batched_gemm_scale_softmax_gemm_xdl_fp16 batched_
add_example_executable(example_batched_gemm_scale_softmax_gemm_permute_xdl_fp16 batched_gemm_scale_softmax_gemm_permute_xdl_fp16.cpp) add_example_executable(example_batched_gemm_scale_softmax_gemm_permute_xdl_fp16 batched_gemm_scale_softmax_gemm_permute_xdl_fp16.cpp)
add_example_executable(example_grouped_gemm_scale_softmax_gemm_permute_xdl_fp16 grouped_gemm_scale_softmax_gemm_permute_xdl_fp16.cpp) add_example_executable(example_grouped_gemm_scale_softmax_gemm_permute_xdl_fp16 grouped_gemm_scale_softmax_gemm_permute_xdl_fp16.cpp)
add_example_executable(example_batched_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16 batched_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16.cpp) add_example_executable(example_batched_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16 batched_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16.cpp)
add_example_executable(example_grouped_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16 grouped_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16.cpp)
add_custom_target(example_gemm_scale_softmax_gemm) add_custom_target(example_gemm_scale_softmax_gemm)
add_dependencies(example_gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_xdl_fp16) add_dependencies(example_gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_xdl_fp16)
add_dependencies(example_gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_permute_xdl_fp16) add_dependencies(example_gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_permute_xdl_fp16)
add_dependencies(example_gemm_scale_softmax_gemm example_grouped_gemm_scale_softmax_gemm_permute_xdl_fp16) add_dependencies(example_gemm_scale_softmax_gemm example_grouped_gemm_scale_softmax_gemm_permute_xdl_fp16)
add_dependencies(example_gemm_scale_softmax_gemm example_batched_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16) add_dependencies(example_gemm_scale_softmax_gemm example_batched_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16)
add_dependencies(example_gemm_scale_softmax_gemm example_grouped_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16)
...@@ -33,9 +33,6 @@ using S = ck::Sequence<Is...>; ...@@ -33,9 +33,6 @@ using S = ck::Sequence<Is...>;
using F16 = ck::half_t; using F16 = ck::half_t;
using F32 = float; using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough; using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = F16; using ADataType = F16;
...@@ -44,13 +41,14 @@ using B1DataType = F16; ...@@ -44,13 +41,14 @@ using B1DataType = F16;
using AccDataType = F32; using AccDataType = F32;
using CShuffleDataType = F32; using CShuffleDataType = F32;
using CDataType = F16; using CDataType = F16;
using Acc0BiasDataType = ck::Tuple<>;
using Acc1BiasDataType = ck::Tuple<>;
using ALayout = Row; static constexpr ck::index_t NumDimG = 2;
using B0Layout = Col; static constexpr ck::index_t NumDimM = 1;
using B1Layout = Row; static constexpr ck::index_t NumDimN = 1;
static constexpr ck::index_t NumDimK = 1;
using CPermuteNumDims_G_M_O = static constexpr ck::index_t NumDimO = 1;
S<2, 1, 1>; // "using CLayout = Row" has been replaced by CPermuteNumDims_G_M_O
using AElementOp = PassThrough; using AElementOp = PassThrough;
using B0ElementOp = PassThrough; using B0ElementOp = PassThrough;
...@@ -59,17 +57,27 @@ using B1ElementOp = PassThrough; ...@@ -59,17 +57,27 @@ using B1ElementOp = PassThrough;
using CElementOp = PassThrough; using CElementOp = PassThrough;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKOPadding; static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKOPadding;
static constexpr auto MaskingSpec =
ck::tensor_operation::device::MaskingSpecialization::MaskOutUpperTriangle;
static constexpr auto TensorSpecA = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecB0 = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecB1 = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecC = ck::tensor_operation::device::TensorSpecialization::Default;
using DeviceGemmInstance = using DeviceGemmInstance =
ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle< ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle<
ALayout, NumDimG,
B0Layout, NumDimM,
B1Layout, NumDimN,
CPermuteNumDims_G_M_O, NumDimK,
NumDimO,
ADataType, ADataType,
B0DataType, B0DataType,
B1DataType, B1DataType,
CDataType, CDataType,
Acc0BiasDataType,
Acc1BiasDataType,
AccDataType, AccDataType,
CShuffleDataType, CShuffleDataType,
AElementOp, AElementOp,
...@@ -78,6 +86,10 @@ using DeviceGemmInstance = ...@@ -78,6 +86,10 @@ using DeviceGemmInstance =
B1ElementOp, B1ElementOp,
CElementOp, CElementOp,
GemmSpec, GemmSpec,
TensorSpecA,
TensorSpecB0,
TensorSpecB1,
TensorSpecC,
1, 1,
256, 256,
128, // MPerBlock 128, // MPerBlock
...@@ -118,7 +130,7 @@ using DeviceGemmInstance = ...@@ -118,7 +130,7 @@ using DeviceGemmInstance =
2, // CShuffleNXdlPerWavePerShuffle 2, // CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 8>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock S<1, 32, 1, 8>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8, // CShuffleBlockTransferScalarPerVector_NPerBlock 8, // CShuffleBlockTransferScalarPerVector_NPerBlock
true>; // MaskOutUpperTriangle MaskingSpec>; // MaskingSpecialization
// Ref Gemm0: fp16 in, fp32 out // Ref Gemm0: fp16 in, fp32 out
using ReferenceGemm0Instance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType, using ReferenceGemm0Instance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
...@@ -142,268 +154,6 @@ using ReferenceGemm1Instance = ck::tensor_operation::host::ReferenceBatchedGemm< ...@@ -142,268 +154,6 @@ using ReferenceGemm1Instance = ck::tensor_operation::host::ReferenceBatchedGemm<
B1ElementOp, B1ElementOp,
CElementOp>; CElementOp>;
int main(int argc, char* argv[]) #include "run_batched_gemm_scale_softmax_gemm_permute.inc"
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
// GEMM shape for A/B0/B1/C
// C_g_m_o = A_g_m_k * B0_g_k_n * B1_g_n_o
ck::index_t M = 512;
ck::index_t N = 512;
ck::index_t K = 64;
ck::index_t O = 128;
ck::index_t StrideA = -1;
ck::index_t StrideB0 = -1;
ck::index_t StrideB1 = -1;
ck::index_t BatchStrideA = -1;
ck::index_t BatchStrideB0 = -1;
ck::index_t BatchStrideB1 = -1;
float alpha = 1;
// Output shape C[G0, M, G1, O]. Batch dim, outer dim, inner dim must match GEMM shape
// C_g0_g1_m_o = reshape(C_g_m_o, [g0, g1, m, o])
// C_g0_m_g1_o = permute(C_g0_g1_m_o, [0, 2, 1, 3])
ck::index_t G0 = 7;
ck::index_t G1 = 13;
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else if(argc == 11)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
M = std::stoi(argv[4]);
N = std::stoi(argv[5]);
K = std::stoi(argv[6]);
O = std::stoi(argv[7]);
G0 = std::stoi(argv[8]);
G1 = std::stoi(argv[9]);
alpha = std::stof(argv[10]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
printf("arg4 to 11: M, N, K, O, G0, G1\n");
printf("arg10: scale (alpha)\n");
exit(0);
}
std::vector<ck::index_t> c_gs_ms_os_lengths{G0, G1, M, O};
std::vector<ck::index_t> c_gs_ms_os_strides{M * G1 * O, O, G1 * O, 1};
const int DefaultStrideA = ck::is_same_v<ALayout, Row> ? K : M;
const int DefaultStrideB0 = ck::is_same_v<B0Layout, Row> ? N : K;
const int DefaultStrideB1 = ck::is_same_v<B1Layout, Row> ? O : N;
StrideA = (StrideA < 0) ? DefaultStrideA : StrideA;
StrideB0 = (StrideB0 < 0) ? DefaultStrideB0 : StrideB0;
StrideB1 = (StrideB1 < 0) ? DefaultStrideB1 : StrideB1;
const int DefaultBatchStrideA = (ck::is_same_v<ALayout, Col> ? K : M) * StrideA;
const int DefaultBatchStrideB0 = (ck::is_same_v<B0Layout, Col> ? N : K) * StrideB0;
const int DefaultBatchStrideB1 = (ck::is_same_v<B1Layout, Col> ? O : N) * StrideB1;
BatchStrideA = BatchStrideA < 0 ? DefaultBatchStrideA : BatchStrideA;
BatchStrideB0 = BatchStrideB0 < 0 ? DefaultBatchStrideB0 : BatchStrideB0;
BatchStrideB1 = BatchStrideB1 < 0 ? DefaultBatchStrideB1 : BatchStrideB1;
const int BatchCount = G0 * G1;
auto f_host_tensor_descriptor = [](std::size_t batch_count,
std::size_t row,
std::size_t col,
std::size_t stride,
std::size_t batch_stride,
auto layout) {
if(std::is_same<decltype(layout), Row>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({batch_count, row, col}),
std::vector<std::size_t>({batch_stride, stride, 1}));
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({batch_count, row, col}),
std::vector<std::size_t>({batch_stride, 1, stride}));
}
};
// C_m_o = A_m_k * B0_k_n * B1_n_o
Tensor<ADataType> a_g_m_k(
f_host_tensor_descriptor(BatchCount, M, K, StrideA, BatchStrideA, ALayout{}));
Tensor<B0DataType> b0_g_k_n(
f_host_tensor_descriptor(BatchCount, K, N, StrideB0, BatchStrideB0, B0Layout{}));
Tensor<B1DataType> b1_g_n_o(
f_host_tensor_descriptor(BatchCount, N, O, StrideB1, BatchStrideB1, B1Layout{}));
Tensor<CDataType> c_gs_ms_os_host_result(
std::vector<std::size_t>(c_gs_ms_os_lengths.begin(), c_gs_ms_os_lengths.end()),
std::vector<std::size_t>(c_gs_ms_os_strides.begin(), c_gs_ms_os_strides.end()));
Tensor<CDataType> c_gs_ms_os_device_result(
std::vector<std::size_t>(c_gs_ms_os_lengths.begin(), c_gs_ms_os_lengths.end()),
std::vector<std::size_t>(c_gs_ms_os_strides.begin(), c_gs_ms_os_strides.end()));
std::cout << "a_g_m_k: " << a_g_m_k.mDesc << std::endl;
std::cout << "b0_g_k_n: " << b0_g_k_n.mDesc << std::endl;
std::cout << "b1_g_n_o: " << b1_g_n_o.mDesc << std::endl;
std::cout << "c_gs_ms_os: " << c_gs_ms_os_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_g_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-5, 5});
b1_g_n_o.GenerateTensorValue(GeneratorTensor_2<B1DataType>{-5, 5});
break;
case 2:
a_g_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_3<B0DataType>{0.0, 1.0});
b1_g_n_o.GenerateTensorValue(GeneratorTensor_3<B1DataType>{-0.5, 0.5});
break;
case 3:
a_g_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_Diagonal<B0DataType>{});
b1_g_n_o.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
break;
default:
a_g_m_k.GenerateTensorValue(GeneratorTensor_1<ADataType>{1});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_Sequential<1>{});
b1_g_n_o.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
}
DeviceMem a_g_m_k_device_buf(sizeof(ADataType) * a_g_m_k.mDesc.GetElementSpaceSize());
DeviceMem b0_g_k_n_device_buf(sizeof(B0DataType) * b0_g_k_n.mDesc.GetElementSpaceSize());
DeviceMem b1_g_n_o_device_buf(sizeof(B1DataType) * b1_g_n_o.mDesc.GetElementSpaceSize());
DeviceMem c_gs_ms_os_device_buf(sizeof(CDataType) *
c_gs_ms_os_device_result.mDesc.GetElementSpaceSize());
a_g_m_k_device_buf.ToDevice(a_g_m_k.mData.data());
b0_g_k_n_device_buf.ToDevice(b0_g_k_n.mData.data());
b1_g_n_o_device_buf.ToDevice(b1_g_n_o.mData.data());
auto a_element_op = AElementOp{};
auto b0_element_op = B0ElementOp{};
auto acc0_element_op = Acc0ElementOp{alpha};
auto b1_element_op = B1ElementOp{};
auto c_element_op = CElementOp{};
// do GEMM
auto gemm = DeviceGemmInstance{};
auto invoker = gemm.MakeInvoker();
auto argument =
gemm.MakeArgument(static_cast<ADataType*>(a_g_m_k_device_buf.GetDeviceBuffer()),
static_cast<B0DataType*>(b0_g_k_n_device_buf.GetDeviceBuffer()),
static_cast<B1DataType*>(b1_g_n_o_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_gs_ms_os_device_buf.GetDeviceBuffer()),
M,
N,
K,
O,
BatchCount,
c_gs_ms_os_lengths,
c_gs_ms_os_strides,
StrideA,
StrideB0,
StrideB1,
BatchStrideA,
BatchStrideB0,
BatchStrideB1,
a_element_op,
b0_element_op,
acc0_element_op,
b1_element_op,
c_element_op);
if(!gemm.IsSupportedArgument(argument))
{
std::cout << gemm.GetTypeString() << " does not support this problem" << std::endl;
return 0;
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop = (size_t(M) * N * K * 2 + size_t(M) * N * O * 2) * BatchCount;
std::size_t num_btype = (sizeof(ADataType) * M * K + sizeof(B0DataType) * K * N +
sizeof(B1DataType) * N * O + sizeof(CDataType) * M * O) *
BatchCount;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< gemm.GetTypeString() << std::endl;
if(do_verification)
{
c_gs_ms_os_device_buf.FromDevice(c_gs_ms_os_device_result.mData.data());
// Output of Gemm0 is input A of Gemm1
Tensor<AccDataType> acc0_g_m_n(f_host_tensor_descriptor(BatchCount, M, N, N, M * N, Row{}));
Tensor<ADataType> a1_g_m_n(f_host_tensor_descriptor(BatchCount, M, N, N, M * N, Row{}));
Tensor<CDataType> c_g_m_o_host_result(std::vector<int>{BatchCount, M, O},
std::vector<int>{M * O, O, 1});
auto ref_gemm0 = ReferenceGemm0Instance{};
auto ref_gemm0_invoker = ref_gemm0.MakeInvoker();
auto ref_gemm0_argument = ref_gemm0.MakeArgument(
a_g_m_k, b0_g_k_n, acc0_g_m_n, a_element_op, b0_element_op, acc0_element_op);
// gemm 0
ref_gemm0_invoker.Run(ref_gemm0_argument);
// mask out upper triangle
acc0_g_m_n.ForEach([&](auto& self, auto idx) {
if(idx[1] < idx[2])
self(idx) = -ck::NumericLimits<float>::Infinity();
});
auto ref_softmax = ReferenceSoftmaxInstance{};
auto ref_softmax_invoker = ref_softmax.MakeInvoker();
auto ref_softmax_argument = ref_softmax.MakeArgument(acc0_g_m_n, a1_g_m_n, 1, 0, {2});
// softmax
ref_softmax_invoker.Run(ref_softmax_argument);
auto ref_gemm1 = ReferenceGemm1Instance{};
auto ref_gemm1_invoker = ref_gemm1.MakeInvoker();
auto ref_gemm1_argument = ref_gemm1.MakeArgument(
a1_g_m_n, b1_g_n_o, c_g_m_o_host_result, PassThrough{}, b1_element_op, c_element_op);
// gemm1
ref_gemm1_invoker.Run(ref_gemm1_argument);
// permute
c_gs_ms_os_host_result.ForEach([&](auto& self, auto idx) {
const size_t& g0 = idx[0];
const size_t& g1 = idx[1];
const size_t g = g0 * G1 + g1;
self(idx) = c_g_m_o_host_result(g, idx[2], idx[3]);
});
return ck::utils::check_err(c_gs_ms_os_device_result.mData, c_gs_ms_os_host_result.mData)
? 0
: 1;
}
return 0; int main(int argc, char* argv[]) { return run(argc, argv); }
}
...@@ -33,9 +33,6 @@ using S = ck::Sequence<Is...>; ...@@ -33,9 +33,6 @@ using S = ck::Sequence<Is...>;
using F16 = ck::half_t; using F16 = ck::half_t;
using F32 = float; using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough; using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = F16; using ADataType = F16;
...@@ -44,13 +41,14 @@ using B1DataType = F16; ...@@ -44,13 +41,14 @@ using B1DataType = F16;
using AccDataType = F32; using AccDataType = F32;
using CShuffleDataType = F32; using CShuffleDataType = F32;
using CDataType = F16; using CDataType = F16;
using Acc0BiasDataType = ck::Tuple<>;
using Acc1BiasDataType = ck::Tuple<>;
using ALayout = Row; static constexpr ck::index_t NumDimG = 2;
using B0Layout = Col; static constexpr ck::index_t NumDimM = 1;
using B1Layout = Row; static constexpr ck::index_t NumDimN = 1;
static constexpr ck::index_t NumDimK = 1;
using CPermuteNumDims_G_M_O = static constexpr ck::index_t NumDimO = 1;
S<2, 1, 1>; // "using CLayout = Row" has been replaced by CPermuteNumDims_G_M_O
using AElementOp = PassThrough; using AElementOp = PassThrough;
using B0ElementOp = PassThrough; using B0ElementOp = PassThrough;
...@@ -59,17 +57,27 @@ using B1ElementOp = PassThrough; ...@@ -59,17 +57,27 @@ using B1ElementOp = PassThrough;
using CElementOp = PassThrough; using CElementOp = PassThrough;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKOPadding; static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKOPadding;
static constexpr auto MaskingSpec =
ck::tensor_operation::device::MaskingSpecialization::MaskDisabled;
static constexpr auto TensorSpecA = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecB0 = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecB1 = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecC = ck::tensor_operation::device::TensorSpecialization::Default;
using DeviceGemmInstance = using DeviceGemmInstance =
ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle< ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle<
ALayout, NumDimG,
B0Layout, NumDimM,
B1Layout, NumDimN,
CPermuteNumDims_G_M_O, NumDimK,
NumDimO,
ADataType, ADataType,
B0DataType, B0DataType,
B1DataType, B1DataType,
CDataType, CDataType,
Acc0BiasDataType,
Acc1BiasDataType,
AccDataType, AccDataType,
CShuffleDataType, CShuffleDataType,
AElementOp, AElementOp,
...@@ -78,6 +86,10 @@ using DeviceGemmInstance = ...@@ -78,6 +86,10 @@ using DeviceGemmInstance =
B1ElementOp, B1ElementOp,
CElementOp, CElementOp,
GemmSpec, GemmSpec,
TensorSpecA,
TensorSpecB0,
TensorSpecB1,
TensorSpecC,
1, 1,
256, 256,
128, // MPerBlock 128, // MPerBlock
...@@ -118,7 +130,7 @@ using DeviceGemmInstance = ...@@ -118,7 +130,7 @@ using DeviceGemmInstance =
2, // CShuffleNXdlPerWavePerShuffle 2, // CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 8>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock S<1, 32, 1, 8>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8, // CShuffleBlockTransferScalarPerVector_NPerBlock 8, // CShuffleBlockTransferScalarPerVector_NPerBlock
false>; // MaskOutUpperTriangle MaskingSpec>; // MaskingSpecialization
// Ref Gemm0: fp16 in, fp32 out // Ref Gemm0: fp16 in, fp32 out
using ReferenceGemm0Instance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType, using ReferenceGemm0Instance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
...@@ -142,258 +154,6 @@ using ReferenceGemm1Instance = ck::tensor_operation::host::ReferenceBatchedGemm< ...@@ -142,258 +154,6 @@ using ReferenceGemm1Instance = ck::tensor_operation::host::ReferenceBatchedGemm<
B1ElementOp, B1ElementOp,
CElementOp>; CElementOp>;
int main(int argc, char* argv[]) #include "run_batched_gemm_scale_softmax_gemm_permute.inc"
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
// GEMM shape for A/B0/B1/C
// C_g_m_o = A_g_m_k * B0_g_k_n * B1_g_n_o
ck::index_t M = 120;
ck::index_t N = 1000;
ck::index_t K = 64;
ck::index_t O = 128;
ck::index_t StrideA = -1;
ck::index_t StrideB0 = -1;
ck::index_t StrideB1 = -1;
ck::index_t BatchStrideA = -1;
ck::index_t BatchStrideB0 = -1;
ck::index_t BatchStrideB1 = -1;
float alpha = 1;
// Output shape C[G0, M, G1, O]. Batch dim, outer dim, inner dim must match GEMM shape
// C_g0_g1_m_o = reshape(C_g_m_o, [g0, g1, m, o])
// C_g0_m_g1_o = permute(C_g0_g1_m_o, [0, 2, 1, 3])
ck::index_t G0 = 7;
ck::index_t G1 = 13;
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else if(argc == 11)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
M = std::stoi(argv[4]);
N = std::stoi(argv[5]);
K = std::stoi(argv[6]);
O = std::stoi(argv[7]);
G0 = std::stoi(argv[8]);
G1 = std::stoi(argv[9]);
alpha = std::stof(argv[10]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
printf("arg4 to 11: M, N, K, O, G0, G1\n");
printf("arg10: scale (alpha)\n");
exit(0);
}
std::vector<ck::index_t> c_gs_ms_os_lengths{G0, G1, M, O};
std::vector<ck::index_t> c_gs_ms_os_strides{M * G1 * O, O, G1 * O, 1};
const int DefaultStrideA = ck::is_same_v<ALayout, Row> ? K : M;
const int DefaultStrideB0 = ck::is_same_v<B0Layout, Row> ? N : K;
const int DefaultStrideB1 = ck::is_same_v<B1Layout, Row> ? O : N;
StrideA = (StrideA < 0) ? DefaultStrideA : StrideA;
StrideB0 = (StrideB0 < 0) ? DefaultStrideB0 : StrideB0;
StrideB1 = (StrideB1 < 0) ? DefaultStrideB1 : StrideB1;
const int DefaultBatchStrideA = (ck::is_same_v<ALayout, Col> ? K : M) * StrideA;
const int DefaultBatchStrideB0 = (ck::is_same_v<B0Layout, Col> ? N : K) * StrideB0;
const int DefaultBatchStrideB1 = (ck::is_same_v<B1Layout, Col> ? O : N) * StrideB1;
BatchStrideA = BatchStrideA < 0 ? DefaultBatchStrideA : BatchStrideA;
BatchStrideB0 = BatchStrideB0 < 0 ? DefaultBatchStrideB0 : BatchStrideB0;
BatchStrideB1 = BatchStrideB1 < 0 ? DefaultBatchStrideB1 : BatchStrideB1;
const int BatchCount = G0 * G1;
auto f_host_tensor_descriptor = [](std::size_t batch_count,
std::size_t row,
std::size_t col,
std::size_t stride,
std::size_t batch_stride,
auto layout) {
if(std::is_same<decltype(layout), Row>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({batch_count, row, col}),
std::vector<std::size_t>({batch_stride, stride, 1}));
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({batch_count, row, col}),
std::vector<std::size_t>({batch_stride, 1, stride}));
}
};
// C_m_o = A_m_k * B0_k_n * B1_n_o
Tensor<ADataType> a_g_m_k(
f_host_tensor_descriptor(BatchCount, M, K, StrideA, BatchStrideA, ALayout{}));
Tensor<B0DataType> b0_g_k_n(
f_host_tensor_descriptor(BatchCount, K, N, StrideB0, BatchStrideB0, B0Layout{}));
Tensor<B1DataType> b1_g_n_o(
f_host_tensor_descriptor(BatchCount, N, O, StrideB1, BatchStrideB1, B1Layout{}));
Tensor<CDataType> c_gs_ms_os_host_result(
std::vector<std::size_t>(c_gs_ms_os_lengths.begin(), c_gs_ms_os_lengths.end()),
std::vector<std::size_t>(c_gs_ms_os_strides.begin(), c_gs_ms_os_strides.end()));
Tensor<CDataType> c_gs_ms_os_device_result(
std::vector<std::size_t>(c_gs_ms_os_lengths.begin(), c_gs_ms_os_lengths.end()),
std::vector<std::size_t>(c_gs_ms_os_strides.begin(), c_gs_ms_os_strides.end()));
std::cout << "a_g_m_k: " << a_g_m_k.mDesc << std::endl;
std::cout << "b0_g_k_n: " << b0_g_k_n.mDesc << std::endl;
std::cout << "b1_g_n_o: " << b1_g_n_o.mDesc << std::endl;
std::cout << "c_gs_ms_os: " << c_gs_ms_os_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_g_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-5, 5});
b1_g_n_o.GenerateTensorValue(GeneratorTensor_2<B1DataType>{-5, 5});
break;
case 2:
a_g_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_3<B0DataType>{0.0, 1.0});
b1_g_n_o.GenerateTensorValue(GeneratorTensor_3<B1DataType>{-0.5, 0.5});
break;
case 3:
a_g_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_Diagonal<B0DataType>{});
b1_g_n_o.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
break;
default:
a_g_m_k.GenerateTensorValue(GeneratorTensor_1<ADataType>{1});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_Sequential<1>{});
b1_g_n_o.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
}
DeviceMem a_g_m_k_device_buf(sizeof(ADataType) * a_g_m_k.mDesc.GetElementSpaceSize());
DeviceMem b0_g_k_n_device_buf(sizeof(B0DataType) * b0_g_k_n.mDesc.GetElementSpaceSize());
DeviceMem b1_g_n_o_device_buf(sizeof(B1DataType) * b1_g_n_o.mDesc.GetElementSpaceSize());
DeviceMem c_gs_ms_os_device_buf(sizeof(CDataType) *
c_gs_ms_os_device_result.mDesc.GetElementSpaceSize());
a_g_m_k_device_buf.ToDevice(a_g_m_k.mData.data());
b0_g_k_n_device_buf.ToDevice(b0_g_k_n.mData.data());
b1_g_n_o_device_buf.ToDevice(b1_g_n_o.mData.data());
auto a_element_op = AElementOp{};
auto b0_element_op = B0ElementOp{};
auto acc0_element_op = Acc0ElementOp{alpha};
auto b1_element_op = B1ElementOp{};
auto c_element_op = CElementOp{};
// do GEMM
auto gemm = DeviceGemmInstance{};
auto invoker = gemm.MakeInvoker();
auto argument =
gemm.MakeArgument(static_cast<ADataType*>(a_g_m_k_device_buf.GetDeviceBuffer()),
static_cast<B0DataType*>(b0_g_k_n_device_buf.GetDeviceBuffer()),
