Unverified Commit d4d1147f authored by rocking5566's avatar rocking5566 Committed by GitHub
Browse files

Refine layernorm naming and test code (#497)

* Sync the naming

* Sync the test of layernorm with groupnorm

* Sync the naming

* Minor change for comment and log

* [What] Add saveMean and SaveInvVariance in the interface.
[Why] These can optimize the backward
parent 451f1e3d
......@@ -90,6 +90,8 @@ int main(int argc, char* argv[])
gamma_device_buf.GetDeviceBuffer(),
beta_device_buf.GetDeviceBuffer(),
y_device_buf.GetDeviceBuffer(),
nullptr,
nullptr,
PassThrough{});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
......@@ -143,6 +145,8 @@ int main(int argc, char* argv[])
gamma_device_buf.GetDeviceBuffer(),
beta_device_buf.GetDeviceBuffer(),
y_device_buf.GetDeviceBuffer(),
nullptr,
nullptr,
PassThrough{});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
......
......@@ -100,6 +100,8 @@ int main()
gamma_dev.GetDeviceBuffer(),
beta_dev.GetDeviceBuffer(),
y_dev.GetDeviceBuffer(),
nullptr,
nullptr,
PassThrough{});
if(!device_instance.IsSupportedArgument(argument_ptr.get()))
......
......@@ -128,6 +128,8 @@ int main(int argc, char* argv[])
gamma_dev.GetDeviceBuffer(),
beta_dev.GetDeviceBuffer(),
y_dev.GetDeviceBuffer(),
nullptr,
nullptr,
y_element_op);
if(!device_instance.IsSupportedArgument(argument_ptr.get()))
......
......@@ -33,6 +33,8 @@ struct DeviceNormalization : public BaseOperator
const void* p_gamma,
const void* p_beta,
void* p_y,
void* p_savedMean,
void* p_savedInvVar,
AccElementwiseOperation acc_elementwise_op) = 0;
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
......
......@@ -10,7 +10,7 @@
#include "ck/tensor_operation/gpu/device/device_normalization.hpp"
#include "ck/tensor_operation/gpu/device/device_reduce.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_reduce_common.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_layernorm_welford_variance.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_normalization_welford_variance.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_set_buffer_value.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
......@@ -24,7 +24,7 @@ template <typename GridwiseReduction,
typename AccDataType,
typename AccElementwiseOperation,
typename GridDesc_M_K>
__global__ void kernel_layernorm(const GridDesc_M_K x_grid_desc_m_k,
__global__ void kernel_normalization(const GridDesc_M_K x_grid_desc_m_k,
const GridDesc_M_K gamma_grid_desc_m_k,
const GridDesc_M_K beta_grid_desc_m_k,
const GridDesc_M_K y_grid_desc_m_k,
......@@ -54,7 +54,7 @@ namespace ck {
namespace tensor_operation {
namespace device {
// Y = LayerNorm(X, Beta, Gamma)
// Y = Normalization(X, Beta, Gamma)
template <typename XDataType,
typename GammaDataType,
typename BetaDataType,
......@@ -168,7 +168,7 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
using GridDesc_M_K = decltype(MakeSrc2dDescriptor({1}, {1}, 1, 1));
using GridwiseReduceLayernormGeneric =
GridwiseLayernormWelfordVariance_mk_to_mk<XDataType,
GridwiseNormalizationWelfordVariance_mk_to_mk<XDataType,
GammaDataType,
BetaDataType,
YDataType,
......@@ -189,8 +189,8 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
XYSrcVectorDim,
YDstVectorSize,
false>;
using GridwiseReduceLayernormSweepOnce =
GridwiseLayernormWelfordVariance_mk_to_mk<XDataType,
using GridwiseNormalizationSweepOnce =
GridwiseNormalizationWelfordVariance_mk_to_mk<XDataType,
GammaDataType,
BetaDataType,
YDataType,
......@@ -295,7 +295,7 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
const auto kernel_main = arg.isSweeponce_
? kernel_layernorm<GridwiseReduceLayernormSweepOnce,
? kernel_normalization<GridwiseNormalizationSweepOnce,
XDataType,
GammaDataType,
BetaDataType,
......@@ -303,7 +303,7 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
AccDataType,
AccElementwiseOperation,
GridDesc_M_K>
: kernel_layernorm<GridwiseReduceLayernormGeneric,
: kernel_normalization<GridwiseReduceLayernormGeneric,
XDataType,
GammaDataType,
BetaDataType,
......@@ -426,8 +426,16 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
const void* p_gamma,
const void* p_beta,
void* p_y,
void* p_saveMean,
void* p_saveInvVar,
AccElementwiseOperation acc_elementwise_op) override
{
// TODO
// Optional cache of the intermediate results (mean and InvVariance) during the
// forward pass could speedup in the backward
ignore = p_saveMean;
ignore = p_saveInvVar;
return std::make_unique<Argument>(lengths,
xStrides,
gammaStrides,
......