static_cast<B1DataType*>(b1_g_n_o_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_gs_ms_os_device_buf.GetDeviceBuffer()),
M,
N,
K,
O,
BatchCount,
c_gs_ms_os_lengths,
c_gs_ms_os_strides,
StrideA,
StrideB0,
StrideB1,
BatchStrideA,
BatchStrideB0,
BatchStrideB1,
a_element_op,
b0_element_op,
acc0_element_op,
b1_element_op,
c_element_op);
if(!gemm.IsSupportedArgument(argument))
{
std::cout << gemm.GetTypeString() << " does not support this problem" << std::endl;
return 0;
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop = (size_t(M) * N * K * 2 + size_t(M) * N * O * 2) * BatchCount;
std::size_t num_btype = (sizeof(ADataType) * M * K + sizeof(B0DataType) * K * N +
sizeof(B1DataType) * N * O + sizeof(CDataType) * M * O) *
BatchCount;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< gemm.GetTypeString() << std::endl;
if(do_verification)
{
c_gs_ms_os_device_buf.FromDevice(c_gs_ms_os_device_result.mData.data());
// Output of Gemm0 is input A of Gemm1
Tensor<AccDataType> acc0_g_m_n(f_host_tensor_descriptor(BatchCount, M, N, N, M * N, Row{}));
Tensor<ADataType> a1_g_m_n(f_host_tensor_descriptor(BatchCount, M, N, N, M * N, Row{}));
Tensor<CDataType> c_g_m_o_host_result(std::vector<int>{BatchCount, M, O},
std::vector<int>{M * O, O, 1});
auto ref_gemm0 = ReferenceGemm0Instance{};
auto ref_gemm0_invoker = ref_gemm0.MakeInvoker();
auto ref_gemm0_argument = ref_gemm0.MakeArgument(
a_g_m_k, b0_g_k_n, acc0_g_m_n, a_element_op, b0_element_op, acc0_element_op);
ref_gemm0_invoker.Run(ref_gemm0_argument);
auto ref_softmax = ReferenceSoftmaxInstance{};
auto ref_softmax_invoker = ref_softmax.MakeInvoker();
auto ref_softmax_argument = ref_softmax.MakeArgument(acc0_g_m_n, a1_g_m_n, 1, 0, {2});
ref_softmax_invoker.Run(ref_softmax_argument);
auto ref_gemm1 = ReferenceGemm1Instance{};
auto ref_gemm1_invoker = ref_gemm1.MakeInvoker();
auto ref_gemm1_argument = ref_gemm1.MakeArgument(
a1_g_m_n, b1_g_n_o, c_g_m_o_host_result, PassThrough{}, b1_element_op, c_element_op);
ref_gemm1_invoker.Run(ref_gemm1_argument);
c_gs_ms_os_host_result.ForEach([&](auto& self, auto idx) {
const size_t& g0 = idx[0];
const size_t& g1 = idx[1];
const size_t g = g0 * G1 + g1;
self(idx) = c_g_m_o_host_result(g, idx[2], idx[3]);
});
return ck::utils::check_err(c_gs_ms_os_device_result.mData, c_gs_ms_os_host_result.mData)
? 0
: 1;
}
return 0; int main(int argc, char* argv[]) { return run(argc, argv); }
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
/*
Gemm + Softmax + Gemm fused operation. Computes C_g_m_o = Softmax(A_g_m_k * B0_g_k_n) * B1_g_n_o
|-----------------|
Gemm0
|-------------------------------------|
Gemm1
*/
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_softmax_gemm_permute_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using F32 = float;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = F16;
using B0DataType = F16;
using B1DataType = F16;
using AccDataType = F32;
using CShuffleDataType = F32;
using CDataType = F16;
using Acc0BiasDataType = ck::Tuple<>;
using Acc1BiasDataType = ck::Tuple<>;
static constexpr ck::index_t NumDimG = 2;
static constexpr ck::index_t NumDimM = 1;
static constexpr ck::index_t NumDimN = 1;
static constexpr ck::index_t NumDimK = 1;
static constexpr ck::index_t NumDimO = 1;
using AElementOp = PassThrough;
using B0ElementOp = PassThrough;
using Acc0ElementOp = ck::tensor_operation::element_wise::Scale;
using B1ElementOp = PassThrough;
using CElementOp = PassThrough;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKOPadding;
static constexpr auto MaskingSpec =
ck::tensor_operation::device::MaskingSpecialization::MaskOutUpperTriangle;
static constexpr auto TensorSpecA = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecB0 = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecB1 = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecC = ck::tensor_operation::device::TensorSpecialization::Default;
using DeviceGemmInstance =
ck::tensor_operation::device::DeviceGroupedGemmSoftmaxGemmPermute_Xdl_CShuffle<
NumDimG,
NumDimM,
NumDimN,
NumDimK,
NumDimO,
ADataType,
B0DataType,
B1DataType,
CDataType,
Acc0BiasDataType,
Acc1BiasDataType,
AccDataType,
CShuffleDataType,
AElementOp,
B0ElementOp,
Acc0ElementOp,
B1ElementOp,
CElementOp,
GemmSpec,
TensorSpecA,
TensorSpecB0,
TensorSpecB1,
TensorSpecC,
1,
256,
128, // MPerBlock
128, // NPerBlock
32, // KPerBlock
64, // Gemm1NPerBlock
32, // Gemm1KPerBlock
8, // AK1
8, // BK1
2, // B1K1
32, // MPerXDL
32, // NPerXDL
1, // MXdlPerWave
4, // NXdlPerWave
2, // Gemm1NXdlPerWave
S<4, 64, 1>, // ABlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
S<4, 64, 1>, // BBlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
S<16, 16, 1>, // B1BlockTransfer
S<0, 2, 1>,
S<0, 2, 1>,
1,
4,
2,
false,
1, // CShuffleMXdlPerWavePerShuffle
2, // CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 8>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8, // CShuffleBlockTransferScalarPerVector_NPerBlock
MaskingSpec>; // MaskingSpecialization
// Ref Gemm0: fp16 in, fp32 out
using ReferenceGemm0Instance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
B0DataType,
AccDataType,
AccDataType,
AElementOp,
B0ElementOp,
Acc0ElementOp>;
// Ref Softmax: fp32 in, fp16 out
using ReferenceSoftmaxInstance =
ck::tensor_operation::host::ReferenceSoftmax<AccDataType, ADataType, AccDataType>;
// Ref Gemm1: fp16 in, fp16 out
using ReferenceGemm1Instance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
B1DataType,
CDataType,
AccDataType,
AElementOp,
B1ElementOp,
CElementOp>;
#include "run_grouped_gemm_scale_softmax_gemm_permute.inc"
int main(int argc, char* argv[]) { return run(argc, argv); }
...@@ -33,9 +33,6 @@ using S = ck::Sequence<Is...>; ...@@ -33,9 +33,6 @@ using S = ck::Sequence<Is...>;
using F16 = ck::half_t; using F16 = ck::half_t;
using F32 = float; using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough; using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = F16; using ADataType = F16;
...@@ -44,13 +41,14 @@ using B1DataType = F16; ...@@ -44,13 +41,14 @@ using B1DataType = F16;
using AccDataType = F32; using AccDataType = F32;
using CShuffleDataType = F32; using CShuffleDataType = F32;
using CDataType = F16; using CDataType = F16;
using Acc0BiasDataType = ck::Tuple<>;
using Acc1BiasDataType = ck::Tuple<>;
using ALayout = Row; static constexpr ck::index_t NumDimG = 2;
using B0Layout = Col; static constexpr ck::index_t NumDimM = 1;
using B1Layout = Row; static constexpr ck::index_t NumDimN = 1;
static constexpr ck::index_t NumDimK = 1;
using CPermuteNumDims_G_M_O = static constexpr ck::index_t NumDimO = 1;
S<1, 1, 1>; // "using CLayout = Row" has been replaced by CPermuteNumDims_M_O
using AElementOp = PassThrough; using AElementOp = PassThrough;
using B0ElementOp = PassThrough; using B0ElementOp = PassThrough;
...@@ -59,17 +57,27 @@ using B1ElementOp = PassThrough; ...@@ -59,17 +57,27 @@ using B1ElementOp = PassThrough;
using CElementOp = PassThrough; using CElementOp = PassThrough;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKOPadding; static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKOPadding;
static constexpr auto MaskingSpec =
ck::tensor_operation::device::MaskingSpecialization::MaskDisabled;
static constexpr auto TensorSpecA = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecB0 = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecB1 = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecC = ck::tensor_operation::device::TensorSpecialization::Default;
using DeviceGemmInstance = using DeviceGemmInstance =
ck::tensor_operation::device::DeviceGroupedGemmSoftmaxGemmPermute_Xdl_CShuffle< ck::tensor_operation::device::DeviceGroupedGemmSoftmaxGemmPermute_Xdl_CShuffle<
ALayout, NumDimG,
B0Layout, NumDimM,
B1Layout, NumDimN,
CPermuteNumDims_G_M_O, NumDimK,
NumDimO,
ADataType, ADataType,
B0DataType, B0DataType,
B1DataType, B1DataType,
CDataType, CDataType,
Acc0BiasDataType,
Acc1BiasDataType,
AccDataType, AccDataType,
CShuffleDataType, CShuffleDataType,
AElementOp, AElementOp,
...@@ -78,6 +86,10 @@ using DeviceGemmInstance = ...@@ -78,6 +86,10 @@ using DeviceGemmInstance =
B1ElementOp, B1ElementOp,
CElementOp, CElementOp,
GemmSpec, GemmSpec,
TensorSpecA,
TensorSpecB0,
TensorSpecB1,
TensorSpecC,
1, 1,
256, 256,
128, // MPerBlock 128, // MPerBlock
...@@ -118,7 +130,7 @@ using DeviceGemmInstance = ...@@ -118,7 +130,7 @@ using DeviceGemmInstance =
2, // CShuffleNXdlPerWavePerShuffle 2, // CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 8>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock S<1, 32, 1, 8>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8, // CShuffleBlockTransferScalarPerVector_NPerBlock 8, // CShuffleBlockTransferScalarPerVector_NPerBlock
false>; MaskingSpec>; // MaskingSpecialization
// Ref Gemm0: fp16 in, fp32 out // Ref Gemm0: fp16 in, fp32 out
using ReferenceGemm0Instance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType, using ReferenceGemm0Instance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
...@@ -142,303 +154,6 @@ using ReferenceGemm1Instance = ck::tensor_operation::host::ReferenceBatchedGemm< ...@@ -142,303 +154,6 @@ using ReferenceGemm1Instance = ck::tensor_operation::host::ReferenceBatchedGemm<
B1ElementOp, B1ElementOp,
CElementOp>; CElementOp>;
int main(int argc, char* argv[]) #include "run_grouped_gemm_scale_softmax_gemm_permute.inc"
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
exit(0);
}
float alpha = 1; // scaling after 1st gemm
std::size_t group_count = 13;
// Problem descs
std::vector<DeviceGemmInstance::ProblemDesc> problem_descs;
std::vector<const void*> p_a;
std::vector<const void*> p_b0;
std::vector<const void*> p_b1;
std::vector<void*> p_c;
for(std::size_t i = 0; i < group_count; i++)
{
int M = 128 * (rand() % 8 + 1);
int N = 128 * (rand() % 8 + 1);
int K = 40;
int O = 40 * (rand() % 2 + 1);
int Batch = rand() % 8 + 1;
const int StrideA = ck::is_same_v<ALayout, Row> ? K : M;
const int StrideB0 = ck::is_same_v<B0Layout, Row> ? N : K;
const int StrideB1 = ck::is_same_v<B1Layout, Row> ? O : N;
const int BatchStrideA = (ck::is_same_v<ALayout, Col> ? K : M) * StrideA;
const int BatchStrideB0 = (ck::is_same_v<B0Layout, Col> ? N : K) * StrideB0;
const int BatchStrideB1 = (ck::is_same_v<B1Layout, Col> ? O : N) * StrideB1;
std::vector<ck::index_t> c_gs_ms_os_lengths{Batch, M, O};
std::vector<ck::index_t> c_gs_ms_os_strides{O, Batch * O, 1};
problem_descs.push_back({M,
N,
K,
O,
Batch,
StrideA,
StrideB0,
StrideB1,
BatchStrideA,
BatchStrideB0,
BatchStrideB1,
c_gs_ms_os_lengths,
c_gs_ms_os_strides});
}
auto f_host_tensor_descriptor = [](std::size_t batch_count,
std::size_t row,
std::size_t col,
std::size_t stride,
std::size_t batch_stride,
auto layout) {
if(std::is_same<decltype(layout), Row>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({batch_count, row, col}),
std::vector<std::size_t>({batch_stride, stride, 1}));
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({batch_count, row, col}),
std::vector<std::size_t>({batch_stride, 1, stride}));
}
};
std::vector<Tensor<ADataType>> a_tensors;
std::vector<Tensor<B0DataType>> b0_tensors;
std::vector<Tensor<B1DataType>> b1_tensors;
std::vector<Tensor<CDataType>> c_tensors;
using DeviceMemPtr = std::unique_ptr<DeviceMem>;
std::vector<DeviceMemPtr> a_tensors_device;
std::vector<DeviceMemPtr> b0_tensors_device;
std::vector<DeviceMemPtr> b1_tensors_device;
std::vector<DeviceMemPtr> c_tensors_device;
std::size_t flop = 0, num_byte = 0;
std::cout << "group count " << group_count << ". printing first 4 groups\n";
for(std::size_t i = 0; i < group_count; i++)
{
const auto& M = problem_descs[i].M;
const auto& N = problem_descs[i].N;
const auto& K = problem_descs[i].K;
const auto& O = problem_descs[i].O;
const auto& Batch = problem_descs[i].Batch;
const auto& StrideA = problem_descs[i].StrideA;
const auto& StrideB0 = problem_descs[i].StrideB0;
const auto& StrideB1 = problem_descs[i].StrideB1;
const auto& BatchStrideA = problem_descs[i].BatchStrideA;
const auto& BatchStrideB0 = problem_descs[i].BatchStrideB0;
const auto& BatchStrideB1 = problem_descs[i].BatchStrideB1;
const auto& c_gs_ms_os_lengths = problem_descs[i].c_gs_ms_os_lengths;
const auto& c_gs_ms_os_strides = problem_descs[i].c_gs_ms_os_strides;
// C_m_o = A_m_k * B0_k_n * B1_n_o
Tensor<ADataType> a_g_m_k(
f_host_tensor_descriptor(Batch, M, K, StrideA, BatchStrideA, ALayout{}));
Tensor<B0DataType> b0_g_k_n(
f_host_tensor_descriptor(Batch, K, N, StrideB0, BatchStrideB0, B0Layout{}));
Tensor<B1DataType> b1_g_n_o(
f_host_tensor_descriptor(Batch, N, O, StrideB1, BatchStrideB1, B1Layout{}));
Tensor<CDataType> c_gs_ms_os_device_result(
std::vector<std::size_t>(c_gs_ms_os_lengths.begin(), c_gs_ms_os_lengths.end()),
std::vector<std::size_t>(c_gs_ms_os_strides.begin(), c_gs_ms_os_strides.end()));
flop += (size_t(M) * N * K * 2 + size_t(M) * N * O * 2) * Batch;
num_byte += (sizeof(ADataType) * M * K + sizeof(B0DataType) * K * N +
sizeof(B1DataType) * N * O + sizeof(CDataType) * M * O) *
Batch;
if(i < 4)
{
std::cout << "a_g_m_k[" << i << "]: " << a_g_m_k.mDesc << ", "
<< "b0_g_k_n[" << i << "]: " << b0_g_k_n.mDesc << ", "
<< "b1_g_n_o[" << i << "]: " << b1_g_n_o.mDesc << ", "
<< "c_gs_ms_os[" << i << "]: " << c_gs_ms_os_device_result.mDesc << std::endl;
}
switch(init_method)
{
case 0: break;
case 1:
a_g_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-2, 2});
b1_g_n_o.GenerateTensorValue(GeneratorTensor_2<B1DataType>{-2, 2});
break;
case 2:
a_g_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_3<B0DataType>{0.0, 1.0});
b1_g_n_o.GenerateTensorValue(GeneratorTensor_3<B1DataType>{-0.5, 0.5});
break;
case 3:
a_g_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_Diagonal<B0DataType>{});
b1_g_n_o.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
break;
default:
a_g_m_k.GenerateTensorValue(GeneratorTensor_1<ADataType>{1});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_Sequential<1>{});
b1_g_n_o.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
}
a_tensors.push_back(a_g_m_k);
b0_tensors.push_back(b0_g_k_n);
b1_tensors.push_back(b1_g_n_o);
c_tensors.push_back(c_gs_ms_os_device_result);
a_tensors_device.emplace_back(
std::make_unique<DeviceMem>(sizeof(ADataType) * a_g_m_k.mDesc.GetElementSpaceSize()));
b0_tensors_device.emplace_back(
std::make_unique<DeviceMem>(sizeof(B0DataType) * b0_g_k_n.mDesc.GetElementSpaceSize()));
b1_tensors_device.emplace_back(
std::make_unique<DeviceMem>(sizeof(B1DataType) * b1_g_n_o.mDesc.GetElementSpaceSize()));
c_tensors_device.emplace_back(std::make_unique<DeviceMem>(
sizeof(CDataType) * c_gs_ms_os_device_result.mDesc.GetElementSpaceSize()));
a_tensors_device[i]->ToDevice(a_g_m_k.mData.data());
b0_tensors_device[i]->ToDevice(b0_g_k_n.mData.data());
b1_tensors_device[i]->ToDevice(b1_g_n_o.mData.data());
p_a.push_back(a_tensors_device[i]->GetDeviceBuffer());
p_b0.push_back(b0_tensors_device[i]->GetDeviceBuffer());
p_b1.push_back(b1_tensors_device[i]->GetDeviceBuffer());
p_c.push_back(c_tensors_device[i]->GetDeviceBuffer());
}
auto a_element_op = AElementOp{};
auto b0_element_op = B0ElementOp{};
auto acc0_element_op = Acc0ElementOp{alpha};
auto b1_element_op = B1ElementOp{};
auto c_element_op = CElementOp{};
// do GEMM
auto gemm = DeviceGemmInstance{};
auto invoker = gemm.MakeInvoker();
auto argument = gemm.MakeArgument(p_a,
p_b0,
p_b1,
p_c,
problem_descs,
a_element_op,
b0_element_op,
acc0_element_op,
b1_element_op,
c_element_op);
// specify workspace for problem_desc
DeviceMem problem_desc_workspace(gemm.GetWorkSpaceSize(&argument));
gemm.SetWorkSpacePointer(&argument, problem_desc_workspace.GetDeviceBuffer());
if(!gemm.IsSupportedArgument(argument))
{
std::cout << gemm.GetTypeString() << " does not support this problem" << std::endl;
return 0;
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_byte / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< gemm.GetTypeString() << std::endl;
bool pass = true;
if(do_verification)
{
for(std::size_t i = 0; i < group_count; i++)
{
const auto& M = problem_descs[i].M;
const auto& N = problem_descs[i].N;
const auto& O = problem_descs[i].O;
const auto& Batch = problem_descs[i].Batch;
const auto& c_gs_ms_os_lengths = problem_descs[i].c_gs_ms_os_lengths;
const auto& c_gs_ms_os_strides = problem_descs[i].c_gs_ms_os_strides;
const auto& a_g_m_k = a_tensors[i];
const auto& b0_g_k_n = b0_tensors[i];
const auto& b1_g_n_o = b1_tensors[i];
auto& c_gs_ms_os_device_result = c_tensors[i];
auto& c_gs_ms_os_device_buf = *c_tensors_device[i];
Tensor<CDataType> c_gs_ms_os_host_result(
std::vector<std::size_t>(c_gs_ms_os_lengths.begin(), c_gs_ms_os_lengths.end()),
std::vector<std::size_t>(c_gs_ms_os_strides.begin(), c_gs_ms_os_strides.end()));
c_gs_ms_os_device_buf.FromDevice(c_gs_ms_os_device_result.mData.data());
// Output of Gemm0 is input A of Gemm1
Tensor<AccDataType> acc0_m_n(f_host_tensor_descriptor(Batch, M, N, N, M * N, Row{}));
Tensor<ADataType> a1_g_m_n(f_host_tensor_descriptor(Batch, M, N, N, M * N, Row{}));
Tensor<CDataType> c_g_m_o_host_result(std::vector<int>{Batch, M, O},
std::vector<int>{M * O, O, 1});
auto ref_gemm0 = ReferenceGemm0Instance{};
auto ref_gemm0_invoker = ref_gemm0.MakeInvoker();
auto ref_gemm0_argument = ref_gemm0.MakeArgument(
a_g_m_k, b0_g_k_n, acc0_m_n, a_element_op, b0_element_op, acc0_element_op);
ref_gemm0_invoker.Run(ref_gemm0_argument);
auto ref_softmax = ReferenceSoftmaxInstance{};
auto ref_softmax_invoker = ref_softmax.MakeInvoker();
auto ref_softmax_argument = ref_softmax.MakeArgument(acc0_m_n, a1_g_m_n, 1, 0, {2});
ref_softmax_invoker.Run(ref_softmax_argument);
auto ref_gemm1 = ReferenceGemm1Instance{};
auto ref_gemm1_invoker = ref_gemm1.MakeInvoker();
auto ref_gemm1_argument = ref_gemm1.MakeArgument(a1_g_m_n,
b1_g_n_o,
c_g_m_o_host_result,
PassThrough{},
b1_element_op,
c_element_op);
ref_gemm1_invoker.Run(ref_gemm1_argument);
// Note: in this example, we merely permute the dimensions by changing underlying
// strides so we simply access data as-is
c_gs_ms_os_host_result.ForEach(
[&](auto& self, auto idx) { self(idx) = c_g_m_o_host_result(idx); });
bool pass_ =
ck::utils::check_err(c_gs_ms_os_device_result.mData, c_gs_ms_os_host_result.mData);
pass &= pass_;
}
}
return pass ? 0 : 1; int main(int argc, char* argv[]) { return run(argc, argv); }
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
int run(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
// GEMM shape for A/B0/B1/C
// C_g_m_o = A_g_m_k * B0_g_k_n * B1_g_n_o
ck::index_t M = 120;
ck::index_t N = 1000;
ck::index_t K = 64;
ck::index_t O = 128;
// Output shape C[G0, M, G1, O]. Batch dim, outer dim, inner dim must match GEMM shape
// C_g0_g1_m_o = reshape(C_g_m_o, [g0, g1, m, o])
// C_g0_m_g1_o = permute(C_g0_g1_m_o, [0, 2, 1, 3])
ck::index_t G0 = 7;
ck::index_t G1 = 13;
float alpha = 1;
bool input_permute = false;
bool output_permute = true;
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else if(argc == 13)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
M = std::stoi(argv[4]);
N = std::stoi(argv[5]);
K = std::stoi(argv[6]);
O = std::stoi(argv[7]);
G0 = std::stoi(argv[8]);
G1 = std::stoi(argv[9]);
alpha = std::stof(argv[10]);
input_permute = std::stoi(argv[11]);
output_permute = std::stoi(argv[12]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
printf("arg4 to 11: M, N, K, O, G0, G1\n");
printf("arg10: scale (alpha)\n");
printf("arg11 to 12: input / output permute\n");
exit(0);
}
std::vector<ck::index_t> a_gs_ms_ks_lengths{G0, G1, M, K};
std::vector<ck::index_t> a_gs_ms_ks_strides =
input_permute
? std::vector<ck::index_t>{M * G1 * K, K, G1 * K, 1} // A layout [G0, M, G1, K]
: std::vector<ck::index_t>{G1 * M * K, M * K, K, 1}; // A layout [G0, G1, M, K]
std::vector<ck::index_t> b0_gs_ns_ks_lengths{G0, G1, N, K};
std::vector<ck::index_t> b0_gs_ns_ks_strides =
input_permute
? std::vector<ck::index_t>{N * G1 * K, K, G1 * K, 1} // B0 layout [G0, N, G1, K]
: std::vector<ck::index_t>{G1 * N * K, N * K, K, 1}; // B0 layout [G0, G1, N, K]
std::vector<ck::index_t> b1_gs_os_ns_lengths{G0, G1, O, N};
std::vector<ck::index_t> b1_gs_os_ns_strides =
input_permute
? std::vector<ck::index_t>{N * G1 * O, O, 1, G1 * O} // B1 layout [G0, N, G1, O]
: std::vector<ck::index_t>{G1 * N * O, N * O, 1, O}; // B1 layout [G0, G1, N, O]
std::vector<ck::index_t> c_gs_ms_os_lengths{G0, G1, M, O};
std::vector<ck::index_t> c_gs_ms_os_strides =
output_permute
? std::vector<ck::index_t>{M * G1 * O, O, G1 * O, 1} // C layout [G0, M, G1, O]
: std::vector<ck::index_t>{G1 * M * O, M * O, O, 1}; // C layout [G0, G1, M, O]
Tensor<ADataType> a_gs_ms_ks(a_gs_ms_ks_lengths, a_gs_ms_ks_strides);
Tensor<B0DataType> b0_gs_ns_ks(b0_gs_ns_ks_lengths, b0_gs_ns_ks_strides);
Tensor<B1DataType> b1_gs_os_ns(b1_gs_os_ns_lengths, b1_gs_os_ns_strides);
Tensor<CDataType> c_gs_ms_os_host_result(c_gs_ms_os_lengths, c_gs_ms_os_strides);
Tensor<CDataType> c_gs_ms_os_device_result(c_gs_ms_os_lengths, c_gs_ms_os_strides);
std::cout << "a_gs_ms_ks: " << a_gs_ms_ks.mDesc << std::endl;
std::cout << "b0_gs_ns_ks: " << b0_gs_ns_ks.mDesc << std::endl;
std::cout << "b1_gs_os_ns: " << b1_gs_os_ns.mDesc << std::endl;
std::cout << "c_gs_ms_os: " << c_gs_ms_os_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-2, 2});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_2<B1DataType>{-2, 2});
break;
case 2:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_3<B0DataType>{0.0, 1.0});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_3<B1DataType>{-0.5, 0.5});
break;
case 3:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_Diagonal<B0DataType>{});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
break;
default:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_Sequential<2>{});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_Diagonal<B0DataType>{});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
}
DeviceMem a_device_buf(sizeof(ADataType) * a_gs_ms_ks.mDesc.GetElementSpaceSize());
DeviceMem b0_device_buf(sizeof(B0DataType) * b0_gs_ns_ks.mDesc.GetElementSpaceSize());
DeviceMem b1_device_buf(sizeof(B1DataType) * b1_gs_os_ns.mDesc.GetElementSpaceSize());
DeviceMem c_device_buf(sizeof(CDataType) *
c_gs_ms_os_device_result.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a_gs_ms_ks.mData.data());
b0_device_buf.ToDevice(b0_gs_ns_ks.mData.data());
b1_device_buf.ToDevice(b1_gs_os_ns.mData.data());
auto a_element_op = AElementOp{};
auto b0_element_op = B0ElementOp{};
auto acc0_element_op = Acc0ElementOp{alpha};
auto b1_element_op = B1ElementOp{};
auto c_element_op = CElementOp{};
// do GEMM
// TODO ANT: replace array with vector?
auto gemm = DeviceGemmInstance{};
auto invoker = gemm.MakeInvoker();
auto argument = gemm.MakeArgument(
static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()),
static_cast<B0DataType*>(b0_device_buf.GetDeviceBuffer()),
static_cast<B1DataType*>(b1_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
{}, // std::array<void*, 1> p_acc0_biases;
{}, // std::array<void*, 1> p_acc1_biases;
a_gs_ms_ks_lengths,
a_gs_ms_ks_strides,
b0_gs_ns_ks_lengths,
b0_gs_ns_ks_strides,
b1_gs_os_ns_lengths,
b1_gs_os_ns_strides,
c_gs_ms_os_lengths,
c_gs_ms_os_strides,
{}, // std::array<std::vector<ck::index_t>, 1>{acc0_biases_gs_ms_ns_lengths},
{}, // std::array<std::vector<ck::index_t>, 1>{acc0_biases_gs_ms_ns_strides},
{}, // std::array<std::vector<ck::index_t>, 1>{acc1_biases_gs_ms_os_lengths},
{}, // std::array<std::vector<ck::index_t>, 1>{acc1_biases_gs_ms_os_strides},
a_element_op,
b0_element_op,
acc0_element_op,
b1_element_op,
c_element_op);
if(!gemm.IsSupportedArgument(argument))
{
std::cout << gemm.GetTypeString() << " does not support this problem" << std::endl;
return 0;
}
ck::index_t BatchCount = G0 * G1;
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop = (size_t(M) * N * K * 2 + size_t(M) * N * O * 2) * BatchCount;
std::size_t num_btype = (sizeof(ADataType) * M * K + sizeof(B0DataType) * K * N +
sizeof(B1DataType) * N * O + sizeof(CDataType) * M * O) *
BatchCount;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< gemm.GetTypeString() << std::endl;
if(do_verification)
{
c_device_buf.FromDevice(c_gs_ms_os_device_result.mData.data());
Tensor<ADataType> a_g_m_k({BatchCount, M, K});
Tensor<B0DataType> b0_g_k_n({BatchCount, K, N});
Tensor<B1DataType> b1_g_n_o({BatchCount, N, O});
Tensor<AccDataType> acc0_g_m_n({BatchCount, M, N}); // scratch object after gemm0
Tensor<ADataType> a1_g_m_n({BatchCount, M, N}); // scratch object after softmax
Tensor<CDataType> c_g_m_o_host_result({BatchCount, M, O}); // scratch object after gemm1
// permute
a_gs_ms_ks.ForEach([&](auto& self, auto idx) {
a_g_m_k(idx[0] * G1 + idx[1], idx[2], idx[3]) = self(idx);
});
b0_gs_ns_ks.ForEach([&](auto& self, auto idx) {
b0_g_k_n(idx[0] * G1 + idx[1], idx[3], idx[2]) = self(idx);
});
b1_gs_os_ns.ForEach([&](auto& self, auto idx) {
b1_g_n_o(idx[0] * G1 + idx[1], idx[3], idx[2]) = self(idx);
});
// gemm 0
auto ref_gemm0 = ReferenceGemm0Instance{};
auto ref_gemm0_invoker = ref_gemm0.MakeInvoker();
auto ref_gemm0_argument = ref_gemm0.MakeArgument(
a_g_m_k, b0_g_k_n, acc0_g_m_n, a_element_op, b0_element_op, acc0_element_op);
ref_gemm0_invoker.Run(ref_gemm0_argument);
// masking
const auto mask = DeviceGemmInstance::C0MatrixMask(N);
acc0_g_m_n.ForEach([&](auto& self, auto idx) {
if(mask.IsMaskedElement(idx[1], idx[2]))
self(idx) = -ck::NumericLimits<float>::Infinity();
});
// softmax
auto ref_softmax = ReferenceSoftmaxInstance{};
auto ref_softmax_invoker = ref_softmax.MakeInvoker();
auto ref_softmax_argument = ref_softmax.MakeArgument(acc0_g_m_n, a1_g_m_n, 1, 0, {2});
ref_softmax_invoker.Run(ref_softmax_argument);
// gemm1
auto ref_gemm1 = ReferenceGemm1Instance{};
auto ref_gemm1_invoker = ref_gemm1.MakeInvoker();
auto ref_gemm1_argument = ref_gemm1.MakeArgument(
a1_g_m_n, b1_g_n_o, c_g_m_o_host_result, PassThrough{}, b1_element_op, c_element_op);
ref_gemm1_invoker.Run(ref_gemm1_argument);
// permute
c_gs_ms_os_host_result.ForEach([&](auto& self, auto idx) {
const size_t& g0 = idx[0];
const size_t& g1 = idx[1];
const size_t g = g0 * G1 + g1;
self(idx) = c_g_m_o_host_result(g, idx[2], idx[3]);
});
return ck::utils::check_err(c_gs_ms_os_device_result.mData, c_gs_ms_os_host_result.mData)
? 0
: 1;
}
return 0;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
int run(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
bool input_permute = false;
bool output_permute = true;
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else if(argc == 6)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
input_permute = std::stoi(argv[4]);
output_permute = std::stoi(argv[5]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
printf("arg4 to 5: input / output permute\n");
exit(0);
}
float alpha = 1; // scaling after 1st gemm
std::size_t group_count = 7;
// Problem descs
std::vector<DeviceGemmInstance::ProblemDesc> problem_descs;
std::vector<const void*> p_a;
std::vector<const void*> p_b0;
std::vector<const void*> p_b1;
std::vector<void*> p_c;
std::vector<std::vector<int>> g0_g1_m_n_k_o;
std::vector<Tensor<ADataType>> a_tensors;
std::vector<Tensor<B0DataType>> b0_tensors;
std::vector<Tensor<B1DataType>> b1_tensors;
std::vector<Tensor<CDataType>> c_tensors;
using DeviceMemPtr = std::unique_ptr<DeviceMem>;
std::vector<DeviceMemPtr> a_tensors_device;
std::vector<DeviceMemPtr> b0_tensors_device;
std::vector<DeviceMemPtr> b1_tensors_device;
std::vector<DeviceMemPtr> c_tensors_device;
std::size_t flop = 0, num_byte = 0;
std::cout << "group count " << group_count << ". printing first 4 groups\n";
for(std::size_t i = 0; i < group_count; i++)
{
int M = 128 * (rand() % 8 + 1);
int N = 128 * (rand() % 8 + 1);
int K = 40;
int O = 40 * (rand() % 2 + 1);
int G0 = rand() % 3 + 1;
int G1 = rand() % 5 + 1;
g0_g1_m_n_k_o.push_back({G0, G1, M, N, K, O});
std::vector<ck::index_t> a_gs_ms_ks_lengths{G0, G1, M, K};
std::vector<ck::index_t> a_gs_ms_ks_strides =
input_permute
? std::vector<ck::index_t>{M * G1 * K, K, G1 * K, 1} // A layout [G0, M, G1, K]
: std::vector<ck::index_t>{G1 * M * K, M * K, K, 1}; // A layout [G0, G1, M, K]
std::vector<ck::index_t> b0_gs_ns_ks_lengths{G0, G1, N, K};
std::vector<ck::index_t> b0_gs_ns_ks_strides =
input_permute
? std::vector<ck::index_t>{N * G1 * K, K, G1 * K, 1} // B0 layout [G0, N, G1, K]
: std::vector<ck::index_t>{G1 * N * K, N * K, K, 1}; // B0 layout [G0, G1, N, K]
std::vector<ck::index_t> b1_gs_os_ns_lengths{G0, G1, O, N};
std::vector<ck::index_t> b1_gs_os_ns_strides =
input_permute
? std::vector<ck::index_t>{N * G1 * O, O, 1, G1 * O} // B1 layout [G0, N, G1, O]
: std::vector<ck::index_t>{G1 * N * O, N * O, 1, O}; // B1 layout [G0, G1, N, O]
std::vector<ck::index_t> c_gs_ms_os_lengths{G0, G1, M, O};
std::vector<ck::index_t> c_gs_ms_os_strides =
output_permute
? std::vector<ck::index_t>{M * G1 * O, O, G1 * O, 1} // C layout [G0, M, G1, O]
: std::vector<ck::index_t>{G1 * M * O, M * O, O, 1}; // C layout [G0, G1, M, O]
problem_descs.push_back({a_gs_ms_ks_lengths,
a_gs_ms_ks_strides,
b0_gs_ns_ks_lengths,
b0_gs_ns_ks_strides,
b1_gs_os_ns_lengths,
b1_gs_os_ns_strides,
c_gs_ms_os_lengths,
c_gs_ms_os_strides,
{}, // acc0_biases_gs_ms_ns_lengths
{}, // acc0_biases_gs_ms_ns_strides
{}, // acc1_biases_gs_ms_os_lengths
{}}); // acc1_biases_gs_ms_os_strides
// C_m_o = A_m_k * B0_k_n * B1_n_o
Tensor<ADataType> a_gs_ms_ks(a_gs_ms_ks_lengths, a_gs_ms_ks_strides);
Tensor<B0DataType> b0_gs_ns_ks(b0_gs_ns_ks_lengths, b0_gs_ns_ks_strides);
Tensor<B1DataType> b1_gs_os_ns(b1_gs_os_ns_lengths, b1_gs_os_ns_strides);
Tensor<CDataType> c_gs_ms_os_device_result(c_gs_ms_os_lengths, c_gs_ms_os_strides);
int Batch = G0 * G1;
flop += (size_t(M) * N * K * 2 + size_t(M) * N * O * 2) * Batch;
num_byte += (sizeof(ADataType) * M * K + sizeof(B0DataType) * K * N +
sizeof(B1DataType) * N * O + sizeof(CDataType) * M * O) *
Batch;
if(i < 4)
{
std::cout << "a_gs_ms_ks[" << i << "]: " << a_gs_ms_ks.mDesc << ", "
<< "b0_gs_ns_ks[" << i << "]: " << b0_gs_ns_ks.mDesc << ", "
<< "b1_gs_os_ns[" << i << "]: " << b1_gs_os_ns.mDesc << ", "
<< "c_gs_ms_os[" << i << "]: " << c_gs_ms_os_device_result.mDesc << std::endl;
}
switch(init_method)
{
case 0: break;
case 1:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-2, 2});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_2<B1DataType>{-2, 2});
break;
case 2:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_3<B0DataType>{0.0, 1.0});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_3<B1DataType>{-0.5, 0.5});
break;
case 3:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_Diagonal<B0DataType>{});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
break;
default:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_1<ADataType>{1});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_Sequential<1>{});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
}
a_tensors.push_back(a_gs_ms_ks);
b0_tensors.push_back(b0_gs_ns_ks);
b1_tensors.push_back(b1_gs_os_ns);
c_tensors.push_back(c_gs_ms_os_device_result);
a_tensors_device.emplace_back(std::make_unique<DeviceMem>(
sizeof(ADataType) * a_gs_ms_ks.mDesc.GetElementSpaceSize()));
b0_tensors_device.emplace_back(std::make_unique<DeviceMem>(
sizeof(B0DataType) * b0_gs_ns_ks.mDesc.GetElementSpaceSize()));
b1_tensors_device.emplace_back(std::make_unique<DeviceMem>(
sizeof(B1DataType) * b1_gs_os_ns.mDesc.GetElementSpaceSize()));
c_tensors_device.emplace_back(std::make_unique<DeviceMem>(
sizeof(CDataType) * c_gs_ms_os_device_result.mDesc.GetElementSpaceSize()));
a_tensors_device[i]->ToDevice(a_gs_ms_ks.mData.data());
b0_tensors_device[i]->ToDevice(b0_gs_ns_ks.mData.data());
b1_tensors_device[i]->ToDevice(b1_gs_os_ns.mData.data());
p_a.push_back(a_tensors_device[i]->GetDeviceBuffer());
p_b0.push_back(b0_tensors_device[i]->GetDeviceBuffer());
p_b1.push_back(b1_tensors_device[i]->GetDeviceBuffer());
p_c.push_back(c_tensors_device[i]->GetDeviceBuffer());
}
auto a_element_op = AElementOp{};
auto b0_element_op = B0ElementOp{};
auto acc0_element_op = Acc0ElementOp{alpha};
auto b1_element_op = B1ElementOp{};
auto c_element_op = CElementOp{};
// do GEMM
auto gemm = DeviceGemmInstance{};
auto invoker = gemm.MakeInvoker();
auto argument = gemm.MakeArgument(p_a,
p_b0,
p_b1,
p_c,
{}, // p_acc0_biases
{}, // p_acc1_biases
problem_descs,
a_element_op,
b0_element_op,
acc0_element_op,
b1_element_op,
c_element_op);
// specify workspace for problem_desc
DeviceMem problem_desc_workspace(gemm.GetWorkSpaceSize(&argument));
gemm.SetWorkSpacePointer(&argument, problem_desc_workspace.GetDeviceBuffer());
if(!gemm.IsSupportedArgument(argument))
{
std::cout << gemm.GetTypeString() << " does not support this problem" << std::endl;
return 0;
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_byte / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< gemm.GetTypeString() << std::endl;
bool pass = true;
if(do_verification)
{
for(std::size_t i = 0; i < group_count; i++)
{
const int& G0 = g0_g1_m_n_k_o[i][0];
const int& G1 = g0_g1_m_n_k_o[i][1];
const int& M = g0_g1_m_n_k_o[i][2];
const int& N = g0_g1_m_n_k_o[i][3];
const int& K = g0_g1_m_n_k_o[i][4];
const int& O = g0_g1_m_n_k_o[i][5];
const auto& c_gs_ms_os_lengths = problem_descs[i].c_gs_ms_os_lengths;
const auto& c_gs_ms_os_strides = problem_descs[i].c_gs_ms_os_strides;
const auto& a_gs_ms_ks = a_tensors[i];
const auto& b0_gs_ns_ks = b0_tensors[i];
const auto& b1_gs_os_ns = b1_tensors[i];
auto& c_gs_ms_os_device_result = c_tensors[i];
auto& c_gs_ms_os_device_buf = *c_tensors_device[i];
c_gs_ms_os_device_buf.FromDevice(c_gs_ms_os_device_result.mData.data());
Tensor<ADataType> a_g_m_k({G0 * G1, M, K});
Tensor<B0DataType> b0_g_k_n({G0 * G1, K, N});
Tensor<B1DataType> b1_g_n_o({G0 * G1, N, O});
Tensor<AccDataType> acc0_g_m_n({G0 * G1, M, N}); // scratch object after gemm0
Tensor<ADataType> a1_g_m_n({G0 * G1, M, N}); // scratch object after softmax
Tensor<CDataType> c_g_m_o_host_result({G0 * G1, M, O}); // scratch object after gemm1
Tensor<CDataType> c_gs_ms_os_host_result(c_gs_ms_os_lengths, c_gs_ms_os_strides);
// permute
a_gs_ms_ks.ForEach([&](auto& self, auto idx) {
a_g_m_k(idx[0] * G1 + idx[1], idx[2], idx[3]) = self(idx);
});
b0_gs_ns_ks.ForEach([&](auto& self, auto idx) {
b0_g_k_n(idx[0] * G1 + idx[1], idx[3], idx[2]) = self(idx);
});
b1_gs_os_ns.ForEach([&](auto& self, auto idx) {
b1_g_n_o(idx[0] * G1 + idx[1], idx[3], idx[2]) = self(idx);
});
// gemm 0
auto ref_gemm0 = ReferenceGemm0Instance{};
auto ref_gemm0_invoker = ref_gemm0.MakeInvoker();
auto ref_gemm0_argument = ref_gemm0.MakeArgument(
a_g_m_k, b0_g_k_n, acc0_g_m_n, a_element_op, b0_element_op, acc0_element_op);
ref_gemm0_invoker.Run(ref_gemm0_argument);
// masking
const auto mask = DeviceGemmInstance::C0MatrixMask(N);
acc0_g_m_n.ForEach([&](auto& self, auto idx) {
if(mask.IsMaskedElement(idx[1], idx[2]))
self(idx) = -ck::NumericLimits<float>::Infinity();
});
// softmax
auto ref_softmax = ReferenceSoftmaxInstance{};
auto ref_softmax_invoker = ref_softmax.MakeInvoker();
auto ref_softmax_argument = ref_softmax.MakeArgument(acc0_g_m_n, a1_g_m_n, 1, 0, {2});
ref_softmax_invoker.Run(ref_softmax_argument);
// gemm 1
auto ref_gemm1 = ReferenceGemm1Instance{};
auto ref_gemm1_invoker = ref_gemm1.MakeInvoker();
auto ref_gemm1_argument = ref_gemm1.MakeArgument(a1_g_m_n,
b1_g_n_o,
c_g_m_o_host_result,
PassThrough{},
b1_element_op,
c_element_op);
ref_gemm1_invoker.Run(ref_gemm1_argument);
// permute
c_gs_ms_os_host_result.ForEach([&](auto& self, auto idx) {
const size_t& g0 = idx[0];
const size_t& g1 = idx[1];
const size_t g = g0 * G1 + g1;
self(idx) = c_g_m_o_host_result(g, idx[2], idx[3]);
});
bool pass_ =
ck::utils::check_err(c_gs_ms_os_device_result.mData, c_gs_ms_os_host_result.mData);
pass &= pass_;
}
}
return pass ? 0 : 1;
}
...@@ -159,6 +159,11 @@ ...@@ -159,6 +159,11 @@
// tuning parameter // tuning parameter
#define CK_WORKAROUND_SWDEV_325164 0 #define CK_WORKAROUND_SWDEV_325164 0
// workaround: disable broken fused attention kernel instance that does not pass validation
// issue found on mi100/#10738 combo when irregular KPerBlock attention kernel has acc0 scaling
// enabled
#define CK_WORKAROUND_DISABLE_BROKEN_ATTN_KERNEL_INSTANCE 1
namespace ck { namespace ck {
enum struct InMemoryDataOperationEnum enum struct InMemoryDataOperationEnum
......
...@@ -14,7 +14,8 @@ namespace ck { ...@@ -14,7 +14,8 @@ namespace ck {
template <typename TensorLengths, template <typename TensorLengths,
typename DimAccessOrder, typename DimAccessOrder,
typename ScalarsPerAccess> // # of scalars per access in each dimension typename ScalarsPerAccess,
bool SnakeCurved = true> // # of scalars per access in each dimension
struct SpaceFillingCurve struct SpaceFillingCurve
{ {
static constexpr index_t nDim = TensorLengths::Size(); static constexpr index_t nDim = TensorLengths::Size();
...@@ -136,9 +137,10 @@ struct SpaceFillingCurve ...@@ -136,9 +137,10 @@ struct SpaceFillingCurve
Index ordered_idx; Index ordered_idx;
static_for<0, nDim, 1>{}([&](auto idim) { static_for<0, nDim, 1>{}([&](auto idim) {
ordered_idx(idim) = forward_sweep[idim] ? ordered_access_idx[idim] ordered_idx(idim) =
: ordered_access_lengths[idim] - 1 - !SnakeCurved || forward_sweep[idim]
ordered_access_idx[idim]; ? ordered_access_idx[idim]
: ordered_access_lengths[idim] - 1 - ordered_access_idx[idim];
}); });
return container_reorder_given_old2new(ordered_idx, dim_access_order) * return container_reorder_given_old2new(ordered_idx, dim_access_order) *
......