......@@ -14,7 +14,7 @@
namespace ck {
// Y = LayerNorm(X, Beta, Gamma)
// Y = Normalization(X, Beta, Gamma)
template <typename XDataType,
typename GammaDataType,
typename BetaDataType,
......@@ -36,7 +36,7 @@ template <typename XDataType,
index_t YDstVectorDim,
index_t YDstVectorSize,
bool SweepOnce>
struct GridwiseLayernormNaiveVariance_mk_to_mk
struct GridwiseNormalizationNaiveVariance_mk_to_mk
{
static_assert((XSrcVectorDim == 0 && MThreadSliceSize % XSrcVectorSize == 0) ||
(XSrcVectorDim == 1 && KThreadSliceSize % XSrcVectorSize == 0),
......
......@@ -11,7 +11,7 @@
namespace ck {
// Y = LayerNorm(X, Beta, Gamma)
// Y = Normalization(X, Beta, Gamma)
template <typename XDataType,
typename GammaDataType,
typename BetaDataType,
......@@ -33,7 +33,7 @@ template <typename XDataType,
index_t YDstVectorDim,
index_t YDstVectorSize,
bool SweepOnce>
struct GridwiseLayernormWelfordVariance_mk_to_mk
struct GridwiseNormalizationWelfordVariance_mk_to_mk
{
static_assert((XSrcVectorDim == 0 && MThreadSliceSize % XSrcVectorSize == 0) ||
(XSrcVectorDim == 1 && KThreadSliceSize % XSrcVectorSize == 0),
......
......@@ -126,6 +126,8 @@ bool profile_groupnorm_impl(int do_verification,
gamma_dev.GetDeviceBuffer(),
beta_dev.GetDeviceBuffer(),
y_dev.GetDeviceBuffer(),
nullptr,
nullptr,
PassThrough{});
if(inst_ptr->IsSupportedArgument(argument_ptr.get()))
......@@ -196,7 +198,7 @@ bool profile_groupnorm_impl(int do_verification,
if(num_kernel == 0)
{
std::cout << "Error: No kernel is tested" << std::endl;
std::cout << "Error: No kernel is applicable" << std::endl;
return false;
}
......