...@@ -151,6 +151,27 @@ struct BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1 ...@@ -151,6 +151,27 @@ struct BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1
return make_tuple(c_thread_m, c_thread_n); return make_tuple(c_thread_m, c_thread_n);
} }
template <index_t m0, index_t n0, index_t xdlops_i, index_t blk_i>
__device__ static auto
CalculateCThreadOriginDataIndex8D(Number<m0>, Number<n0>, Number<xdlops_i>, Number<blk_i>)
{
const auto wave_idx = GetWaveIdx();
const auto waveId_m = wave_idx[I0];
const auto waveId_n = wave_idx[I1];
const auto blk_idx = xdlops_gemm.GetBeginOfThreadBlk4D(xdlops_i, blk_i);
return make_tuple(Number<m0>{},
Number<n0>{},
waveId_m,
waveId_n,
blk_idx[I0],
blk_idx[I1],
blk_idx[I2],
blk_idx[I3]);
}
__host__ __device__ BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1() __host__ __device__ BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1()
{ {
static_assert(AK0MK1BlockDesc::IsKnownAtCompileTime() && static_assert(AK0MK1BlockDesc::IsKnownAtCompileTime() &&
...@@ -724,6 +745,21 @@ struct BlockwiseGemmXdlops_v2 ...@@ -724,6 +745,21 @@ struct BlockwiseGemmXdlops_v2
return make_tuple(c_thread_m, c_thread_n); return make_tuple(c_thread_m, c_thread_n);
} }
template <index_t m0, index_t n0, index_t xdlops_i, index_t blk_i>
__device__ static auto
CalculateCThreadOriginDataIndex8D(Number<m0>, Number<n0>, Number<xdlops_i>, Number<blk_i>)
{
const auto wave_idx = GetWaveIdx();
const auto waveId_m = wave_idx[I0];
const auto waveId_n = wave_idx[I1];
const auto blk_idx = xdlops_gemm.GetBeginOfThreadBlk4D(xdlops_i, blk_i);
return make_tuple(
m0, n0, waveId_m, waveId_n, blk_idx[I0], blk_idx[I1], blk_idx[I2], blk_idx[I3]);
}
using Tuple4 = decltype(CalculateAThreadOriginDataIndex()); using Tuple4 = decltype(CalculateAThreadOriginDataIndex());
__host__ __device__ BlockwiseGemmXdlops_v2(Tuple4 a_origin = CalculateAThreadOriginDataIndex(), __host__ __device__ BlockwiseGemmXdlops_v2(Tuple4 a_origin = CalculateAThreadOriginDataIndex(),
......
...@@ -24,7 +24,8 @@ template <typename ALayout, ...@@ -24,7 +24,8 @@ template <typename ALayout,
typename B0ElementwiseOperation, typename B0ElementwiseOperation,
typename Acc0ElementwiseOperation, typename Acc0ElementwiseOperation,
typename B1ElementwiseOperation, typename B1ElementwiseOperation,
typename CElementwiseOperation> typename CElementwiseOperation,
bool MaskOutUpperTriangle> // TODO: enum for mask type
struct DeviceBatchedGemmSoftmaxGemm : public BaseOperator struct DeviceBatchedGemmSoftmaxGemm : public BaseOperator
{ {
virtual std::unique_ptr<BaseArgument> virtual std::unique_ptr<BaseArgument>
......
...@@ -7,49 +7,60 @@ ...@@ -7,49 +7,60 @@
#include <vector> #include <vector>
#include "device_base.hpp" #include "device_base.hpp"
#include "ck/tensor_operation/gpu/device/masking_specialization.hpp"
namespace ck { namespace ck {
namespace tensor_operation { namespace tensor_operation {
namespace device { namespace device {
template <typename ALayout, template <index_t NumDimG,
typename B0Layout, index_t NumDimM,
typename B1Layout, index_t NumDimN,
typename CPermuteNumDims_G_M_Gemm1N, // Sequence<> index_t NumDimK,
index_t NumDimO,
typename ADataType, typename ADataType,
typename B0DataType, typename B0DataType,
typename B1DataType, typename B1DataType,
typename CDataType, typename CDataType,
typename Acc0BiasDataType,
typename Acc1BiasDataType,
typename AElementwiseOperation, typename AElementwiseOperation,
typename B0ElementwiseOperation, typename B0ElementwiseOperation,
typename Acc0ElementwiseOperation, typename Acc0ElementwiseOperation,
typename B1ElementwiseOperation, typename B1ElementwiseOperation,
typename CElementwiseOperation> typename CElementwiseOperation,
MaskingSpecialization MaskingSpec>
struct DeviceBatchedGemmSoftmaxGemmPermute : public BaseOperator struct DeviceBatchedGemmSoftmaxGemmPermute : public BaseOperator
{ {
virtual std::unique_ptr<BaseArgument> static constexpr index_t NumAcc0Bias = Acc0BiasDataType::Size();
MakeArgumentPointer(const void* p_a, static constexpr index_t NumAcc1Bias = Acc1BiasDataType::Size();
const void* p_b0,
const void* p_b1, virtual std::unique_ptr<BaseArgument> MakeArgumentPointer(
void* p_c, const void* p_a,
ck::index_t M, const void* p_b0,
ck::index_t N, const void* p_b1,
ck::index_t K, void* p_c,
ck::index_t O, const std::array<void*, NumAcc0Bias> p_acc0_biases,
ck::index_t Batch, const std::array<void*, NumAcc1Bias> p_acc1_biases,
std::vector<index_t> c_gs_ms_os_lengths, const std::vector<index_t>& a_gs_ms_ks_lengths,
std::vector<index_t> c_gs_ms_os_strides, const std::vector<index_t>& a_gs_ms_ks_strides,
ck::index_t StrideA, const std::vector<index_t>& b_gs_ns_ks_lengths,
ck::index_t StrideB0, const std::vector<index_t>& b_gs_ns_ks_strides,
ck::index_t StrideB1, const std::vector<index_t>& b1_gs_gemm1ns_gemm1ks_lengths, // b1_gs_os_ns_lengths
ck::index_t BatchStrideA, const std::vector<index_t>& b1_gs_gemm1ns_gemm1ks_strides, // b1_gs_os_ns_strides
ck::index_t BatchStrideB0, const std::vector<index_t>& c_gs_ms_gemm1ns_lengths, // c_gs_ms_os_lengths
ck::index_t BatchStrideB1, const std::vector<index_t>& c_gs_ms_gemm1ns_strides, // c_gs_ms_os_strides
AElementwiseOperation a_element_op, const std::array<std::vector<index_t>, NumAcc0Bias> acc0_biases_gs_ms_ns_lengths,
B0ElementwiseOperation b0_element_op, const std::array<std::vector<index_t>, NumAcc0Bias> acc0_biases_gs_ms_ns_strides,
Acc0ElementwiseOperation acc0_element_op, const std::array<std::vector<index_t>, NumAcc1Bias>
B1ElementwiseOperation b1_element_op, acc1_biases_gs_ms_gemm1ns_lengths, // acc1_biases_gs_ms_os_lengths
CElementwiseOperation c_element_op) = 0; const std::array<std::vector<index_t>, NumAcc1Bias>
acc1_biases_gs_ms_gemm1ns_strides, // acc1_biases_gs_ms_os_strides
AElementwiseOperation a_element_op,
B0ElementwiseOperation b0_element_op,
Acc0ElementwiseOperation acc0_element_op,
B1ElementwiseOperation b1_element_op,
CElementwiseOperation c_element_op) = 0;
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0; virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
}; };
......
...@@ -7,46 +7,50 @@ ...@@ -7,46 +7,50 @@
#include <vector> #include <vector>
#include "device_base.hpp" #include "device_base.hpp"
#include "ck/tensor_operation/gpu/device/masking_specialization.hpp"
namespace ck { namespace ck {
namespace tensor_operation { namespace tensor_operation {
namespace device { namespace device {
template <typename ALayout, template <index_t NumDimG,
typename B0Layout, index_t NumDimM,
typename B1Layout, index_t NumDimN,
typename CPermuteNumDims_G_M_Gemm1N, // Sequence<> index_t NumDimK,
index_t NumDimO,
typename ADataType, typename ADataType,
typename B0DataType, typename B0DataType,
typename B1DataType, typename B1DataType,
typename CDataType, typename CDataType,
typename Acc0BiasDataType,
typename Acc1BiasDataType,
typename AElementwiseOperation, typename AElementwiseOperation,
typename B0ElementwiseOperation, typename B0ElementwiseOperation,
typename Acc0ElementwiseOperation, typename Acc0ElementwiseOperation,
typename B1ElementwiseOperation, typename B1ElementwiseOperation,
typename CElementwiseOperation> typename CElementwiseOperation,
MaskingSpecialization MaskingSpec>
struct DeviceGroupedGemmSoftmaxGemmPermute : public BaseOperator struct DeviceGroupedGemmSoftmaxGemmPermute : public BaseOperator
{ {
struct ProblemDesc struct ProblemDesc
{ {
// Overall problem shape std::vector<index_t> a_gs_ms_ks_lengths;
index_t M; std::vector<index_t> a_gs_ms_ks_strides;
index_t N;
index_t K;
index_t O;
index_t Batch;
// Stride for A/B0/B1; layout determined by template args std::vector<index_t> b0_gs_ns_ks_lengths;
index_t StrideA; std::vector<index_t> b0_gs_ns_ks_strides;
index_t StrideB0;
index_t StrideB1; std::vector<index_t> b1_gs_os_ns_lengths;
index_t BatchStrideA; std::vector<index_t> b1_gs_os_ns_strides;
index_t BatchStrideB0;
index_t BatchStrideB1;
// Lengths and strides for output C
std::vector<index_t> c_gs_ms_os_lengths; std::vector<index_t> c_gs_ms_os_lengths;
std::vector<index_t> c_gs_ms_os_strides; std::vector<index_t> c_gs_ms_os_strides;
std::vector<std::vector<index_t>> acc0_biases_gs_ms_ns_lengths;
std::vector<std::vector<index_t>> acc0_biases_gs_ms_ns_strides;
std::vector<std::vector<index_t>> acc1_biases_gs_ms_os_lengths;
std::vector<std::vector<index_t>> acc1_biases_gs_ms_os_strides;
}; };
virtual std::unique_ptr<BaseArgument> virtual std::unique_ptr<BaseArgument>
...@@ -54,6 +58,8 @@ struct DeviceGroupedGemmSoftmaxGemmPermute : public BaseOperator ...@@ -54,6 +58,8 @@ struct DeviceGroupedGemmSoftmaxGemmPermute : public BaseOperator
std::vector<const void*> p_b0_vec, std::vector<const void*> p_b0_vec,
std::vector<const void*> p_b1_vec, std::vector<const void*> p_b1_vec,
std::vector<void*> p_c_vec, std::vector<void*> p_c_vec,
std::vector<std::vector<const void*>> p_acc0_biases_vec,
std::vector<std::vector<const void*>> p_acc1_biases_vec,
std::vector<ProblemDesc> problem_desc_vec, std::vector<ProblemDesc> problem_desc_vec,
AElementwiseOperation a_element_op, AElementwiseOperation a_element_op,
B0ElementwiseOperation b0_element_op, B0ElementwiseOperation b0_element_op,
......
...@@ -14,6 +14,7 @@ ...@@ -14,6 +14,7 @@
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp" #include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp" #include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_batched_gemm_softmax_gemm_xdl_cshuffle_v1.hpp" #include "ck/tensor_operation/gpu/grid/gridwise_batched_gemm_softmax_gemm_xdl_cshuffle_v1.hpp"
#include "ck/tensor_operation/operator_transform/transform_contraction_to_gemm.hpp"
#include "ck/host_utility/device_prop.hpp" #include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp" #include "ck/host_utility/kernel_launch.hpp"
...@@ -54,9 +55,8 @@ __global__ void ...@@ -54,9 +55,8 @@ __global__ void
index_t right = group_count; index_t right = group_count;
index_t group_id = index_t((left + right) / 2); index_t group_id = index_t((left + right) / 2);
while((!(block_id >= arg_ptr[group_id].block_start_ && while(
block_id < arg_ptr[group_id].block_end_)) && (!(block_id >= arg_ptr[group_id].block_start_ && block_id < arg_ptr[group_id].block_end_)))
left <= right)
{ {
if(block_id < arg_ptr[group_id].block_start_) if(block_id < arg_ptr[group_id].block_start_)
{ {
...@@ -114,14 +114,17 @@ __global__ void ...@@ -114,14 +114,17 @@ __global__ void
// Computes C = A * B0 * B1 // Computes C = A * B0 * B1
// ^^^^^^ (Acc0) // ^^^^^^ (Acc0)
// ^^^^^^^^^^^ (Acc1) // ^^^^^^^^^^^ (Acc1)
template <typename ALayout, template <index_t NumDimG,
typename BLayout, // B0Layout index_t NumDimM,
typename B1Layout, index_t NumDimN,
typename CPermuteNumDims_G_M_Gemm1N, // Sequence<NumDimG, NumDimM, NumDimGemm1N> index_t NumDimK,
index_t NumDimO, // NumDimGemm1N
typename ADataType, typename ADataType,
typename BDataType, typename BDataType,
typename B1DataType, typename B1DataType,
typename CDataType, typename CDataType,
typename Acc0BiasDataType,
typename Acc1BiasDataType,
typename GemmAccDataType, typename GemmAccDataType,
typename CShuffleDataType, typename CShuffleDataType,
typename AElementwiseOperation, typename AElementwiseOperation,
...@@ -130,6 +133,10 @@ template <typename ALayout, ...@@ -130,6 +133,10 @@ template <typename ALayout,
typename B1ElementwiseOperation, typename B1ElementwiseOperation,
typename CElementwiseOperation, typename CElementwiseOperation,
GemmSpecialization GemmSpec, GemmSpecialization GemmSpec,
TensorSpecialization ASpec,
TensorSpecialization BSpec,
TensorSpecialization B1Spec,
TensorSpecialization CSpec,
index_t NumGemmKPrefetchStage, index_t NumGemmKPrefetchStage,
index_t BlockSize, index_t BlockSize,
index_t MPerBlock, index_t MPerBlock,
...@@ -170,297 +177,152 @@ template <typename ALayout, ...@@ -170,297 +177,152 @@ template <typename ALayout,
index_t CShuffleNXdlPerWavePerShuffle, index_t CShuffleNXdlPerWavePerShuffle,
typename CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock, typename CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
index_t CShuffleBlockTransferScalarPerVector_NPerBlock, index_t CShuffleBlockTransferScalarPerVector_NPerBlock,
bool MaskOutUpperTriangle, MaskingSpecialization MaskingSpec,
LoopScheduler LoopSched = LoopScheduler::Default> LoopScheduler LoopSched = LoopScheduler::Default>
struct DeviceGroupedGemmSoftmaxGemmPermute_Xdl_CShuffle struct DeviceGroupedGemmSoftmaxGemmPermute_Xdl_CShuffle
: public DeviceGroupedGemmSoftmaxGemmPermute<ALayout, : public DeviceGroupedGemmSoftmaxGemmPermute<NumDimG,
BLayout, NumDimM,
B1Layout, NumDimN,
CPermuteNumDims_G_M_Gemm1N, NumDimK,
NumDimO,
ADataType, ADataType,
BDataType, BDataType,
B1DataType, B1DataType,
CDataType, CDataType,
Acc0BiasDataType,
Acc1BiasDataType,
AElementwiseOperation, AElementwiseOperation,
BElementwiseOperation, BElementwiseOperation,
AccElementwiseOperation, AccElementwiseOperation,
B1ElementwiseOperation, B1ElementwiseOperation,
CElementwiseOperation> CElementwiseOperation,
MaskingSpec>
{ {
using DeviceOp = DeviceGroupedGemmSoftmaxGemmPermute_Xdl_CShuffle; static_assert(NumDimG > 0 && NumDimM > 0 && NumDimN > 0 && NumDimK > 0 && NumDimO > 0,
using ProblemDesc = "Number of dimension must be greater than 0");
typename DeviceGroupedGemmSoftmaxGemmPermute<ALayout,
BLayout, static constexpr index_t NumAcc0Bias = Acc0BiasDataType::Size();
B1Layout, static constexpr index_t NumAcc1Bias = Acc1BiasDataType::Size();
CPermuteNumDims_G_M_Gemm1N,
ADataType, // TODO ANT: implement bias combination
BDataType, static_assert(NumAcc0Bias == 0 && NumAcc0Bias == 0, "Bias addition is unimplemented");
B1DataType,
CDataType, #if 0
AElementwiseOperation, // TODO ANT: use alias
BElementwiseOperation, static constexpr index_t NumDimGemm0M = NumDimM;
AccElementwiseOperation, static constexpr index_t NumDimGemm0N = NumDimN;
B1ElementwiseOperation, static constexpr index_t NumDimGemm0K = NumDimK;
CElementwiseOperation>::ProblemDesc; static constexpr index_t NumDimGemm1M = NumDimM;
static constexpr index_t NumDimGemm1N = NumDimO;
static constexpr index_t NumDimGemm1K = NumDimN;
#endif
using DeviceOp = DeviceGroupedGemmSoftmaxGemmPermute_Xdl_CShuffle;
using ProblemDesc = typename DeviceGroupedGemmSoftmaxGemmPermute<NumDimG,
NumDimM,
NumDimN,
NumDimK,
NumDimO,
ADataType,
BDataType,
B1DataType,
CDataType,
Acc0BiasDataType,
Acc1BiasDataType,
AElementwiseOperation,
BElementwiseOperation,
AccElementwiseOperation,
B1ElementwiseOperation,
CElementwiseOperation,
MaskingSpec>::ProblemDesc;
static constexpr auto I0 = Number<0>{}; static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{}; static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{}; static constexpr auto I2 = Number<2>{};
static constexpr auto matrix_padder = using Transform = TransformBatchedContractionContractionToBatchedGemmGemm<
GemmGemmPadder<GemmSpec, index_t, index_t, index_t, index_t>{ Sequence<NumDimG, NumDimM, NumDimN, NumDimK, NumDimO>,
MPerBlock, NPerBlock, KPerBlock, Gemm1NPerBlock}; Sequence<MPerBlock, NPerBlock, KPerBlock, Gemm1NPerBlock>,
GemmSpec,
static auto MakeAGridDescriptor_AK0_M_AK1(index_t MRaw, index_t KRaw, index_t StrideA) ASpec,
{ BSpec,
const auto a_grid_desc_mraw_kraw = [&]() { B1Spec,
if constexpr(is_same_v<tensor_layout::gemm::RowMajor, ALayout>) CSpec>;
{
return make_naive_tensor_descriptor(make_tuple(MRaw, KRaw), static auto MakeAGridDescriptor_AK0_M_AK1(const std::vector<index_t>& a_gs_ms_ks_lengths_vec,
make_tuple(StrideA, I1)); const std::vector<index_t>& a_gs_ms_ks_strides_vec)
}
else if constexpr(is_same_v<tensor_layout::gemm::ColumnMajor, ALayout>)
{
return make_naive_tensor_descriptor(make_tuple(MRaw, KRaw),
make_tuple(I1, StrideA));
}
}();
const auto a_grid_desc_m_k = matrix_padder.PadADescriptor_M_K(a_grid_desc_mraw_kraw);
const auto M = a_grid_desc_m_k.GetLength(I0);
const auto K = a_grid_desc_m_k.GetLength(I1);
const auto AK0 = K / AK1;
return transform_tensor_descriptor(a_grid_desc_m_k,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1)),
make_pass_through_transform(M)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
}
static auto MakeBGridDescriptor_BK0_N_BK1(index_t KRaw, index_t NRaw, index_t StrideB)
{
const auto b_grid_desc_nraw_kraw = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, BLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(NRaw, KRaw),
make_tuple(I1, StrideB));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, BLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(NRaw, KRaw),
make_tuple(StrideB, I1));
}
}();
const auto b_grid_desc_n_k = matrix_padder.PadBDescriptor_N_K(b_grid_desc_nraw_kraw);
const auto N = b_grid_desc_n_k.GetLength(I0);
const auto K = b_grid_desc_n_k.GetLength(I1);
const auto BK0 = K / BK1;
return transform_tensor_descriptor(b_grid_desc_n_k,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1)),
make_pass_through_transform(N)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
}
// Args: Gemm1KRaw, Gemm1NRaw, StrideB1
static auto MakeB1GridDescriptor_BK0_N_BK1(index_t KRaw, index_t NRaw, index_t StrideB)
{ {
const auto b1_grid_desc_nraw_kraw = [&]() { return Transform::MakeAGridDescriptor_AK0_M_AK1(
if constexpr(is_same<tensor_layout::gemm::RowMajor, B1Layout>::value) Transform::MakeAGridDescriptor_M_K(a_gs_ms_ks_lengths_vec, a_gs_ms_ks_strides_vec),
{ Number<AK1>{});
return make_naive_tensor_descriptor(make_tuple(NRaw, KRaw),
make_tuple(I1, StrideB));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, B1Layout>::value)
{
return make_naive_tensor_descriptor(make_tuple(NRaw, KRaw),
make_tuple(StrideB, I1));
}
}();
const auto b1_grid_desc_n_k = matrix_padder.PadB1Descriptor_N_K(b1_grid_desc_nraw_kraw);
const auto N = b1_grid_desc_n_k.GetLength(I0);
const auto K = b1_grid_desc_n_k.GetLength(I1);
const auto B1K0 = K / B1K1;
return transform_tensor_descriptor(
b1_grid_desc_n_k,
make_tuple(make_unmerge_transform(make_tuple(B1K0, B1K1)),
make_pass_through_transform(N)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
} }
// assume C[G0, G1, ..., M0, M1, M2, ..., N0, N1, N2...] static auto MakeBGridDescriptor_BK0_N_BK1(const std::vector<index_t>& b_gs_ns_ks_lengths_vec,
static auto MakeCGridDescriptor_M_N(const std::vector<index_t>& c_gs_ms_ns_lengths_vec, const std::vector<index_t>& b_gs_ns_ks_strides_vec)
const std::vector<index_t>& c_gs_ms_ns_strides_vec)
{ {
constexpr index_t NumDimG = CPermuteNumDims_G_M_Gemm1N::At(I0); return Transform::MakeB0GridDescriptor_BK0_N_BK1(
constexpr index_t NumDimM = CPermuteNumDims_G_M_Gemm1N::At(I1); Transform::MakeB0GridDescriptor_N_K(b_gs_ns_ks_lengths_vec, b_gs_ns_ks_strides_vec),
constexpr index_t NumDimN = CPermuteNumDims_G_M_Gemm1N::At(I2); // NumDimGemm1N Number<BK1>{});
assert(c_gs_ms_ns_lengths_vec.size() == NumDimG + NumDimM + NumDimN &&
c_gs_ms_ns_strides_vec.size() == NumDimG + NumDimM + NumDimN);
const auto to_tuple = [&](auto& vec, auto start, auto end) {
return generate_tuple([&](auto i) { return vec[start + i]; }, Number<end - start>{});
};
const auto c_ms_ns_lengths = to_tuple(
c_gs_ms_ns_lengths_vec, Number<NumDimG>{}, Number<NumDimG + NumDimM + NumDimN>{});
const auto c_ms_ns_strides = to_tuple(
c_gs_ms_ns_strides_vec, Number<NumDimG>{}, Number<NumDimG + NumDimM + NumDimN>{});
// dimension Ids for M0, M1, ...
constexpr auto mDimIds = typename arithmetic_sequence_gen<0, NumDimM, 1>::type{};
// dimension Ids for N0, N1, ...
constexpr auto nDimIds =
typename arithmetic_sequence_gen<NumDimM, NumDimM + NumDimN, 1>::type{};
// lengths for M0, M1, ...
const auto mLengths = get_container_subset(c_ms_ns_lengths, mDimIds);
// lengths for K0, K1, ...
const auto nLengths = get_container_subset(c_ms_ns_lengths, nDimIds);
// naive tensor C[M0, M1, M2, ..., N0, N1, N2...]
const auto c_grid_desc_ms_ns =
make_naive_tensor_descriptor(c_ms_ns_lengths, c_ms_ns_strides);
// transformed tensor C[MRaw = M0 * M1 * M2 * ... , NRaw = N0 * N1 * N2 * ...]
const auto c_grid_desc_mraw_nraw = transform_tensor_descriptor(
c_grid_desc_ms_ns,
make_tuple(make_merge_transform(mLengths), make_merge_transform(nLengths)),
make_tuple(mDimIds, nDimIds),
make_tuple(Sequence<0>{}, Sequence<1>{}));
return matrix_padder.PadCDescriptor_M_N(c_grid_desc_mraw_nraw);
} }
// assume C[G0, G1, ..., M0, M1, M2, ..., N0, N1, N2...] static auto
static auto MakeCGridDescriptor_G_M_N(const std::vector<index_t>& c_gs_ms_ns_lengths_vec, MakeB1GridDescriptor_BK0_N_BK1(const std::vector<index_t>& b1_gs_gemm1ns_gemm1ks_lengths_vec,
const std::vector<index_t>& c_gs_ms_ns_strides_vec) const std::vector<index_t>& b1_gs_gemm1ns_gemm1ks_strides_vec)
{ {
constexpr index_t NumDimG = CPermuteNumDims_G_M_Gemm1N::At(I0); return Transform::MakeB1GridDescriptor_BK0_N_BK1(
constexpr index_t NumDimM = CPermuteNumDims_G_M_Gemm1N::At(I1); Transform::MakeB1GridDescriptor_N_K(b1_gs_gemm1ns_gemm1ks_lengths_vec,
constexpr index_t NumDimN = CPermuteNumDims_G_M_Gemm1N::At(I2); // NumDimGemm1N b1_gs_gemm1ns_gemm1ks_strides_vec),
Number<B1K1>{});
assert(c_gs_ms_ns_lengths_vec.size() == NumDimG + NumDimM + NumDimN &&
c_gs_ms_ns_strides_vec.size() == NumDimG + NumDimM + NumDimN);
const auto to_tuple = [&](auto& vec, auto start, auto end) {
return generate_tuple([&](auto i) { return vec[start + i]; }, Number<end - start>{});
};
const auto c_gs_ms_ns_lengths =
to_tuple(c_gs_ms_ns_lengths_vec, Number<0>{}, Number<NumDimG + NumDimM + NumDimN>{});
const auto c_gs_ms_ns_strides =
to_tuple(c_gs_ms_ns_strides_vec, Number<0>{}, Number<NumDimG + NumDimM + NumDimN>{});
// dimension Ids for G0, G1, ...
constexpr auto gDimIds = typename arithmetic_sequence_gen<0, NumDimG, 1>::type{};
// dimension Ids for M0, M1, ...
constexpr auto mDimIds =
typename arithmetic_sequence_gen<NumDimG, NumDimG + NumDimM, 1>::type{};
// dimension Ids for N0, N1, ...
constexpr auto nDimIds = typename arithmetic_sequence_gen<NumDimG + NumDimM,
NumDimG + NumDimM + NumDimN,
1>::type{};
// lengths for G0, G1, ...
const auto gLengths = get_container_subset(c_gs_ms_ns_lengths, gDimIds);
// lengths for M0, M1, ...
const auto mLengths = get_container_subset(c_gs_ms_ns_lengths, mDimIds);
// lengths for K0, K1, ...
const auto nLengths = get_container_subset(c_gs_ms_ns_lengths, nDimIds);
// naive tensor C[G0, G1, ..., M0, M1, M2, ..., N0, N1, N2...]
const auto c_grid_desc_gs_ms_ns =
make_naive_tensor_descriptor(c_gs_ms_ns_lengths, c_gs_ms_ns_strides);
// transformed tensor C[G = G0 * G1 * ..., MRaw = M0 * M1 * M2 * ... , NRaw = N0 * N1 *
// N2 * ...]
const auto c_grid_desc_g_mraw_nraw =
transform_tensor_descriptor(c_grid_desc_gs_ms_ns,
make_tuple(make_merge_transform(gLengths),
make_merge_transform(mLengths),
make_merge_transform(nLengths)),
make_tuple(gDimIds, mDimIds, nDimIds),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
// this desc is only for calculating batch offset so no padding needed
return c_grid_desc_g_mraw_nraw;
} }
using AGridDesc_AK0_M_AK1 = decltype(MakeAGridDescriptor_AK0_M_AK1(1, 1, 1)); using AGridDesc_AK0_M_AK1 = decltype(MakeAGridDescriptor_AK0_M_AK1({}, {}));
using BGridDesc_BK0_N_BK1 = decltype(MakeBGridDescriptor_BK0_N_BK1(1, 1, 1)); using BGridDesc_BK0_N_BK1 = decltype(MakeBGridDescriptor_BK0_N_BK1({}, {}));
using B1GridDesc_BK0_N_BK1 = decltype(MakeB1GridDescriptor_BK0_N_BK1(1, 1, 1)); using B1GridDesc_BK0_N_BK1 = decltype(MakeB1GridDescriptor_BK0_N_BK1({}, {}));
using CGridDesc_M_N = decltype(MakeCGridDescriptor_M_N({}, {})); using CGridDesc_M_N = decltype(Transform::MakeCGridDescriptor_M_N({}, {}));
using CGridDesc_G_M_N = decltype(MakeCGridDescriptor_G_M_N({}, {})); using AGridDesc_G_M_K = decltype(Transform::MakeAGridDescriptor_G_M_K({}, {}));
using BGridDesc_G_N_K = decltype(Transform::MakeB0GridDescriptor_G_N_K({}, {}));
using B1GridDesc_G_N_K = decltype(Transform::MakeB1GridDescriptor_G_N_K({}, {}));
using CGridDesc_G_M_N = decltype(Transform::MakeCGridDescriptor_G_M_N({}, {}));
// to track the points which need to be set to -inf on C0 constexpr static auto make_MaskOutPredicate()
// Note: no need to reset M padding value, because they will not be stored out.
struct C0MatrixMask
{ {
C0MatrixMask(index_t NRaw) : NRaw_(NRaw) {} if constexpr(MaskingSpec == MaskingSpecialization::MaskDisabled)
__host__ __device__ bool IsUpperTriangle(index_t m, index_t n) const { return n > m; }
__host__ __device__ bool IsNOutOfBound(/*index_t m, */ index_t n) const
{ {
return n >= NRaw_; return MaskDisabledPredicate{};
} }
else if constexpr(MaskingSpec == MaskingSpecialization::MaskOutUpperTriangle)
__host__ __device__ bool IsMaskedElement(index_t m, index_t n) const
{ {
return IsUpperTriangle(m, n) || IsNOutOfBound(n); return MaskOutUpperTrianglePredicate{};
} }
}
private: using C0MatrixMask = C0MatrixMask_impl<decltype(make_MaskOutPredicate())>;
// index_t MRaw_;
index_t NRaw_;
};
struct ComputeBasePtrOfStridedBatch struct ComputeBasePtrOfStridedBatch
{ {
ComputeBasePtrOfStridedBatch(index_t BatchStrideA, ComputeBasePtrOfStridedBatch(const AGridDesc_G_M_K& a_grid_desc_g_m_k,
index_t BatchStrideB, const BGridDesc_G_N_K& b_grid_desc_g_n_k,
index_t BatchStrideB1, const B1GridDesc_G_N_K& b1_grid_desc_g_n_k,
CGridDesc_G_M_N c_grid_desc_g_m_n) const CGridDesc_G_M_N& c_grid_desc_g_m_n)
: BatchStrideA_(BatchStrideA), : a_grid_desc_g_m_k_(a_grid_desc_g_m_k),
BatchStrideB_(BatchStrideB), b_grid_desc_g_n_k_(b_grid_desc_g_n_k),
BatchStrideB1_(BatchStrideB1), b1_grid_desc_g_n_k_(b1_grid_desc_g_n_k),
c_grid_desc_g_m_n_(c_grid_desc_g_m_n) c_grid_desc_g_m_n_(c_grid_desc_g_m_n)
{ {
} }
__host__ __device__ constexpr long_index_t GetABasePtr(index_t g_idx) const __host__ __device__ constexpr long_index_t GetABasePtr(index_t g_idx) const
{ {
return g_idx * static_cast<long_index_t>(BatchStrideA_); return a_grid_desc_g_m_k_.CalculateOffset(make_multi_index(g_idx, 0, 0));
} }
__host__ __device__ constexpr long_index_t GetBBasePtr(index_t g_idx) const __host__ __device__ constexpr long_index_t GetBBasePtr(index_t g_idx) const
{ {
return g_idx * static_cast<long_index_t>(BatchStrideB_); return b_grid_desc_g_n_k_.CalculateOffset(make_multi_index(g_idx, 0, 0));
} }
__host__ __device__ constexpr long_index_t GetB1BasePtr(index_t g_idx) const __host__ __device__ constexpr long_index_t GetB1BasePtr(index_t g_idx) const
{ {
return g_idx * static_cast<long_index_t>(BatchStrideB1_); return b1_grid_desc_g_n_k_.CalculateOffset(make_multi_index(g_idx, 0, 0));
} }
__host__ __device__ constexpr long_index_t GetCBasePtr(index_t g_idx) const __host__ __device__ constexpr long_index_t GetCBasePtr(index_t g_idx) const
...@@ -469,9 +331,9 @@ struct DeviceGroupedGemmSoftmaxGemmPermute_Xdl_CShuffle ...@@ -469,9 +331,9 @@ struct DeviceGroupedGemmSoftmaxGemmPermute_Xdl_CShuffle
} }
private: private:
index_t BatchStrideA_; AGridDesc_G_M_K a_grid_desc_g_m_k_;
index_t BatchStrideB_; BGridDesc_G_N_K b_grid_desc_g_n_k_;
index_t BatchStrideB1_; B1GridDesc_G_N_K b1_grid_desc_g_n_k_;
CGridDesc_G_M_N c_grid_desc_g_m_n_; CGridDesc_G_M_N c_grid_desc_g_m_n_;
}; };
...@@ -535,8 +397,8 @@ struct DeviceGroupedGemmSoftmaxGemmPermute_Xdl_CShuffle ...@@ -535,8 +397,8 @@ struct DeviceGroupedGemmSoftmaxGemmPermute_Xdl_CShuffle
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock, CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
CShuffleBlockTransferScalarPerVector_NPerBlock, CShuffleBlockTransferScalarPerVector_NPerBlock,
LoopSched, LoopSched,
matrix_padder.PadN, Transform::matrix_padder.PadN,
MaskOutUpperTriangle>; MaskingSpec == MaskingSpecialization::MaskOutUpperTriangle>;
using Block2CTileMap = OffsettedBlockToCTileMap<typename GridwiseGemm::DefaultBlock2CTileMap>; using Block2CTileMap = OffsettedBlockToCTileMap<typename GridwiseGemm::DefaultBlock2CTileMap>;
...@@ -570,16 +432,16 @@ struct DeviceGroupedGemmSoftmaxGemmPermute_Xdl_CShuffle ...@@ -570,16 +432,16 @@ struct DeviceGroupedGemmSoftmaxGemmPermute_Xdl_CShuffle
struct GroupDeviceArg struct GroupDeviceArg
{ {
// problem definiton // lengths for the last dimensions of overall problem for sanity check of vector load/store
index_t M; std::vector<index_t> raw_lengths_mz_nz_kz_gemm1nz_;
index_t N;
index_t K;
index_t O;
// Strides for the last dimensions of C for sanity check of vector load/store // strides for the last dimensions of each tensor for sanity check of vector load/store
index_t c_extent_lowest_; std::vector<index_t> a_mz_kz_strides_;
index_t c_stride_lowest_; std::vector<index_t> b_nz_kz_strides_;
std::vector<index_t> b1_nz_kz_strides_;
std::vector<index_t> c_mz_gemm1nz_strides_;
// for gridwise gemm check
CGridDesc_M_N c_grid_desc_m_n_; CGridDesc_M_N c_grid_desc_m_n_;
}; };
...@@ -591,6 +453,8 @@ struct DeviceGroupedGemmSoftmaxGemmPermute_Xdl_CShuffle ...@@ -591,6 +453,8 @@ struct DeviceGroupedGemmSoftmaxGemmPermute_Xdl_CShuffle
std::vector<const void*> p_b_vec, std::vector<const void*> p_b_vec,
std::vector<const void*> p_b1_vec, std::vector<const void*> p_b1_vec,
std::vector<void*> p_c_vec, std::vector<void*> p_c_vec,
std::vector<std::vector<const void*>> p_acc0_biases_vec,
std::vector<std::vector<const void*>> p_acc1_biases_vec,
std::vector<ProblemDesc> problem_desc_vec, std::vector<ProblemDesc> problem_desc_vec,
AElementwiseOperation a_element_op, AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op, BElementwiseOperation b_element_op,
...@@ -603,6 +467,7 @@ struct DeviceGroupedGemmSoftmaxGemmPermute_Xdl_CShuffle ...@@ -603,6 +467,7 @@ struct DeviceGroupedGemmSoftmaxGemmPermute_Xdl_CShuffle
b1_element_op_{b1_element_op}, b1_element_op_{b1_element_op},
c_element_op_{c_element_op} c_element_op_{c_element_op}
{ {
// TODO ANT: implement bias addition
group_count_ = problem_desc_vec.size(); group_count_ = problem_desc_vec.size();
if(!(group_count_ == p_a_vec.size() && group_count_ == p_b_vec.size() && if(!(group_count_ == p_a_vec.size() && group_count_ == p_b_vec.size() &&
...@@ -611,6 +476,11 @@ struct DeviceGroupedGemmSoftmaxGemmPermute_Xdl_CShuffle ...@@ -611,6 +476,11 @@ struct DeviceGroupedGemmSoftmaxGemmPermute_Xdl_CShuffle
throw std::runtime_error("wrong! group_count_ != a/b/b1/c_vec.size"); throw std::runtime_error("wrong! group_count_ != a/b/b1/c_vec.size");
} }
if(!(p_acc0_biases_vec.size() == p_acc1_biases_vec.size()))
{
throw std::runtime_error("wrong! acc0_bias_vec.size != acc1_bias_vec.size");
}
grid_size_ = 0; grid_size_ = 0;
for(std::size_t i = 0; i < group_count_; i++) for(std::size_t i = 0; i < group_count_; i++)
...@@ -620,14 +490,25 @@ struct DeviceGroupedGemmSoftmaxGemmPermute_Xdl_CShuffle ...@@ -620,14 +490,25 @@ struct DeviceGroupedGemmSoftmaxGemmPermute_Xdl_CShuffle
const auto p_b1_grid = static_cast<const B1DataType*>(p_b1_vec[i]); const auto p_b1_grid = static_cast<const B1DataType*>(p_b1_vec[i]);
const auto p_c_grid = static_cast<CDataType*>(p_c_vec[i]); const auto p_c_grid = static_cast<CDataType*>(p_c_vec[i]);
const auto a_grid_desc_ak0_m_ak1 = DeviceOp::MakeAGridDescriptor_AK0_M_AK1( const auto& problem_desc = problem_desc_vec[i];
problem_desc_vec[i].M, problem_desc_vec[i].K, problem_desc_vec[i].StrideA);
const auto b_grid_desc_bk0_n_bk1 = DeviceOp::MakeBGridDescriptor_BK0_N_BK1( const auto a_grid_desc_ak0_m_ak1 = MakeAGridDescriptor_AK0_M_AK1(
problem_desc_vec[i].K, problem_desc_vec[i].N, problem_desc_vec[i].StrideB0); problem_desc.a_gs_ms_ks_lengths, problem_desc.a_gs_ms_ks_strides);
const auto b1_grid_desc_bk0_n_bk1 = DeviceOp::MakeB1GridDescriptor_BK0_N_BK1( const auto b_grid_desc_bk0_n_bk1 = MakeBGridDescriptor_BK0_N_BK1(
problem_desc_vec[i].N, problem_desc_vec[i].O, problem_desc_vec[i].StrideB1); problem_desc.b0_gs_ns_ks_lengths, problem_desc.b0_gs_ns_ks_strides);
const auto c_grid_desc_m_n = DeviceOp::MakeCGridDescriptor_M_N( const auto b1_grid_desc_bk0_n_bk1 = MakeB1GridDescriptor_BK0_N_BK1(
problem_desc_vec[i].c_gs_ms_os_lengths, problem_desc_vec[i].c_gs_ms_os_strides); problem_desc.b1_gs_os_ns_lengths, problem_desc.b1_gs_os_ns_strides);
const auto c_grid_desc_m_n = Transform::MakeCGridDescriptor_M_N(
problem_desc.c_gs_ms_os_lengths, problem_desc.c_gs_ms_os_strides);
const auto a_grid_desc_g_m_k = Transform::MakeAGridDescriptor_G_M_K(
problem_desc.a_gs_ms_ks_lengths, problem_desc.a_gs_ms_ks_strides);
const auto b_grid_desc_g_n_k = Transform::MakeB0GridDescriptor_G_N_K(
problem_desc.b0_gs_ns_ks_lengths, problem_desc.b0_gs_ns_ks_strides);
const auto b1_grid_desc_g_n_k = Transform::MakeB1GridDescriptor_G_N_K(
problem_desc.b1_gs_os_ns_lengths, problem_desc.b1_gs_os_ns_strides);
const auto c_grid_desc_g_m_n = Transform::MakeCGridDescriptor_G_M_N(
problem_desc.c_gs_ms_os_lengths, problem_desc.c_gs_ms_os_strides);
const auto c_grid_desc_mblock_mperblock_nblock_nperblock = const auto c_grid_desc_mblock_mperblock_nblock_nperblock =
GridwiseGemm::MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock( GridwiseGemm::MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
...@@ -635,25 +516,32 @@ struct DeviceGroupedGemmSoftmaxGemmPermute_Xdl_CShuffle ...@@ -635,25 +516,32 @@ struct DeviceGroupedGemmSoftmaxGemmPermute_Xdl_CShuffle
const index_t BlockStart = grid_size_; const index_t BlockStart = grid_size_;
const auto block_2_ctile_map = Block2CTileMap(c_grid_desc_m_n, BlockStart); const auto block_2_ctile_map = Block2CTileMap(c_grid_desc_m_n, BlockStart);
const index_t grid_size_grp = block_2_ctile_map.CalculateGridSize(c_grid_desc_m_n) * const index_t batch_count = c_grid_desc_g_m_n.GetLength(I0);
problem_desc_vec[i].Batch; const index_t grid_size_grp =
block_2_ctile_map.CalculateGridSize(c_grid_desc_m_n) * batch_count;
const index_t BlockEnd = grid_size_ + grid_size_grp; const index_t BlockEnd = grid_size_ + grid_size_grp;
// batch stride // batch stride
// TODO ANT: only keep batch stride in tensor desc to reduce scalar cache pressure const auto compute_base_ptr_of_batch = ComputeBasePtrOfStridedBatch(
const auto c_grid_desc_g_m_n = DeviceOp::MakeCGridDescriptor_G_M_N( a_grid_desc_g_m_k, b_grid_desc_g_n_k, b1_grid_desc_g_n_k, c_grid_desc_g_m_n);
problem_desc_vec[i].c_gs_ms_os_lengths, problem_desc_vec[i].c_gs_ms_os_strides);
const auto compute_base_ptr_of_batch =
ComputeBasePtrOfStridedBatch(problem_desc_vec[i].BatchStrideA,
problem_desc_vec[i].BatchStrideB0,
problem_desc_vec[i].BatchStrideB1,
c_grid_desc_g_m_n);
// C0 mask // C0 mask
const auto c0_matrix_mask = C0MatrixMask(problem_desc_vec[i].N); const auto c0_matrix_mask = C0MatrixMask(b_grid_desc_g_n_k.GetLength(I1));
grid_size_ += grid_size_grp; grid_size_ += grid_size_grp;
// for each group, make sure acc0_biases_gs_ms_ns_lengths.size() == NumAcc0Bias and
// so on
if(!(problem_desc.acc0_biases_gs_ms_ns_lengths.size() == NumAcc0Bias &&
problem_desc.acc0_biases_gs_ms_ns_strides.size() == NumAcc0Bias &&
problem_desc.acc1_biases_gs_ms_os_lengths.size() == NumAcc1Bias &&
problem_desc.acc1_biases_gs_ms_os_strides.size() == NumAcc1Bias))
{
throw std::runtime_error(
"wrong! number of biases in function argument does not "
"match that in template argument");
}
group_kernel_args_.push_back({p_a_grid, group_kernel_args_.push_back({p_a_grid,
p_b_grid, p_b_grid,
p_b1_grid, p_b1_grid,
...@@ -669,13 +557,20 @@ struct DeviceGroupedGemmSoftmaxGemmPermute_Xdl_CShuffle ...@@ -669,13 +557,20 @@ struct DeviceGroupedGemmSoftmaxGemmPermute_Xdl_CShuffle
BlockStart, BlockStart,
BlockEnd}); BlockEnd});
group_device_args_.push_back({problem_desc_vec[i].M, group_device_args_.push_back(
problem_desc_vec[i].N, {{problem_desc.a_gs_ms_ks_lengths[NumDimG + NumDimM - 1],
problem_desc_vec[i].K, problem_desc.b0_gs_ns_ks_lengths[NumDimG + NumDimN - 1],
problem_desc_vec[i].O, problem_desc.b0_gs_ns_ks_lengths[NumDimG + NumDimN + NumDimK - 1],
problem_desc_vec[i].c_gs_ms_os_lengths.back(), problem_desc.b1_gs_os_ns_lengths[NumDimG + NumDimO - 1]},
problem_desc_vec[i].c_gs_ms_os_strides.back(), {problem_desc.a_gs_ms_ks_strides[NumDimG + NumDimM - 1],
c_grid_desc_m_n}); problem_desc.a_gs_ms_ks_strides[NumDimG + NumDimM + NumDimK - 1]},
{problem_desc.b0_gs_ns_ks_strides[NumDimG + NumDimN - 1],
problem_desc.b0_gs_ns_ks_strides[NumDimG + NumDimN + NumDimK - 1]},
{problem_desc.b1_gs_os_ns_strides[NumDimG + NumDimO - 1],
problem_desc.b1_gs_os_ns_strides[NumDimG + NumDimO + NumDimN - 1]},
{problem_desc.c_gs_ms_os_strides[NumDimG + NumDimM - 1],
problem_desc.c_gs_ms_os_strides[NumDimG + NumDimM + NumDimO - 1]},
c_grid_desc_m_n});
} }
} }
...@@ -788,6 +683,8 @@ struct DeviceGroupedGemmSoftmaxGemmPermute_Xdl_CShuffle ...@@ -788,6 +683,8 @@ struct DeviceGroupedGemmSoftmaxGemmPermute_Xdl_CShuffle
return false; return false;
} }
// TODO ANT: Check if tensor specialization & strides mismatch
bool all_has_main_k_block_loop = true; bool all_has_main_k_block_loop = true;
bool some_has_main_k_block_loop = false; bool some_has_main_k_block_loop = false;
...@@ -815,19 +712,16 @@ struct DeviceGroupedGemmSoftmaxGemmPermute_Xdl_CShuffle ...@@ -815,19 +712,16 @@ struct DeviceGroupedGemmSoftmaxGemmPermute_Xdl_CShuffle
// Note: we need raw lengths since threadwise copy can not handle vector load when // Note: we need raw lengths since threadwise copy can not handle vector load when
// part of vector is out of bounds // part of vector is out of bounds
const auto MRaw = device_arg.M; const auto MzRaw = device_arg.raw_lengths_mz_nz_kz_gemm1nz_[0];
const auto NRaw = device_arg.N; const auto NzRaw = device_arg.raw_lengths_mz_nz_kz_gemm1nz_[1];
const auto KRaw = device_arg.K; const auto KzRaw = device_arg.raw_lengths_mz_nz_kz_gemm1nz_[2];
const auto Gemm1NRaw = device_arg.O; const auto Gemm1NzRaw = device_arg.raw_lengths_mz_nz_kz_gemm1nz_[3];
// Check scalar per vector requirement // Check scalar per vector requirement
const auto a_extent_lowest = const auto a_extent_lowest = ABlockTransferSrcVectorDim == 2 ? KzRaw : MzRaw;
is_same_v<tensor_layout::gemm::RowMajor, ALayout> ? KRaw : MRaw; const auto b_extent_lowest = BBlockTransferSrcVectorDim == 2 ? KzRaw : NzRaw;
const auto b_extent_lowest = const auto b1_extent_lowest = B1BlockTransferSrcVectorDim == 2 ? NzRaw : Gemm1NzRaw;
is_same_v<tensor_layout::gemm::RowMajor, BLayout> ? NRaw : KRaw; const auto c_extent_lowest = Gemm1NzRaw;
const auto b1_extent_lowest =
is_same_v<tensor_layout::gemm::RowMajor, B1Layout> ? Gemm1NRaw : NRaw;
const auto c_extent_lowest = device_arg.c_extent_lowest_;
if(!(a_extent_lowest % ABlockTransferSrcScalarPerVector == 0 && if(!(a_extent_lowest % ABlockTransferSrcScalarPerVector == 0 &&
b_extent_lowest % BBlockTransferSrcScalarPerVector == 0 && b_extent_lowest % BBlockTransferSrcScalarPerVector == 0 &&
...@@ -837,8 +731,22 @@ struct DeviceGroupedGemmSoftmaxGemmPermute_Xdl_CShuffle ...@@ -837,8 +731,22 @@ struct DeviceGroupedGemmSoftmaxGemmPermute_Xdl_CShuffle
return false; return false;
} }
// Check vector store requirement; assumes last dimension in N to be contiguous // Check vector load/store requirement
if(device_arg.c_stride_lowest_ != 1) const auto a_stride_lowest = ABlockTransferSrcVectorDim == 2
? device_arg.a_mz_kz_strides_[1]
: device_arg.a_mz_kz_strides_[0];
const auto b_stride_lowest = BBlockTransferSrcVectorDim == 2
? device_arg.b_nz_kz_strides_[1]
: device_arg.b_nz_kz_strides_[0];
const auto b1_stride_lowest = B1BlockTransferSrcVectorDim == 2
? device_arg.b1_nz_kz_strides_[1]
: device_arg.b1_nz_kz_strides_[0];
const auto c_stride_lowest =
device_arg.c_mz_gemm1nz_strides_[1]; // cshuffle assumes lowest dim in Gemm1Ns to be
// contiguous
if(!(a_stride_lowest == 1 || b_stride_lowest == 1 || b1_stride_lowest == 1 ||
c_stride_lowest == 1))
{ {
return false; return false;
} }
...@@ -873,6 +781,8 @@ struct DeviceGroupedGemmSoftmaxGemmPermute_Xdl_CShuffle ...@@ -873,6 +781,8 @@ struct DeviceGroupedGemmSoftmaxGemmPermute_Xdl_CShuffle
std::vector<const void*> p_b_vec, std::vector<const void*> p_b_vec,
std::vector<const void*> p_b1_vec, std::vector<const void*> p_b1_vec,
std::vector<void*> p_c_vec, std::vector<void*> p_c_vec,
std::vector<std::vector<const void*>> p_acc0_biases_vec,
std::vector<std::vector<const void*>> p_acc1_biases_vec,
std::vector<ProblemDesc> problem_desc_vec, std::vector<ProblemDesc> problem_desc_vec,
AElementwiseOperation a_element_op, AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op, BElementwiseOperation b_element_op,
...@@ -884,6 +794,8 @@ struct DeviceGroupedGemmSoftmaxGemmPermute_Xdl_CShuffle ...@@ -884,6 +794,8 @@ struct DeviceGroupedGemmSoftmaxGemmPermute_Xdl_CShuffle
p_b_vec, p_b_vec,
p_b1_vec, p_b1_vec,
p_c_vec, p_c_vec,
p_acc0_biases_vec,
p_acc1_biases_vec,
problem_desc_vec, problem_desc_vec,
a_element_op, a_element_op,
b_element_op, b_element_op,
...@@ -895,21 +807,26 @@ struct DeviceGroupedGemmSoftmaxGemmPermute_Xdl_CShuffle ...@@ -895,21 +807,26 @@ struct DeviceGroupedGemmSoftmaxGemmPermute_Xdl_CShuffle
static auto MakeInvoker() { return Invoker{}; } static auto MakeInvoker() { return Invoker{}; }
// polymorphic // polymorphic
std::unique_ptr<BaseArgument> MakeArgumentPointer(std::vector<const void*> p_a_vec, std::unique_ptr<BaseArgument>
std::vector<const void*> p_b_vec, MakeArgumentPointer(std::vector<const void*> p_a_vec,
std::vector<const void*> p_b1_vec, std::vector<const void*> p_b_vec,
std::vector<void*> p_c_vec, std::vector<const void*> p_b1_vec,
std::vector<ProblemDesc> problem_desc_vec, std::vector<void*> p_c_vec,
AElementwiseOperation a_element_op, std::vector<std::vector<const void*>> p_acc0_biases_vec,
BElementwiseOperation b_element_op, std::vector<std::vector<const void*>> p_acc1_biases_vec,
AccElementwiseOperation acc_element_op, std::vector<ProblemDesc> problem_desc_vec,
B1ElementwiseOperation b1_element_op, AElementwiseOperation a_element_op,
CElementwiseOperation c_element_op) override BElementwiseOperation b_element_op,
AccElementwiseOperation acc_element_op,
B1ElementwiseOperation b1_element_op,
CElementwiseOperation c_element_op) override
{ {
return std::make_unique<Argument>(p_a_vec, return std::make_unique<Argument>(p_a_vec,
p_b_vec, p_b_vec,
p_b1_vec, p_b1_vec,
p_c_vec, p_c_vec,
p_acc0_biases_vec,
p_acc1_biases_vec,
problem_desc_vec, problem_desc_vec,
a_element_op, a_element_op,
b_element_op, b_element_op,
...@@ -942,7 +859,12 @@ struct DeviceGroupedGemmSoftmaxGemmPermute_Xdl_CShuffle ...@@ -942,7 +859,12 @@ struct DeviceGroupedGemmSoftmaxGemmPermute_Xdl_CShuffle
<< Gemm1NPerBlock << ", " << Gemm1NPerBlock << ", "
<< Gemm1KPerBlock << ", " << Gemm1KPerBlock << ", "
<< B1K1 << ", " << B1K1 << ", "
<< getGemmSpecializationString(GemmSpec) << ">"; << getGemmSpecializationString(GemmSpec) << ", "
<< "ASpec" << getTensorSpecializationString(ASpec) << ", "
<< "B0Spec" << getTensorSpecializationString(BSpec) << ", "
<< "B1Spec" << getTensorSpecializationString(B1Spec) << ", "
<< "CSpec" << getTensorSpecializationString(CSpec) << ", "
<< getMaskingSpecializationString(MaskingSpec) << ">";
// clang-format on // clang-format on
return str.str(); return str.str();
......