......@@ -22,7 +22,7 @@ template <typename XDataType,
typename AccDataType,
typename YDataType,
index_t Rank>
void profile_layernorm_impl(int do_verification,
bool profile_layernorm_impl(int do_verification,
int init_method,
bool do_log,
bool time_kernel,
......@@ -31,7 +31,7 @@ void profile_layernorm_impl(int do_verification,
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
if(length.size() < 2)
return;
return false;
// Assume normalize dimension except for batch (first) dimension
std::vector<index_t> reduce_length{length.begin() + 1, length.end()};
......@@ -52,7 +52,6 @@ void profile_layernorm_impl(int do_verification,
switch(init_method)
{
// case 0: break;
case 0:
x.GenerateTensorValue(GeneratorTensor_1<XDataType>{});
gamma.GenerateTensorValue(GeneratorTensor_1<GammaDataType>{});
......@@ -122,6 +121,8 @@ void profile_layernorm_impl(int do_verification,
ref_invoker.Run(ref_argument);
}
int num_kernel = 0;
for(auto& inst_ptr : instance_ptrs)
{
auto argument_ptr = inst_ptr->MakeArgumentPointer(length,
......@@ -135,12 +136,21 @@ void profile_layernorm_impl(int do_verification,
gamma_dev.GetDeviceBuffer(),
beta_dev.GetDeviceBuffer(),
y_dev.GetDeviceBuffer(),
nullptr,
nullptr,
PassThrough{});
if(!inst_ptr->IsSupportedArgument(argument_ptr.get()))
if(inst_ptr->IsSupportedArgument(argument_ptr.get()))
{
++num_kernel;
}
else
{
if(time_kernel)
{
std::cout << inst_ptr->GetTypeString() << " skipped due to unsupported argument: ";
LogRange(std::cout << "input lengths = ", length, ", ") << std::endl;
}
continue;
}
......@@ -156,6 +166,7 @@ void profile_layernorm_impl(int do_verification,
float gb_per_sec = num_bytes / 1.E6 / avg_time;
if(time_kernel)
std::cout << "Perf: " << std::setw(10) << avg_time << " ms, " << gb_per_sec << " GB/s, "
<< inst_ptr->GetTypeString() << std::endl;
......@@ -184,20 +195,32 @@ void profile_layernorm_impl(int do_verification,
{
std::cout << inst_ptr->GetTypeString() << " failed verification: ";
LogRange(std::cout << "lengths = [", length, ", ") << "]." << std::endl;
return;
return false;
}
else
{
if(time_kernel)
std::cout << "pass" << std::endl;
}
}
}
if(time_kernel)
{
LogRange(std::cout << "length = ", length, ",") << ", ";
LogRange(std::cout << "stride = ", strideXY, ",") << ", ";
LogRange(std::cout << "reduce dims ", reduce_dim, ",") << std::endl;
std::cout << "best perf = " << best_avg_time << " ms, " << best_gb_per_sec << " GB/s, "
<< best_instance_name << std::endl;
}
if(num_kernel == 0)
{
std::cout << "Error: No kernel is applicable" << std::endl;
return false;
}
return true;
}
} // namespace profiler
......
......@@ -5,8 +5,8 @@ add_gtest_executable(test_layernorm2d_fp16 test_layernorm2d_fp16.cpp)
add_gtest_executable(test_groupnorm_fp16 test_groupnorm_fp16.cpp)
add_gtest_executable(test_groupnorm_fp32 test_groupnorm_fp32.cpp)
target_link_libraries(test_layernorm2d_fp32 PRIVATE utility)
target_link_libraries(test_layernorm2d_fp16 PRIVATE utility)
target_link_libraries(test_layernorm2d_fp32 PRIVATE utility device_normalization_instance)
target_link_libraries(test_layernorm2d_fp16 PRIVATE utility device_normalization_instance)
target_link_libraries(test_groupnorm_fp16 PRIVATE utility device_normalization_instance)
target_link_libraries(test_groupnorm_fp32 PRIVATE utility device_normalization_instance)
......
......@@ -20,7 +20,7 @@ class TestGroupnorm : public ::testing::Test
void Run()
{
// N, H, W, G, C
// [N, H, W, G, C], reduce H, W, C
std::vector<std::vector<ck::index_t>> lengths = {{1, 1, 1, 1, 1},
{1, 2, 3, 4, 5},
{256, 9, 9, 9, 9},
......
......@@ -20,7 +20,7 @@ class TestGroupnorm : public ::testing::Test
void Run()
{
// N, H, W, G, C
// [N, H, W, G, C], reduce H, W, C
std::vector<std::vector<ck::index_t>> lengths = {{1, 1, 1, 1, 1},
{1, 2, 3, 4, 5},
{256, 9, 9, 9, 9},
......