...@@ -130,8 +130,11 @@ namespace device { ...@@ -130,8 +130,11 @@ namespace device {
// D[G0, G1, ..., M0, M1, M2, ..., N0, N1, N2, ...] // D[G0, G1, ..., M0, M1, M2, ..., N0, N1, N2, ...]
// E[G0, G1, ..., M0, M1, M2, ..., N0, N1, N2, ...] // E[G0, G1, ..., M0, M1, M2, ..., N0, N1, N2, ...]
// FIXME: TensorSpecialization::Packed specialization does not cover all packed tensor cases, it // NOTE: TensorSpecialization::Packed specialized tensor is "packed" in a sense that each inner
// merely degenerates into TensorSpecialization::Default with NumDimG/M/N/K = 1 // dimension in a dimension group (eg [G0, G1] in Gs, [M0, M1, M2] in Ms, etc.) are contiguous and
// ordered. Not in a sense that the tensor [G0, G1, ..., M0, M1, ..., N0, N1...] can be permuted
// while still being a contiguous, unpadded tensor. In other words, it merely degenerates into
// TensorSpecialization::Default with NumDimG/M/N/K = 1
// //
// Detail- Packed tensor satisfies // Detail- Packed tensor satisfies
// stride_0 = 1 // stride_0 = 1
...@@ -147,7 +150,7 @@ namespace device { ...@@ -147,7 +150,7 @@ namespace device {
// essentially a degenerated case of TensorSpecialization::Default with NumDimG/M/N/K = 1. // essentially a degenerated case of TensorSpecialization::Default with NumDimG/M/N/K = 1.
// //
// Might need to expose dimension order to the interface to fully support // Might need to expose dimension order to the interface to fully support
// TensorSpecialization::Packed. // TensorSpecialization::Packed in a traditional sense of "packed" tensor
template <index_t NumDimG, template <index_t NumDimG,
index_t NumDimM, index_t NumDimM,
index_t NumDimN, index_t NumDimN,
......
...@@ -14,6 +14,7 @@ ...@@ -14,6 +14,7 @@
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp" #include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp" #include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_batched_gemm_softmax_gemm_xdl_cshuffle_v1.hpp" #include "ck/tensor_operation/gpu/grid/gridwise_batched_gemm_softmax_gemm_xdl_cshuffle_v1.hpp"
#include "ck/tensor_operation/operator_transform/transform_contraction_to_gemm.hpp"
#include "ck/host_utility/device_prop.hpp" #include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp" #include "ck/host_utility/kernel_launch.hpp"
...@@ -116,14 +117,17 @@ __global__ void ...@@ -116,14 +117,17 @@ __global__ void
// Computes C = A * B0 * B1 // Computes C = A * B0 * B1
// ^^^^^^ (Acc0) // ^^^^^^ (Acc0)
// ^^^^^^^^^^^ (Acc1) // ^^^^^^^^^^^ (Acc1)
template <typename ALayout, template <index_t NumDimG,
typename BLayout, // B0Layout index_t NumDimM,
typename B1Layout, index_t NumDimN,
typename CPermuteNumDims_G_M_Gemm1N, // Sequence<NumDimG, NumDimM, NumDimGemm1N> index_t NumDimK,
index_t NumDimO, // NumDimGemm1N
typename ADataType, typename ADataType,
typename BDataType, typename BDataType,
typename B1DataType, typename B1DataType,
typename CDataType, typename CDataType,
typename Acc0BiasDataType,
typename Acc1BiasDataType,
typename GemmAccDataType, typename GemmAccDataType,
typename CShuffleDataType, typename CShuffleDataType,
typename AElementwiseOperation, typename AElementwiseOperation,
...@@ -132,6 +136,10 @@ template <typename ALayout, ...@@ -132,6 +136,10 @@ template <typename ALayout,
typename B1ElementwiseOperation, typename B1ElementwiseOperation,
typename CElementwiseOperation, typename CElementwiseOperation,
GemmSpecialization GemmSpec, GemmSpecialization GemmSpec,
TensorSpecialization ASpec,
TensorSpecialization BSpec,
TensorSpecialization B1Spec,
TensorSpecialization CSpec,
index_t NumGemmKPrefetchStage, index_t NumGemmKPrefetchStage,
index_t BlockSize, index_t BlockSize,
index_t MPerBlock, index_t MPerBlock,
...@@ -172,283 +180,135 @@ template <typename ALayout, ...@@ -172,283 +180,135 @@ template <typename ALayout,
index_t CShuffleNXdlPerWavePerShuffle, index_t CShuffleNXdlPerWavePerShuffle,
typename CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock, typename CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
index_t CShuffleBlockTransferScalarPerVector_NPerBlock, index_t CShuffleBlockTransferScalarPerVector_NPerBlock,
bool MaskOutUpperTriangle, MaskingSpecialization MaskingSpec,
LoopScheduler LoopSched = LoopScheduler::Default> LoopScheduler LoopSched = LoopScheduler::Default>
struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
: public DeviceBatchedGemmSoftmaxGemmPermute<ALayout, : public DeviceBatchedGemmSoftmaxGemmPermute<NumDimG,
BLayout, NumDimM,
B1Layout, NumDimN,
CPermuteNumDims_G_M_Gemm1N, NumDimK,
NumDimO,
ADataType, ADataType,
BDataType, BDataType,
B1DataType, B1DataType,
CDataType, CDataType,
Acc0BiasDataType,
Acc1BiasDataType,
AElementwiseOperation, AElementwiseOperation,
BElementwiseOperation, BElementwiseOperation,
AccElementwiseOperation, AccElementwiseOperation,
B1ElementwiseOperation, B1ElementwiseOperation,
CElementwiseOperation> CElementwiseOperation,
MaskingSpec>
{ {
static_assert(NumDimG > 0 && NumDimM > 0 && NumDimN > 0 && NumDimK > 0 && NumDimO > 0,
"Number of dimension must be greater than 0");
static constexpr index_t NumAcc0Bias = Acc0BiasDataType::Size();
static constexpr index_t NumAcc1Bias = Acc1BiasDataType::Size();
// TODO ANT: implement bias combination
static_assert(NumAcc0Bias == 0 && NumAcc0Bias == 0, "Bias addition is unimplemented");
#if 0
// TODO ANT: use alias
static constexpr index_t NumDimGemm0M = NumDimM;
static constexpr index_t NumDimGemm0N = NumDimN;
static constexpr index_t NumDimGemm0K = NumDimK;
static constexpr index_t NumDimGemm1M = NumDimM;
static constexpr index_t NumDimGemm1N = NumDimO;
static constexpr index_t NumDimGemm1K = NumDimN;
#endif
using DeviceOp = DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle; using DeviceOp = DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle;
static constexpr auto I0 = Number<0>{}; static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{}; static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{}; static constexpr auto I2 = Number<2>{};
static constexpr auto matrix_padder = using Transform = TransformBatchedContractionContractionToBatchedGemmGemm<
GemmGemmPadder<GemmSpec, index_t, index_t, index_t, index_t>{ Sequence<NumDimG, NumDimM, NumDimN, NumDimK, NumDimO>,
MPerBlock, NPerBlock, KPerBlock, Gemm1NPerBlock}; Sequence<MPerBlock, NPerBlock, KPerBlock, Gemm1NPerBlock>,
GemmSpec,
static auto MakeAGridDescriptor_AK0_M_AK1(index_t MRaw, index_t KRaw, index_t StrideA) ASpec,
BSpec,
B1Spec,
CSpec>;
static auto MakeAGridDescriptor_AK0_M_AK1(const std::vector<index_t>& a_gs_ms_ks_lengths_vec,
const std::vector<index_t>& a_gs_ms_ks_strides_vec)
{ {
const auto a_grid_desc_mraw_kraw = [&]() { return Transform::MakeAGridDescriptor_AK0_M_AK1(
if constexpr(is_same_v<tensor_layout::gemm::RowMajor, ALayout>) Transform::MakeAGridDescriptor_M_K(a_gs_ms_ks_lengths_vec, a_gs_ms_ks_strides_vec),
{ Number<AK1>{});
return make_naive_tensor_descriptor(make_tuple(MRaw, KRaw),
make_tuple(StrideA, I1));
}
else if constexpr(is_same_v<tensor_layout::gemm::ColumnMajor, ALayout>)
{
return make_naive_tensor_descriptor(make_tuple(MRaw, KRaw),
make_tuple(I1, StrideA));
}
}();
const auto a_grid_desc_m_k = matrix_padder.PadADescriptor_M_K(a_grid_desc_mraw_kraw);
const auto M = a_grid_desc_m_k.GetLength(I0);
const auto K = a_grid_desc_m_k.GetLength(I1);
const auto AK0 = K / AK1;
return transform_tensor_descriptor(a_grid_desc_m_k,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1)),
make_pass_through_transform(M)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
}
static auto MakeBGridDescriptor_BK0_N_BK1(index_t KRaw, index_t NRaw, index_t StrideB)
{
const auto b_grid_desc_nraw_kraw = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, BLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(NRaw, KRaw),
make_tuple(I1, StrideB));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, BLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(NRaw, KRaw),
make_tuple(StrideB, I1));
}
}();
const auto b_grid_desc_n_k = matrix_padder.PadBDescriptor_N_K(b_grid_desc_nraw_kraw);
const auto N = b_grid_desc_n_k.GetLength(I0);
const auto K = b_grid_desc_n_k.GetLength(I1);
const auto BK0 = K / BK1;
return transform_tensor_descriptor(b_grid_desc_n_k,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1)),
make_pass_through_transform(N)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
}
// Args: Gemm1KRaw, Gemm1NRaw, StrideB1
static auto MakeB1GridDescriptor_BK0_N_BK1(index_t KRaw, index_t NRaw, index_t StrideB)
{
const auto b1_grid_desc_nraw_kraw = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, B1Layout>::value)
{
return make_naive_tensor_descriptor(make_tuple(NRaw, KRaw),
make_tuple(I1, StrideB));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, B1Layout>::value)
{
return make_naive_tensor_descriptor(make_tuple(NRaw, KRaw),
make_tuple(StrideB, I1));
}
}();
const auto b1_grid_desc_n_k = matrix_padder.PadB1Descriptor_N_K(b1_grid_desc_nraw_kraw);
const auto N = b1_grid_desc_n_k.GetLength(I0);
const auto K = b1_grid_desc_n_k.GetLength(I1);
const auto B1K0 = K / B1K1;
return transform_tensor_descriptor(
b1_grid_desc_n_k,
make_tuple(make_unmerge_transform(make_tuple(B1K0, B1K1)),
make_pass_through_transform(N)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
} }
// assume C[G0, G1, ..., M0, M1, M2, ..., N0, N1, N2...] static auto MakeBGridDescriptor_BK0_N_BK1(const std::vector<index_t>& b_gs_ns_ks_lengths_vec,
static auto MakeCGridDescriptor_M_N(const std::vector<index_t>& c_gs_ms_ns_lengths_vec, const std::vector<index_t>& b_gs_ns_ks_strides_vec)
const std::vector<index_t>& c_gs_ms_ns_strides_vec)
{ {
constexpr index_t NumDimG = CPermuteNumDims_G_M_Gemm1N::At(I0); return Transform::MakeB0GridDescriptor_BK0_N_BK1(
constexpr index_t NumDimM = CPermuteNumDims_G_M_Gemm1N::At(I1); Transform::MakeB0GridDescriptor_N_K(b_gs_ns_ks_lengths_vec, b_gs_ns_ks_strides_vec),
constexpr index_t NumDimN = CPermuteNumDims_G_M_Gemm1N::At(I2); // NumDimGemm1N Number<BK1>{});
assert(c_gs_ms_ns_lengths_vec.size() == NumDimG + NumDimM + NumDimN &&
c_gs_ms_ns_strides_vec.size() == NumDimG + NumDimM + NumDimN);
const auto to_tuple = [&](auto& vec, auto start, auto end) {
return generate_tuple([&](auto i) { return vec[start + i]; }, Number<end - start>{});
};
const auto c_ms_ns_lengths = to_tuple(
c_gs_ms_ns_lengths_vec, Number<NumDimG>{}, Number<NumDimG + NumDimM + NumDimN>{});
const auto c_ms_ns_strides = to_tuple(
c_gs_ms_ns_strides_vec, Number<NumDimG>{}, Number<NumDimG + NumDimM + NumDimN>{});
// dimension Ids for M0, M1, ...
constexpr auto mDimIds = typename arithmetic_sequence_gen<0, NumDimM, 1>::type{};
// dimension Ids for N0, N1, ...
constexpr auto nDimIds =
typename arithmetic_sequence_gen<NumDimM, NumDimM + NumDimN, 1>::type{};
// lengths for M0, M1, ...
const auto mLengths = get_container_subset(c_ms_ns_lengths, mDimIds);
// lengths for K0, K1, ...
const auto nLengths = get_container_subset(c_ms_ns_lengths, nDimIds);
// naive tensor C[M0, M1, M2, ..., N0, N1, N2...]
const auto c_grid_desc_ms_ns =
make_naive_tensor_descriptor(c_ms_ns_lengths, c_ms_ns_strides);
// transformed tensor C[MRaw = M0 * M1 * M2 * ... , NRaw = N0 * N1 * N2 * ...]
const auto c_grid_desc_mraw_nraw = transform_tensor_descriptor(
c_grid_desc_ms_ns,
make_tuple(make_merge_transform(mLengths), make_merge_transform(nLengths)),
make_tuple(mDimIds, nDimIds),
make_tuple(Sequence<0>{}, Sequence<1>{}));
return matrix_padder.PadCDescriptor_M_N(c_grid_desc_mraw_nraw);
} }
// assume C[G0, G1, ..., M0, M1, M2, ..., N0, N1, N2...] static auto
static auto MakeCGridDescriptor_G_M_N(const std::vector<index_t>& c_gs_ms_ns_lengths_vec, MakeB1GridDescriptor_BK0_N_BK1(const std::vector<index_t>& b1_gs_gemm1ns_gemm1ks_lengths_vec,
const std::vector<index_t>& c_gs_ms_ns_strides_vec) const std::vector<index_t>& b1_gs_gemm1ns_gemm1ks_strides_vec)
{ {
constexpr index_t NumDimG = CPermuteNumDims_G_M_Gemm1N::At(I0); return Transform::MakeB1GridDescriptor_BK0_N_BK1(
constexpr index_t NumDimM = CPermuteNumDims_G_M_Gemm1N::At(I1); Transform::MakeB1GridDescriptor_N_K(b1_gs_gemm1ns_gemm1ks_lengths_vec,
constexpr index_t NumDimN = CPermuteNumDims_G_M_Gemm1N::At(I2); // NumDimGemm1N b1_gs_gemm1ns_gemm1ks_strides_vec),
Number<B1K1>{});
assert(c_gs_ms_ns_lengths_vec.size() == NumDimG + NumDimM + NumDimN &&
c_gs_ms_ns_strides_vec.size() == NumDimG + NumDimM + NumDimN);
const auto to_tuple = [&](auto& vec, auto start, auto end) {
return generate_tuple([&](auto i) { return vec[start + i]; }, Number<end - start>{});
};
const auto c_gs_ms_ns_lengths =
to_tuple(c_gs_ms_ns_lengths_vec, Number<0>{}, Number<NumDimG + NumDimM + NumDimN>{});
const auto c_gs_ms_ns_strides =
to_tuple(c_gs_ms_ns_strides_vec, Number<0>{}, Number<NumDimG + NumDimM + NumDimN>{});
// dimension Ids for G0, G1, ...
constexpr auto gDimIds = typename arithmetic_sequence_gen<0, NumDimG, 1>::type{};
// dimension Ids for M0, M1, ...
constexpr auto mDimIds =
typename arithmetic_sequence_gen<NumDimG, NumDimG + NumDimM, 1>::type{};
// dimension Ids for N0, N1, ...
constexpr auto nDimIds = typename arithmetic_sequence_gen<NumDimG + NumDimM,
NumDimG + NumDimM + NumDimN,
1>::type{};
// lengths for G0, G1, ...
const auto gLengths = get_container_subset(c_gs_ms_ns_lengths, gDimIds);
// lengths for M0, M1, ...
const auto mLengths = get_container_subset(c_gs_ms_ns_lengths, mDimIds);
// lengths for K0, K1, ...
const auto nLengths = get_container_subset(c_gs_ms_ns_lengths, nDimIds);
// naive tensor C[G0, G1, ..., M0, M1, M2, ..., N0, N1, N2...]
const auto c_grid_desc_gs_ms_ns =
make_naive_tensor_descriptor(c_gs_ms_ns_lengths, c_gs_ms_ns_strides);
// transformed tensor C[G = G0 * G1 * ..., MRaw = M0 * M1 * M2 * ... , NRaw = N0 * N1 *
// N2 * ...]
const auto c_grid_desc_g_mraw_nraw =
transform_tensor_descriptor(c_grid_desc_gs_ms_ns,
make_tuple(make_merge_transform(gLengths),
make_merge_transform(mLengths),
make_merge_transform(nLengths)),
make_tuple(gDimIds, mDimIds, nDimIds),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
// this desc is only for calculating batch offset so no padding needed
return c_grid_desc_g_mraw_nraw;
} }
using AGridDesc_AK0_M_AK1 = decltype(MakeAGridDescriptor_AK0_M_AK1(1, 1, 1)); using AGridDesc_AK0_M_AK1 = decltype(MakeAGridDescriptor_AK0_M_AK1({}, {}));
using BGridDesc_BK0_N_BK1 = decltype(MakeBGridDescriptor_BK0_N_BK1(1, 1, 1)); using BGridDesc_BK0_N_BK1 = decltype(MakeBGridDescriptor_BK0_N_BK1({}, {}));
using B1GridDesc_BK0_N_BK1 = decltype(MakeB1GridDescriptor_BK0_N_BK1(1, 1, 1)); using B1GridDesc_BK0_N_BK1 = decltype(MakeB1GridDescriptor_BK0_N_BK1({}, {}));
using CGridDesc_M_N = decltype(MakeCGridDescriptor_M_N({}, {})); using CGridDesc_M_N = decltype(Transform::MakeCGridDescriptor_M_N({}, {}));
using CGridDesc_G_M_N = decltype(MakeCGridDescriptor_G_M_N({}, {})); using AGridDesc_G_M_K = decltype(Transform::MakeAGridDescriptor_G_M_K({}, {}));
using BGridDesc_G_N_K = decltype(Transform::MakeB0GridDescriptor_G_N_K({}, {}));
using B1GridDesc_G_N_K = decltype(Transform::MakeB1GridDescriptor_G_N_K({}, {}));
using CGridDesc_G_M_N = decltype(Transform::MakeCGridDescriptor_G_M_N({}, {}));
// to track the points which need to be set to -inf on C0 constexpr static auto make_MaskOutPredicate()
// Note: no need to reset M padding value, because they will not be stored out.
struct C0MatrixMask
{ {
C0MatrixMask(index_t NRaw) : NRaw_(NRaw) {} if constexpr(MaskingSpec == MaskingSpecialization::MaskDisabled)
__host__ __device__ bool IsUpperTriangle(index_t m, index_t n) const { return n > m; }
__host__ __device__ bool IsNOutOfBound(/*index_t m, */ index_t n) const
{ {
return n >= NRaw_; return MaskDisabledPredicate{};
} }
else if constexpr(MaskingSpec == MaskingSpecialization::MaskOutUpperTriangle)
__host__ __device__ bool IsMaskedElement(index_t m, index_t n) const
{ {
return IsUpperTriangle(m, n) || IsNOutOfBound(n); return MaskOutUpperTrianglePredicate{};
} }
}
private: using C0MatrixMask = C0MatrixMask_impl<decltype(make_MaskOutPredicate())>;
// index_t MRaw_;
index_t NRaw_;
};
struct ComputeBasePtrOfStridedBatch struct ComputeBasePtrOfStridedBatch
{ {
ComputeBasePtrOfStridedBatch(index_t BatchStrideA, ComputeBasePtrOfStridedBatch(const AGridDesc_G_M_K& a_grid_desc_g_m_k,
index_t BatchStrideB, const BGridDesc_G_N_K& b_grid_desc_g_n_k,
index_t BatchStrideB1, const B1GridDesc_G_N_K& b1_grid_desc_g_n_k,
CGridDesc_G_M_N c_grid_desc_g_m_n) const CGridDesc_G_M_N& c_grid_desc_g_m_n)
: BatchStrideA_(BatchStrideA), : a_grid_desc_g_m_k_(a_grid_desc_g_m_k),
BatchStrideB_(BatchStrideB), b_grid_desc_g_n_k_(b_grid_desc_g_n_k),
BatchStrideB1_(BatchStrideB1), b1_grid_desc_g_n_k_(b1_grid_desc_g_n_k),
c_grid_desc_g_m_n_(c_grid_desc_g_m_n) c_grid_desc_g_m_n_(c_grid_desc_g_m_n)
{ {
} }
__host__ __device__ constexpr long_index_t GetABasePtr(index_t g_idx) const __host__ __device__ constexpr long_index_t GetABasePtr(index_t g_idx) const
{ {
return g_idx * static_cast<long_index_t>(BatchStrideA_); return a_grid_desc_g_m_k_.CalculateOffset(make_multi_index(g_idx, 0, 0));
} }
__host__ __device__ constexpr long_index_t GetBBasePtr(index_t g_idx) const __host__ __device__ constexpr long_index_t GetBBasePtr(index_t g_idx) const
{ {
return g_idx * static_cast<long_index_t>(BatchStrideB_); return b_grid_desc_g_n_k_.CalculateOffset(make_multi_index(g_idx, 0, 0));
} }
__host__ __device__ constexpr long_index_t GetB1BasePtr(index_t g_idx) const __host__ __device__ constexpr long_index_t GetB1BasePtr(index_t g_idx) const
{ {
return g_idx * static_cast<long_index_t>(BatchStrideB1_); return b1_grid_desc_g_n_k_.CalculateOffset(make_multi_index(g_idx, 0, 0));
} }
__host__ __device__ constexpr long_index_t GetCBasePtr(index_t g_idx) const __host__ __device__ constexpr long_index_t GetCBasePtr(index_t g_idx) const
...@@ -457,9 +317,9 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle ...@@ -457,9 +317,9 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
} }
private: private:
index_t BatchStrideA_; AGridDesc_G_M_K a_grid_desc_g_m_k_;
index_t BatchStrideB_; BGridDesc_G_N_K b_grid_desc_g_n_k_;
index_t BatchStrideB1_; B1GridDesc_G_N_K b1_grid_desc_g_n_k_;
CGridDesc_G_M_N c_grid_desc_g_m_n_; CGridDesc_G_M_N c_grid_desc_g_m_n_;
}; };
...@@ -523,47 +383,59 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle ...@@ -523,47 +383,59 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock, CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
CShuffleBlockTransferScalarPerVector_NPerBlock, CShuffleBlockTransferScalarPerVector_NPerBlock,
LoopSched, LoopSched,
matrix_padder.PadN, Transform::matrix_padder.PadN,
MaskOutUpperTriangle>; MaskingSpec == MaskingSpecialization::MaskOutUpperTriangle>;
// Argument // Argument
// FIXME: constness // FIXME: constness
struct Argument : public BaseArgument struct Argument : public BaseArgument
{ {
Argument(const ADataType* p_a_grid, Argument(
const BDataType* p_b_grid, const ADataType* p_a_grid,
const B1DataType* p_b1_grid, const BDataType* p_b_grid,
CDataType* p_c_grid, const B1DataType* p_b1_grid,
index_t MRaw, CDataType* p_c_grid,
index_t NRaw, const std::array<void*, NumAcc0Bias> p_acc0_biases,
index_t KRaw, const std::array<void*, NumAcc1Bias> p_acc1_biases,
index_t Gemm1NRaw, // = ORaw const std::vector<index_t>& a_gs_ms_ks_lengths,
index_t Batch, const std::vector<index_t>& a_gs_ms_ks_strides,
std::vector<index_t> c_gs_ms_gemm1ns_lengths, // c_gs_ms_os_lengths const std::vector<index_t>& b_gs_ns_ks_lengths,
std::vector<index_t> c_gs_ms_gemm1ns_strides, // c_gs_ms_os_strides const std::vector<index_t>& b_gs_ns_ks_strides,
index_t StrideA, const std::vector<index_t>& b1_gs_gemm1ns_gemm1ks_lengths, // b1_gs_os_ns_lengths
index_t StrideB, const std::vector<index_t>& b1_gs_gemm1ns_gemm1ks_strides, // b1_gs_os_ns_strides
index_t StrideB1, const std::vector<index_t>& c_gs_ms_gemm1ns_lengths, // c_gs_ms_os_lengths
index_t BatchStrideA, const std::vector<index_t>& c_gs_ms_gemm1ns_strides, // c_gs_ms_os_strides
index_t BatchStrideB, const std::array<std::vector<ck::index_t>, NumAcc0Bias> acc0_biases_gs_ms_ns_lengths,
index_t BatchStrideB1, const std::array<std::vector<ck::index_t>, NumAcc0Bias> acc0_biases_gs_ms_ns_strides,
AElementwiseOperation a_element_op, const std::array<std::vector<ck::index_t>, NumAcc1Bias>
BElementwiseOperation b_element_op, acc1_biases_gs_ms_gemm1ns_lengths, // acc1_biases_gs_ms_os_lengths
AccElementwiseOperation acc_element_op, const std::array<std::vector<ck::index_t>, NumAcc1Bias>
B1ElementwiseOperation b1_element_op, acc1_biases_gs_ms_gemm1ns_strides, // acc1_biases_gs_ms_os_strides
CElementwiseOperation c_element_op) AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
AccElementwiseOperation acc_element_op,
B1ElementwiseOperation b1_element_op,
CElementwiseOperation c_element_op)
: p_a_grid_{p_a_grid}, : p_a_grid_{p_a_grid},
p_b_grid_{p_b_grid}, p_b_grid_{p_b_grid},
p_b1_grid_{p_b1_grid}, p_b1_grid_{p_b1_grid},
p_c_grid_{p_c_grid}, p_c_grid_{p_c_grid},
a_grid_desc_ak0_m_ak1_{DeviceOp::MakeAGridDescriptor_AK0_M_AK1(MRaw, KRaw, StrideA)}, a_grid_desc_ak0_m_ak1_{
b_grid_desc_bk0_n_bk1_{DeviceOp::MakeBGridDescriptor_BK0_N_BK1(KRaw, NRaw, StrideB)}, DeviceOp::MakeAGridDescriptor_AK0_M_AK1(a_gs_ms_ks_lengths, a_gs_ms_ks_strides)},
b1_grid_desc_bk0_n_bk1_{ b_grid_desc_bk0_n_bk1_{
DeviceOp::MakeB1GridDescriptor_BK0_N_BK1(NRaw, Gemm1NRaw, StrideB1)}, DeviceOp::MakeBGridDescriptor_BK0_N_BK1(b_gs_ns_ks_lengths, b_gs_ns_ks_strides)},
c_grid_desc_m_n_{DeviceOp::MakeCGridDescriptor_M_N(c_gs_ms_gemm1ns_lengths, b1_grid_desc_bk0_n_bk1_{DeviceOp::MakeB1GridDescriptor_BK0_N_BK1(
c_gs_ms_gemm1ns_strides)}, b1_gs_gemm1ns_gemm1ks_lengths, b1_gs_gemm1ns_gemm1ks_strides)},
c_grid_desc_g_m_n_{DeviceOp::MakeCGridDescriptor_G_M_N(c_gs_ms_gemm1ns_lengths, c_grid_desc_m_n_{Transform::MakeCGridDescriptor_M_N(c_gs_ms_gemm1ns_lengths,
c_gs_ms_gemm1ns_strides)}, c_gs_ms_gemm1ns_strides)},
a_grid_desc_g_m_k_{
Transform::MakeAGridDescriptor_G_M_K(a_gs_ms_ks_lengths, a_gs_ms_ks_strides)},
b_grid_desc_g_n_k_{
Transform::MakeB0GridDescriptor_G_N_K(b_gs_ns_ks_lengths, b_gs_ns_ks_strides)},
b1_grid_desc_g_n_k_{Transform::MakeB1GridDescriptor_G_N_K(
b1_gs_gemm1ns_gemm1ks_lengths, b1_gs_gemm1ns_gemm1ks_strides)},
c_grid_desc_g_m_n_{Transform::MakeCGridDescriptor_G_M_N(c_gs_ms_gemm1ns_lengths,
c_gs_ms_gemm1ns_strides)},
c_grid_desc_mblock_mperblock_nblock_nperblock_{}, c_grid_desc_mblock_mperblock_nblock_nperblock_{},
block_2_ctile_map_{GridwiseGemm::MakeDefaultBlock2CTileMap(c_grid_desc_m_n_)}, block_2_ctile_map_{GridwiseGemm::MakeDefaultBlock2CTileMap(c_grid_desc_m_n_)},
a_element_op_{a_element_op}, a_element_op_{a_element_op},
...@@ -571,14 +443,31 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle ...@@ -571,14 +443,31 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
acc_element_op_{acc_element_op}, acc_element_op_{acc_element_op},
b1_element_op_{b1_element_op}, b1_element_op_{b1_element_op},
c_element_op_{c_element_op}, c_element_op_{c_element_op},
batch_count_(Batch), c0_matrix_mask_{b_grid_desc_g_n_k_.GetLength(I1)},
raw_lengths_mz_nz_kz_gemm1nz_{a_gs_ms_ks_lengths[NumDimG + NumDimM - 1],
b_gs_ns_ks_lengths[NumDimG + NumDimN - 1],
b_gs_ns_ks_lengths[NumDimG + NumDimN + NumDimK - 1],
b1_gs_gemm1ns_gemm1ks_lengths[NumDimG + NumDimO - 1]},
a_mz_kz_strides_{a_gs_ms_ks_strides[NumDimG + NumDimM - 1],
a_gs_ms_ks_strides[NumDimG + NumDimM + NumDimK - 1]},
b_nz_kz_strides_{b_gs_ns_ks_strides[NumDimG + NumDimN - 1],
b_gs_ns_ks_strides[NumDimG + NumDimN + NumDimK - 1]},
b1_nz_kz_strides_{b1_gs_gemm1ns_gemm1ks_strides[NumDimG + NumDimO - 1],
b1_gs_gemm1ns_gemm1ks_strides[NumDimG + NumDimO + NumDimN - 1]},
c_mz_gemm1nz_strides_{c_gs_ms_gemm1ns_strides[NumDimG + NumDimM - 1],
c_gs_ms_gemm1ns_strides[NumDimG + NumDimM + NumDimO - 1]},
batch_count_{c_grid_desc_g_m_n_.GetLength(I0)},
compute_base_ptr_of_batch_{ compute_base_ptr_of_batch_{
BatchStrideA, BatchStrideB, BatchStrideB1, c_grid_desc_g_m_n_}, a_grid_desc_g_m_k_, b_grid_desc_g_n_k_, b1_grid_desc_g_n_k_, c_grid_desc_g_m_n_}
c0_matrix_mask_{NRaw},
raw_lengths_m_n_k_o_{MRaw, NRaw, KRaw, Gemm1NRaw},
c_extent_lowest_{c_gs_ms_gemm1ns_lengths.back()},
c_stride_lowest_{c_gs_ms_gemm1ns_strides.back()}
{ {
// TODO ANT: implement bias addition
ignore = p_acc0_biases;
ignore = p_acc1_biases;
ignore = acc0_biases_gs_ms_ns_lengths;
ignore = acc0_biases_gs_ms_ns_strides;
ignore = acc1_biases_gs_ms_gemm1ns_lengths;
ignore = acc1_biases_gs_ms_gemm1ns_strides;
if(GridwiseGemm::CheckValidity(a_grid_desc_ak0_m_ak1_, if(GridwiseGemm::CheckValidity(a_grid_desc_ak0_m_ak1_,
b_grid_desc_bk0_n_bk1_, b_grid_desc_bk0_n_bk1_,
b1_grid_desc_bk0_n_bk1_, b1_grid_desc_bk0_n_bk1_,
...@@ -591,34 +480,66 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle ...@@ -591,34 +480,66 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
} }
} }
// private: void Print() const
{
std::cout << "a_grid_desc_g_m_k_: " << a_grid_desc_g_m_k_.GetLength(I0) << ", "
<< a_grid_desc_g_m_k_.GetLength(I1) << ", "
<< a_grid_desc_g_m_k_.GetLength(I2) << '\n';
// a_grid_desc_g_m_k_.Print();
std::cout << "b_grid_desc_g_n_k_: " << b_grid_desc_g_n_k_.GetLength(I0) << ", "
<< b_grid_desc_g_n_k_.GetLength(I1) << ", "
<< b_grid_desc_g_n_k_.GetLength(I2) << '\n';
// b_grid_desc_g_n_k_.Print();
std::cout << "b1_grid_desc_g_n_k_: " << b1_grid_desc_g_n_k_.GetLength(I0) << ", "
<< b1_grid_desc_g_n_k_.GetLength(I1) << ", "
<< b1_grid_desc_g_n_k_.GetLength(I2) << '\n';
// b1_grid_desc_g_n_k_.Print();
std::cout << "c_grid_desc_g_m_n_: " << c_grid_desc_g_m_n_.GetLength(I0) << ", "
<< c_grid_desc_g_m_n_.GetLength(I1) << ", "
<< c_grid_desc_g_m_n_.GetLength(I2) << '\n';
// c_grid_desc_g_m_n_.Print();
}
// pointers
const ADataType* p_a_grid_; const ADataType* p_a_grid_;
const BDataType* p_b_grid_; const BDataType* p_b_grid_;
const B1DataType* p_b1_grid_; const B1DataType* p_b1_grid_;
CDataType* p_c_grid_; CDataType* p_c_grid_;
// tensor descriptor
AGridDesc_AK0_M_AK1 a_grid_desc_ak0_m_ak1_; AGridDesc_AK0_M_AK1 a_grid_desc_ak0_m_ak1_;
BGridDesc_BK0_N_BK1 b_grid_desc_bk0_n_bk1_; BGridDesc_BK0_N_BK1 b_grid_desc_bk0_n_bk1_;
B1GridDesc_BK0_N_BK1 b1_grid_desc_bk0_n_bk1_; B1GridDesc_BK0_N_BK1 b1_grid_desc_bk0_n_bk1_;
CGridDesc_M_N c_grid_desc_m_n_; CGridDesc_M_N c_grid_desc_m_n_;
AGridDesc_G_M_K a_grid_desc_g_m_k_;
BGridDesc_G_N_K b_grid_desc_g_n_k_;
B1GridDesc_G_N_K b1_grid_desc_g_n_k_;
CGridDesc_G_M_N c_grid_desc_g_m_n_; CGridDesc_G_M_N c_grid_desc_g_m_n_;
typename GridwiseGemm::CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock typename GridwiseGemm::CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
c_grid_desc_mblock_mperblock_nblock_nperblock_; c_grid_desc_mblock_mperblock_nblock_nperblock_;
// block-to-c-tile map
typename GridwiseGemm::DefaultBlock2CTileMap block_2_ctile_map_; typename GridwiseGemm::DefaultBlock2CTileMap block_2_ctile_map_;
// element-wise op
AElementwiseOperation a_element_op_; AElementwiseOperation a_element_op_;
BElementwiseOperation b_element_op_; BElementwiseOperation b_element_op_;
AccElementwiseOperation acc_element_op_; AccElementwiseOperation acc_element_op_;
B1ElementwiseOperation b1_element_op_; B1ElementwiseOperation b1_element_op_;
CElementwiseOperation c_element_op_; CElementwiseOperation c_element_op_;
index_t batch_count_;
ComputeBasePtrOfStridedBatch compute_base_ptr_of_batch_;
// check C0 masking and padding // check C0 masking and padding
C0MatrixMask c0_matrix_mask_; C0MatrixMask c0_matrix_mask_;
// For robust IsSupportedArgument() check // For robust IsSupportedArgument() check
std::vector<index_t> raw_lengths_m_n_k_o_; std::vector<index_t> raw_lengths_mz_nz_kz_gemm1nz_;
index_t c_extent_lowest_; std::vector<index_t> a_mz_kz_strides_;
index_t c_stride_lowest_; std::vector<index_t> b_nz_kz_strides_;
std::vector<index_t> b1_nz_kz_strides_;
std::vector<index_t> c_mz_gemm1nz_strides_;
index_t batch_count_;
ComputeBasePtrOfStridedBatch compute_base_ptr_of_batch_;
}; };
// Invoker // Invoker
...@@ -628,13 +549,9 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle ...@@ -628,13 +549,9 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{}) float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{ {
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_ak0_m_ak1_, if(!DeviceOp::IsSupportedArgument(arg))
arg.b_grid_desc_bk0_n_bk1_,
arg.b1_grid_desc_bk0_n_bk1_,
arg.c_grid_desc_m_n_,
arg.block_2_ctile_map_))
{ {
throw std::runtime_error("wrong! GridwiseGemm has invalid setting"); throw std::runtime_error("wrong! unsupported argument");
} }
const index_t grid_size = const index_t grid_size =
...@@ -719,17 +636,24 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle ...@@ -719,17 +636,24 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
static bool IsSupportedArgument(const Argument& arg) static bool IsSupportedArgument(const Argument& arg)
{ {
#if 0
arg.Print();
#endif
if(!(ck::get_device_name() == "gfx908" || ck::get_device_name() == "gfx90a")) if(!(ck::get_device_name() == "gfx908" || ck::get_device_name() == "gfx90a"))
{ {
return false; return false;
} }
// TODO ANT: Check if tensor specialization & strides mismatch
// Check if C permute dimension matches GEMM + GEMM shape // Check if C permute dimension matches GEMM + GEMM shape
const index_t c_g = arg.c_grid_desc_g_m_n_.GetLength(I0); // unpadded const index_t c_g = arg.c_grid_desc_g_m_n_.GetLength(I0); // unpadded
const index_t c_m = arg.c_grid_desc_m_n_.GetLength(I0); const index_t c_m = arg.c_grid_desc_m_n_.GetLength(I0);
const index_t c_gemm1n = arg.c_grid_desc_m_n_.GetLength(I1); const index_t c_gemm1n = arg.c_grid_desc_m_n_.GetLength(I1);
const index_t a_m = arg.a_grid_desc_ak0_m_ak1_.GetLength(I1); const index_t a_m = arg.a_grid_desc_ak0_m_ak1_.GetLength(I1);
const index_t b1_gemm1n = arg.b1_grid_desc_bk0_n_bk1_.GetLength(I1); const index_t b1_gemm1n = arg.b1_grid_desc_bk0_n_bk1_.GetLength(I1);
if(!(c_g == arg.batch_count_ && c_m == a_m && c_gemm1n == b1_gemm1n)) if(!(c_g == arg.batch_count_ && c_m == a_m && c_gemm1n == b1_gemm1n))
{ {
return false; return false;
...@@ -737,19 +661,17 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle ...@@ -737,19 +661,17 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
// Note: we need raw lengths since threadwise copy can not handle vector load when part of // Note: we need raw lengths since threadwise copy can not handle vector load when part of
// vector is out of bounds // vector is out of bounds
const auto MRaw = arg.raw_lengths_m_n_k_o_[0]; // Note: need lowest dim in Ms/Ns/Ks/Os, not merged M/N/K/O
const auto NRaw = arg.raw_lengths_m_n_k_o_[1]; const auto MzRaw = arg.raw_lengths_mz_nz_kz_gemm1nz_[0];
const auto KRaw = arg.raw_lengths_m_n_k_o_[2]; const auto NzRaw = arg.raw_lengths_mz_nz_kz_gemm1nz_[1];
const auto Gemm1NRaw = arg.raw_lengths_m_n_k_o_[3]; const auto KzRaw = arg.raw_lengths_mz_nz_kz_gemm1nz_[2];
const auto Gemm1NzRaw = arg.raw_lengths_mz_nz_kz_gemm1nz_[3];
// Check scalar per vector requirement // Check scalar per vector requirement
const auto a_extent_lowest = const auto a_extent_lowest = ABlockTransferSrcVectorDim == 2 ? KzRaw : MzRaw;
is_same_v<tensor_layout::gemm::RowMajor, ALayout> ? KRaw : MRaw; const auto b_extent_lowest = BBlockTransferSrcVectorDim == 2 ? KzRaw : NzRaw;
const auto b_extent_lowest = const auto b1_extent_lowest = B1BlockTransferSrcVectorDim == 2 ? NzRaw : Gemm1NzRaw;
is_same_v<tensor_layout::gemm::RowMajor, BLayout> ? NRaw : KRaw; const auto c_extent_lowest = Gemm1NzRaw;
const auto b1_extent_lowest =
is_same_v<tensor_layout::gemm::RowMajor, B1Layout> ? Gemm1NRaw : NRaw;
const auto c_extent_lowest = arg.c_extent_lowest_;
if(!(a_extent_lowest % ABlockTransferSrcScalarPerVector == 0 && if(!(a_extent_lowest % ABlockTransferSrcScalarPerVector == 0 &&
b_extent_lowest % BBlockTransferSrcScalarPerVector == 0 && b_extent_lowest % BBlockTransferSrcScalarPerVector == 0 &&
...@@ -759,8 +681,18 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle ...@@ -759,8 +681,18 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
return false; return false;
} }
// Check vector store requirement; assumes last dimension in N to be contiguous // Check vector load/store requirement
if(arg.c_stride_lowest_ != 1) const auto a_stride_lowest =
ABlockTransferSrcVectorDim == 2 ? arg.a_mz_kz_strides_[1] : arg.a_mz_kz_strides_[0];
const auto b_stride_lowest =
BBlockTransferSrcVectorDim == 2 ? arg.b_nz_kz_strides_[1] : arg.b_nz_kz_strides_[0];
const auto b1_stride_lowest =
B1BlockTransferSrcVectorDim == 2 ? arg.b1_nz_kz_strides_[1] : arg.b1_nz_kz_strides_[0];
const auto c_stride_lowest =
arg.c_mz_gemm1nz_strides_[1]; // cshuffle assumes lowest dim in Gemm1Ns to be contiguous
if(!(a_stride_lowest == 1 || b_stride_lowest == 1 || b1_stride_lowest == 1 ||
c_stride_lowest == 1))
{ {
return false; return false;
} }
...@@ -778,46 +710,51 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle ...@@ -778,46 +710,51 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg)); return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
} }
static auto MakeArgument(const ADataType* p_a, static auto MakeArgument(
const BDataType* p_b, const ADataType* p_a,
const B1DataType* p_b1, const BDataType* p_b,
CDataType* p_c, const B1DataType* p_b1,
index_t MRaw, CDataType* p_c,
index_t NRaw, const std::array<void*, NumAcc0Bias> p_acc0_biases,
index_t KRaw, const std::array<void*, NumAcc1Bias> p_acc1_biases,
index_t Gemm1NRaw, const std::vector<index_t>& a_gs_ms_ks_lengths,
index_t Batch, const std::vector<index_t>& a_gs_ms_ks_strides,
std::vector<index_t> c_gs_ms_gemm1ns_lengths, // c_gs_ms_os_lengths const std::vector<index_t>& b_gs_ns_ks_lengths,
std::vector<index_t> c_gs_ms_gemm1ns_strides, // c_gs_ms_os_strides const std::vector<index_t>& b_gs_ns_ks_strides,
index_t StrideA, const std::vector<index_t>& b1_gs_gemm1ns_gemm1ks_lengths, // b1_gs_os_ns_lengths
index_t StrideB, const std::vector<index_t>& b1_gs_gemm1ns_gemm1ks_strides, // b1_gs_os_ns_strides
index_t StrideB1, const std::vector<index_t>& c_gs_ms_gemm1ns_lengths, // c_gs_ms_os_lengths
index_t BatchStrideA, const std::vector<index_t>& c_gs_ms_gemm1ns_strides, // c_gs_ms_os_strides
index_t BatchStrideB, const std::array<std::vector<ck::index_t>, NumAcc0Bias> acc0_biases_gs_ms_ns_lengths,
index_t BatchStrideB1, const std::array<std::vector<ck::index_t>, NumAcc0Bias> acc0_biases_gs_ms_ns_strides,
AElementwiseOperation a_element_op, const std::array<std::vector<ck::index_t>, NumAcc1Bias>
BElementwiseOperation b_element_op, acc1_biases_gs_ms_gemm1ns_lengths, // acc1_biases_gs_ms_os_lengths
AccElementwiseOperation acc_element_op, const std::array<std::vector<ck::index_t>, NumAcc1Bias>
B1ElementwiseOperation b1_element_op, acc1_biases_gs_ms_gemm1ns_strides, // acc1_biases_gs_ms_os_strides
CElementwiseOperation c_element_op) AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
AccElementwiseOperation acc_element_op,
B1ElementwiseOperation b1_element_op,
CElementwiseOperation c_element_op)
{ {
return Argument{p_a, return Argument{p_a,
p_b, p_b,
p_b1, p_b1,
p_c, p_c,
MRaw, p_acc0_biases,
NRaw, p_acc1_biases,
KRaw, a_gs_ms_ks_lengths,
Gemm1NRaw, a_gs_ms_ks_strides,
Batch, b_gs_ns_ks_lengths,
c_gs_ms_gemm1ns_lengths, b_gs_ns_ks_strides,
c_gs_ms_gemm1ns_strides, b1_gs_gemm1ns_gemm1ks_lengths, // b1_gs_os_ns_lengths
StrideA, b1_gs_gemm1ns_gemm1ks_strides, // b1_gs_os_ns_strides
StrideB, c_gs_ms_gemm1ns_lengths, // c_gs_ms_os_lengths
StrideB1, c_gs_ms_gemm1ns_strides, // c_gs_ms_os_strides
BatchStrideA, acc0_biases_gs_ms_ns_lengths,
BatchStrideB, acc0_biases_gs_ms_ns_strides,
BatchStrideB1, acc1_biases_gs_ms_gemm1ns_lengths, // acc1_biases_gs_ms_os_lengths
acc1_biases_gs_ms_gemm1ns_strides, // acc1_biases_gs_ms_os_strides
a_element_op, a_element_op,
b_element_op, b_element_op,
acc_element_op, acc_element_op,
...@@ -829,47 +766,51 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle ...@@ -829,47 +766,51 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
// polymorphic // polymorphic
// FIXME: constness // FIXME: constness
std::unique_ptr<BaseArgument> std::unique_ptr<BaseArgument> MakeArgumentPointer(
MakeArgumentPointer(const void* p_a, const void* p_a,
const void* p_b, const void* p_b,
const void* p_b1, const void* p_b1,
void* p_c, void* p_c,
index_t MRaw, const std::array<void*, NumAcc0Bias> p_acc0_biases,
index_t NRaw, const std::array<void*, NumAcc1Bias> p_acc1_biases,
index_t KRaw, const std::vector<index_t>& a_gs_ms_ks_lengths,
index_t Gemm1NRaw, const std::vector<index_t>& a_gs_ms_ks_strides,
index_t Batch, const std::vector<index_t>& b_gs_ns_ks_lengths,
std::vector<index_t> c_gs_ms_gemm1ns_lengths, // c_gs_ms_os_lengths const std::vector<index_t>& b_gs_ns_ks_strides,
std::vector<index_t> c_gs_ms_gemm1ns_strides, // c_gs_ms_os_strides const std::vector<index_t>& b1_gs_gemm1ns_gemm1ks_lengths, // b1_gs_os_ns_lengths
index_t StrideA, const std::vector<index_t>& b1_gs_gemm1ns_gemm1ks_strides, // b1_gs_os_ns_strides
index_t StrideB, const std::vector<index_t>& c_gs_ms_gemm1ns_lengths, // c_gs_ms_os_lengths
index_t StrideB1, const std::vector<index_t>& c_gs_ms_gemm1ns_strides, // c_gs_ms_os_strides
index_t BatchStrideA, const std::array<std::vector<ck::index_t>, NumAcc0Bias> acc0_biases_gs_ms_ns_lengths,
index_t BatchStrideB, const std::array<std::vector<ck::index_t>, NumAcc0Bias> acc0_biases_gs_ms_ns_strides,
index_t BatchStrideB1, const std::array<std::vector<ck::index_t>, NumAcc1Bias>
AElementwiseOperation a_element_op, acc1_biases_gs_ms_gemm1ns_lengths, // acc1_biases_gs_ms_os_lengths
BElementwiseOperation b_element_op, const std::array<std::vector<ck::index_t>, NumAcc1Bias>
AccElementwiseOperation acc_element_op, acc1_biases_gs_ms_gemm1ns_strides, // acc1_biases_gs_ms_os_strides
B1ElementwiseOperation b1_element_op, AElementwiseOperation a_element_op,
CElementwiseOperation c_element_op) override BElementwiseOperation b_element_op,
AccElementwiseOperation acc_element_op,
B1ElementwiseOperation b1_element_op,
CElementwiseOperation c_element_op) override
{ {
return std::make_unique<Argument>(static_cast<const ADataType*>(p_a), return std::make_unique<Argument>(static_cast<const ADataType*>(p_a),
static_cast<const BDataType*>(p_b), static_cast<const BDataType*>(p_b),
static_cast<const B1DataType*>(p_b1), static_cast<const B1DataType*>(p_b1),
static_cast<CDataType*>(p_c), static_cast<CDataType*>(p_c),
MRaw, p_acc0_biases, // cast in struct Argument
NRaw, p_acc1_biases, // cast in struct Argument
KRaw, a_gs_ms_ks_lengths,
Gemm1NRaw, a_gs_ms_ks_strides,
Batch, b_gs_ns_ks_lengths,
c_gs_ms_gemm1ns_lengths, b_gs_ns_ks_strides,
c_gs_ms_gemm1ns_strides, b1_gs_gemm1ns_gemm1ks_lengths, // b1_gs_os_ns_lengths
StrideA, b1_gs_gemm1ns_gemm1ks_strides, // b1_gs_os_ns_strides
StrideB, c_gs_ms_gemm1ns_lengths, // c_gs_ms_os_lengths
StrideB1, c_gs_ms_gemm1ns_strides, // c_gs_ms_os_strides
BatchStrideA, acc0_biases_gs_ms_ns_lengths,
BatchStrideB, acc0_biases_gs_ms_ns_strides,
BatchStrideB1, acc1_biases_gs_ms_gemm1ns_lengths,
acc1_biases_gs_ms_gemm1ns_strides,
a_element_op, a_element_op,
b_element_op, b_element_op,
acc_element_op, acc_element_op,
...@@ -901,7 +842,12 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle ...@@ -901,7 +842,12 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
<< Gemm1NPerBlock << ", " << Gemm1NPerBlock << ", "
<< Gemm1KPerBlock << ", " << Gemm1KPerBlock << ", "
<< B1K1 << ", " << B1K1 << ", "
<< getGemmSpecializationString(GemmSpec) << ">"; << getGemmSpecializationString(GemmSpec) << ", "
<< "ASpec" << getTensorSpecializationString(ASpec) << ", "
<< "B0Spec" << getTensorSpecializationString(BSpec) << ", "
<< "B1Spec" << getTensorSpecializationString(B1Spec) << ", "
<< "CSpec" << getTensorSpecializationString(CSpec) << ", "
<< getMaskingSpecializationString(MaskingSpec) << ">";
// clang-format on // clang-format on
return str.str(); return str.str();
......