......@@ -2,28 +2,44 @@
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "gtest/gtest.h"
#include "test_layernorm2d_util.hpp"
#include "profiler/include/profile_layernorm_impl.hpp"
template <ck::index_t N>
using I = ck::Number<N>;
using F16 = ck::half_t;
using F32 = float;
using ck::index_t;
template <typename Tuple>
class TestLayernorm2dFP16 : public ck::TestLayernorm2d<Tuple>
class TestLayernorm2d : public ::testing::Test
{
protected:
using XDataType = std::tuple_element_t<0, Tuple>;
using GammaDataType = std::tuple_element_t<1, Tuple>;
using BetaDataType = std::tuple_element_t<2, Tuple>;
using AccDataType = std::tuple_element_t<3, Tuple>;
using YDataType = std::tuple_element_t<4, Tuple>;
void Run()
{
// [N, D], reduce D
std::vector<std::vector<ck::index_t>> lengths = {
{4, 256}, {8, 511}, {9, 1032}, {4, 2048}, {1, 8192}, {4000, 2000}};
for(auto length : lengths)
{
bool success = ck::profiler::profile_layernorm_impl<XDataType,
GammaDataType,
BetaDataType,
AccDataType,
YDataType,
2>(true, 2, false, false, length);
EXPECT_TRUE(success);
}
}
};
// clang-format off
using KernelTypes = ::testing::Types<
// XDataType, GammaDataType, BetaDataType, AccDataType, YDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorDim , GammaSrcVectorSize, BetaSrcVectorDim, BetaSrcVectorSize, YDstVectorSize>
std::tuple<ck::half_t, ck::half_t, ck::half_t, float, ck::half_t, I<2>, I<1>, I<256>, I<8>, I<32>, I<1>, I<8>, I<1>, I<8>, I<1>, I<8>, I<1>, I<8>, I<8>>,
std::tuple<ck::half_t, ck::half_t, ck::half_t, float, ck::half_t, I<2>, I<1>, I<256>, I<8>, I<32>, I<2>, I<8>, I<1>, I<8>, I<1>, I<8>, I<1>, I<8>, I<8>>,
std::tuple<ck::half_t, ck::half_t, ck::half_t, float, ck::half_t, I<2>, I<1>, I<256>, I<4>, I<64>, I<1>, I<8>, I<1>, I<8>, I<1>, I<8>, I<1>, I<8>, I<8>>,
std::tuple<ck::half_t, ck::half_t, ck::half_t, float, ck::half_t, I<2>, I<1>, I<256>, I<4>, I<64>, I<2>, I<8>, I<1>, I<8>, I<1>, I<8>, I<1>, I<8>, I<8>>,
std::tuple<ck::half_t, ck::half_t, ck::half_t, float, ck::half_t, I<2>, I<1>, I<256>, I<2>, I<128>, I<1>, I<8>, I<1>, I<8>, I<1>, I<8>, I<1>, I<8>, I<8>>,
std::tuple<ck::half_t, ck::half_t, ck::half_t, float, ck::half_t, I<2>, I<1>, I<256>, I<2>, I<128>, I<2>, I<8>, I<1>, I<8>, I<1>, I<8>, I<1>, I<8>, I<8>>,
std::tuple<ck::half_t, ck::half_t, ck::half_t, float, ck::half_t, I<2>, I<1>, I<256>, I<1>, I<256>, I<1>, I<8>, I<1>, I<8>, I<1>, I<8>, I<1>, I<8>, I<8>>,
std::tuple<ck::half_t, ck::half_t, ck::half_t, float, ck::half_t, I<2>, I<1>, I<256>, I<1>, I<256>, I<2>, I<8>, I<1>, I<8>, I<1>, I<8>, I<1>, I<8>, I<8>>
>;
// clang-format on
TYPED_TEST_SUITE(TestLayernorm2dFP16, KernelTypes);
TYPED_TEST(TestLayernorm2dFP16, Test_FP16) { this->Run(); }
// XDataType, GammaDataType, BetaDataType, AccDataType, YDataType>
std::tuple<F16, F16, F16, F32, F16>>;
TYPED_TEST_SUITE(TestLayernorm2d, KernelTypes);
TYPED_TEST(TestLayernorm2d, Test_FP16) { this->Run(); }
......@@ -2,28 +2,44 @@
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "gtest/gtest.h"
#include "test_layernorm2d_util.hpp"
#include "profiler/include/profile_layernorm_impl.hpp"
template <ck::index_t N>
using I = ck::Number<N>;
using F16 = ck::half_t;
using F32 = float;
using ck::index_t;
template <typename Tuple>
class TestLayernorm