...@@ -12,6 +12,7 @@ ...@@ -12,6 +12,7 @@
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp" #include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_softmax_gemm.hpp" #include "ck/tensor_operation/gpu/device/device_batched_gemm_softmax_gemm.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp" #include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/masking_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp" #include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_batched_gemm_softmax_gemm_xdl_cshuffle_v1.hpp" #include "ck/tensor_operation/gpu/grid/gridwise_batched_gemm_softmax_gemm_xdl_cshuffle_v1.hpp"
#include "ck/host_utility/device_prop.hpp" #include "ck/host_utility/device_prop.hpp"
...@@ -196,7 +197,8 @@ struct DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle ...@@ -196,7 +197,8 @@ struct DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
BElementwiseOperation, BElementwiseOperation,
AccElementwiseOperation, AccElementwiseOperation,
B1ElementwiseOperation, B1ElementwiseOperation,
CElementwiseOperation> CElementwiseOperation,
MaskOutUpperTriangle>
{ {
using DeviceOp = DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle; using DeviceOp = DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle;
...@@ -315,29 +317,6 @@ struct DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle ...@@ -315,29 +317,6 @@ struct DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
return matrix_padder.PadCDescriptor_M_N(c_grid_desc_mraw_nraw); return matrix_padder.PadCDescriptor_M_N(c_grid_desc_mraw_nraw);
} }
// to track the points which need to be set to -inf on C0
// Note: no need to reset M padding value, because they will not be stored out.
struct C0MatrixMask
{
C0MatrixMask(index_t NRaw) : NRaw_(NRaw) {}
__host__ __device__ bool IsUpperTriangle(index_t m, index_t n) const { return n > m; }
__host__ __device__ bool IsNOutOfBound(/*index_t m, */ index_t n) const
{
return n >= NRaw_;
}
__host__ __device__ bool IsMaskedElement(index_t m, index_t n) const
{
return IsUpperTriangle(m, n) || IsNOutOfBound(n);
}
private:
// index_t MRaw_;
index_t NRaw_;
};
struct ComputeBasePtrOfStridedBatch struct ComputeBasePtrOfStridedBatch
{ {
ComputeBasePtrOfStridedBatch(index_t BatchStrideA, ComputeBasePtrOfStridedBatch(index_t BatchStrideA,
...@@ -383,6 +362,10 @@ struct DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle ...@@ -383,6 +362,10 @@ struct DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
using B1GridDesc_BK0_N_BK1 = decltype(MakeB1GridDescriptor_BK0_N_BK1(1, 1, 1)); using B1GridDesc_BK0_N_BK1 = decltype(MakeB1GridDescriptor_BK0_N_BK1(1, 1, 1));
using CGridDesc_M_N = decltype(MakeCGridDescriptor_M_N(1, 1, 1)); using CGridDesc_M_N = decltype(MakeCGridDescriptor_M_N(1, 1, 1));
using C0MatrixMask = conditional_t<MaskOutUpperTriangle,
C0MatrixMask_impl<MaskOutUpperTrianglePredicate>,
C0MatrixMask_impl<MaskDisabledPredicate>>;
// GridwiseGemm // GridwiseGemm
using GridwiseGemm = GridwiseBatchedGemmSoftmaxGemm_Xdl_CShuffle< using GridwiseGemm = GridwiseBatchedGemmSoftmaxGemm_Xdl_CShuffle<
ADataType, // TODO: distinguish A/B datatype ADataType, // TODO: distinguish A/B datatype
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
namespace ck {
namespace tensor_operation {
namespace device {
enum struct MaskingSpecialization
{
MaskDisabled,
MaskOutUpperTriangle
};
inline std::string getMaskingSpecializationString(const MaskingSpecialization& s)
{
switch(s)
{
case MaskingSpecialization::MaskDisabled: return "MaskDisabled";
case MaskingSpecialization::MaskOutUpperTriangle: return "MaskOutUpperTriangle";
default: return "Unrecognized specialization!";
}
}
struct MaskDisabledPredicate
{
__host__ __device__ constexpr bool operator()(index_t /*m*/, index_t /*n*/) const
{
return false;
};
__host__ __device__ constexpr bool
IsTileSkippable(index_t /*m*/, index_t /*n*/, index_t /*m_tile*/, index_t /*n_tile*/) const
{
return false;
}
};
struct MaskOutUpperTrianglePredicate
{
__host__ __device__ constexpr bool operator()(index_t m, index_t n) const { return n > m; }
__host__ __device__ constexpr bool
IsTileSkippable(index_t m, index_t n, index_t m_tile, index_t /*n_tile*/) const
{
return operator()(m + m_tile - 1, n);
}
};
// to track the points which need to be set to -inf on C0
// Note: no need to reset M padding value, because they will not be stored out.
template <typename MaskOutPredicate>
struct C0MatrixMask_impl
{
C0MatrixMask_impl(index_t NRaw) : NRaw_(NRaw), predicate_(MaskOutPredicate{}) {}
__host__ __device__ constexpr bool IsNOutOfBound(/*index_t m, */ index_t n) const
{
return n >= NRaw_;
}
__host__ __device__ constexpr bool IsMaskedElement(index_t m, index_t n) const
{
return predicate_(m, n) || IsNOutOfBound(n);
}
__host__ __device__ constexpr bool
IsTileSkippable(index_t m, index_t n, index_t m_tile, index_t n_tile) const
{
return predicate_.IsTileSkippable(m, n, m_tile, n_tile);
}
private:
// index_t MRaw_;
index_t NRaw_;
MaskOutPredicate predicate_;
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
...@@ -336,36 +336,6 @@ struct GridwiseBatchedGemmSoftmaxGemm_Xdl_CShuffle ...@@ -336,36 +336,6 @@ struct GridwiseBatchedGemmSoftmaxGemm_Xdl_CShuffle
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize(); c_shuffle_block_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize();
}; };
template <bool Pred>
struct ElementOpPredicatedResetNaNToMinusInf;
template <>
struct ElementOpPredicatedResetNaNToMinusInf<true>
{
template <typename ElementOp, typename OutT, typename InT>
__host__ __device__ void Run(OutT& y, const ElementOp& op, const InT& x)
{
if(ck::math::isnan(x))
{
y = -ck::NumericLimits<float>::Infinity();
}
else
{
op(y, x);
}
}
};
template <>
struct ElementOpPredicatedResetNaNToMinusInf<false>
{
template <typename ElementOp, typename OutT, typename InT>
__host__ __device__ void Run(OutT& y, const ElementOp& op, const InT& x)
{
op(y, x);
}
};
template <bool HasMainKBlockLoop, typename Block2CTileMap, typename C0MatrixMask> template <bool HasMainKBlockLoop, typename Block2CTileMap, typename C0MatrixMask>
__device__ static void Run(const FloatAB* __restrict__ p_a_grid, __device__ static void Run(const FloatAB* __restrict__ p_a_grid,
const FloatAB* __restrict__ p_b_grid, const FloatAB* __restrict__ p_b_grid,
...@@ -406,11 +376,11 @@ struct GridwiseBatchedGemmSoftmaxGemm_Xdl_CShuffle ...@@ -406,11 +376,11 @@ struct GridwiseBatchedGemmSoftmaxGemm_Xdl_CShuffle
return; return;
} }
// HACK: this force m/n_block_data_idx_on_grid into SGPR // HACK: this force m/gemm1_n_block_data_idx_on_grid into SGPR
const index_t m_block_data_idx_on_grid = const index_t m_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_work_idx[I0] * MPerBlock); __builtin_amdgcn_readfirstlane(block_work_idx[I0] * MPerBlock);
const index_t n_block_data_idx_on_grid = const index_t gemm1_n_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_work_idx[I1] * Gemm1NPerBlock); __builtin_amdgcn_readfirstlane(block_work_idx[I1] * Gemm1NPerBlock);
// A matrix in LDS memory, dst of blockwise copy // A matrix in LDS memory, dst of blockwise copy
...@@ -627,7 +597,7 @@ struct GridwiseBatchedGemmSoftmaxGemm_Xdl_CShuffle ...@@ -627,7 +597,7 @@ struct GridwiseBatchedGemmSoftmaxGemm_Xdl_CShuffle
true, // DstResetCoord true, // DstResetCoord
NumGemmKPrefetchStage>( NumGemmKPrefetchStage>(
b1_grid_desc_bk0_n_bk1, b1_grid_desc_bk0_n_bk1,
make_multi_index(0, n_block_data_idx_on_grid, 0), make_multi_index(0, gemm1_n_block_data_idx_on_grid, 0),
b1_element_op, b1_element_op,
b1_block_desc_bk0_n_bk1, b1_block_desc_bk0_n_bk1,
make_multi_index(0, 0, 0), make_multi_index(0, 0, 0),
...@@ -745,29 +715,16 @@ struct GridwiseBatchedGemmSoftmaxGemm_Xdl_CShuffle ...@@ -745,29 +715,16 @@ struct GridwiseBatchedGemmSoftmaxGemm_Xdl_CShuffle
running_max = NumericLimits<FloatGemmAcc>::Lowest(); running_max = NumericLimits<FloatGemmAcc>::Lowest();
running_max_new = NumericLimits<FloatGemmAcc>::Lowest(); running_max_new = NumericLimits<FloatGemmAcc>::Lowest();
// decoder lower triangular mask
const auto thread_cluster_idx = threadid_to_m_n_thread_cluster_adaptor.CalculateBottomIndex(
make_multi_index(get_thread_local_1d_id()));
const auto thread_m_cluster_id = thread_cluster_idx[I0];
const auto thread_n_cluster_id = thread_cluster_idx[I1];
const index_t MPerRepeat = MPerBlock / MXdlPerWave;
const index_t NPerRepeat = NPerBlock / NXdlPerWave;
const index_t mstart = m_block_data_idx_on_grid + thread_m_cluster_id;
// gemm1 K loop // gemm1 K loop
index_t gemm1_k_block_outer_index = 0; index_t gemm1_k_block_outer_index = 0;
do do
{ {
if constexpr(MaskOutUpperTriangle) auto n_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(gemm1_k_block_outer_index * NPerBlock);
if(c0_matrix_mask.IsTileSkippable(
m_block_data_idx_on_grid, n_block_data_idx_on_grid, MPerBlock, NPerBlock))
{ {
auto gemm0_n_block_idx = continue;
__builtin_amdgcn_readfirstlane(gemm1_k_block_outer_index * NPerBlock);
if(c0_matrix_mask.IsUpperTriangle(m_block_data_idx_on_grid, gemm0_n_block_idx) &&
c0_matrix_mask.IsUpperTriangle(m_block_data_idx_on_grid + MPerBlock - 1,
gemm0_n_block_idx))
{
continue;
}
} }
// gemm0 // gemm0
gridwise_gemm_pipeline.template Run<HasMainKBlockLoop>(a_grid_desc_ak0_m_ak1, gridwise_gemm_pipeline.template Run<HasMainKBlockLoop>(a_grid_desc_ak0_m_ak1,
...@@ -789,60 +746,58 @@ struct GridwiseBatchedGemmSoftmaxGemm_Xdl_CShuffle ...@@ -789,60 +746,58 @@ struct GridwiseBatchedGemmSoftmaxGemm_Xdl_CShuffle
// do MNK padding or upper triangular masking // do MNK padding or upper triangular masking
if constexpr(MaskOutUpperTriangle || PadN) if constexpr(MaskOutUpperTriangle || PadN)
{ {
const index_t nstart = gemm1_k_block_outer_index * NPerBlock; // 8d thread_desc in thread scope
constexpr auto c_thread_lengths =
static_for<0, m0, 1>{}([&](auto m0_i) { blockwise_gemm.GetCThreadDescriptor_M0_N0_M1_N1_M2_N2_N3_N4().GetLengths();
const index_t m_global = mstart + m0_i * MPerRepeat;
const index_t acc_idx_m0 = m0_i * n0 * n2 * n4; // 8d block_desc in block scope
static_for<0, n0, 1>{}([&](auto n0_i) { constexpr auto c_block_lengths =
// constexpr auto nrepeat_i = n0_i * NPerRepeat; blockwise_gemm.GetCBlockDescriptor_M0_N0_M1_N1_M2_N2_N3_N4().GetLengths();
// const index_t nstartxdl = nstart + nrepeat_i;
const index_t nstartxdl = nstart + n0_i * NPerRepeat; constexpr auto M0 = c_block_lengths[I0];
const index_t acc_idx_n0 = acc_idx_m0 + n0_i * n2 * n4; constexpr auto N0 = c_block_lengths[I1];
static_for<0, n2, 1>{}([&](auto n2_i) { constexpr auto M1 = c_block_lengths[I2];
const index_t nstartgroup = constexpr auto N1 = c_block_lengths[I3];
nstartxdl + thread_n_cluster_id * n4 + n2_i * AccN3 * n4; constexpr auto M2 = c_block_lengths[I4];
const index_t acc_idx_n2 = acc_idx_n0 + n2_i * n4; constexpr auto N2 = c_block_lengths[I5];
static_for<0, n4, 1>{}([&](auto n4_i) { constexpr auto N3 = c_block_lengths[I6];
const index_t n_global = nstartgroup + n4_i; constexpr auto N4 = c_block_lengths[I7];
const auto acc_offset = Number<acc_idx_n2 + n4_i>{};
if constexpr(MaskOutUpperTriangle) // works like multi-dimension static_for (static_ford), but provides both the linear
{ // index as well as n-d index
if(c0_matrix_mask.IsMaskedElement(m_global, n_global)) using Acc0TileIterator = SpaceFillingCurve<
{ decltype(c_thread_lengths),
acc_thread_buf(acc_offset) = typename arithmetic_sequence_gen<0, c_thread_lengths.Size(), 1>::type,
-ck::NumericLimits<float>::Infinity(); typename uniform_sequence_gen<c_thread_lengths.Size(), 1>::type,
} false>; // SnakeCurved
else
{ auto acc0_thread_origin = blockwise_gemm.CalculateCThreadOriginDataIndex8D(
acc_element_op(acc_thread_buf(acc_offset), Number<0>{}, Number<0>{}, Number<0>{}, Number<0>{});
acc_thread_buf[acc_offset]);
} constexpr auto block_idx_to_m_n_adaptor = make_single_stage_tensor_adaptor(
} make_tuple(make_unmerge_transform(make_tuple(M0, M1, M2)),
else make_unmerge_transform(make_tuple(N0, N1, N2, N3, N4))),
{ make_tuple(Sequence<0>{}, Sequence<1>{}),
// ignore m_global; make_tuple(Sequence<0, 2, 4>{}, Sequence<1, 3, 5, 6, 7>{}));
if(c0_matrix_mask.IsNOutOfBound(n_global))
{ static_for<0, Acc0TileIterator::GetNumOfAccess(), 1>{}([&](auto i) {
acc_thread_buf(acc_offset) = auto acc0_thread_idx = Acc0TileIterator::GetIndex(i) + acc0_thread_origin;
-ck::NumericLimits<float>::Infinity(); auto m_local =
} block_idx_to_m_n_adaptor.CalculateBottomIndex(acc0_thread_idx)[I0];
else auto n_local =
{ block_idx_to_m_n_adaptor.CalculateBottomIndex(acc0_thread_idx)[I1];
acc_element_op(acc_thread_buf(acc_offset), auto m_global = m_local + m_block_data_idx_on_grid;
acc_thread_buf[acc_offset]); auto n_global = n_local + n_block_data_idx_on_grid;
} if(c0_matrix_mask.IsMaskedElement(m_global, n_global))
} {
}); acc_thread_buf(i) = -ck::NumericLimits<float>::Infinity();
}); }
}); else
{
acc_element_op(acc_thread_buf(i), acc_thread_buf[i]);
}
}); });
} }
else
{
static_for<0, acc_thread_buf.Size(), 1>{}(
[&](auto i) { acc_element_op(acc_thread_buf(i), acc_thread_buf[i]); });
}
block_sync_lds(); // wait for lds read in gemm0 blockwise gemm block_sync_lds(); // wait for lds read in gemm0 blockwise gemm
......
...@@ -593,7 +593,8 @@ struct XdlopsGemm ...@@ -593,7 +593,8 @@ struct XdlopsGemm
static constexpr auto I4 = Number<4>{}; static constexpr auto I4 = Number<4>{};
static constexpr auto I5 = Number<5>{}; static constexpr auto I5 = Number<5>{};
using CIndex = MultiIndex<2>; using CIndex = MultiIndex<2>;
using CIndex4D = MultiIndex<4>;
__device__ static constexpr index_t GetNumBlks() { return mfma_instr.num_output_blks; } __device__ static constexpr index_t GetNumBlks() { return mfma_instr.num_output_blks; }
...@@ -822,6 +823,16 @@ struct XdlopsGemm ...@@ -822,6 +823,16 @@ struct XdlopsGemm
return TransposeC ? CIndex{n_offset, m_offset} : CIndex{m_offset, n_offset}; return TransposeC ? CIndex{n_offset, m_offset} : CIndex{m_offset, n_offset};
} }
__device__ static CIndex4D GetBeginOfThreadBlk4D(index_t /* xdlops_i */, index_t /* blk_i */)
{
const auto blk_idx = GetBlkIdx();
const auto blk_id = blk_idx[I0];
const auto blk_td = blk_idx[I1];
return TransposeC ? CIndex4D{blk_td, I0, blk_id, I0} : CIndex4D{I0, blk_id, I0, blk_td};
}
static constexpr auto mfma = MfmaSelector<base_type, MPerXdlops, NPerXdlops>{}; static constexpr auto mfma = MfmaSelector<base_type, MPerXdlops, NPerXdlops>{};
static constexpr auto mfma_instr = mfma.selected_mfma; static constexpr auto mfma_instr = mfma.selected_mfma;
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment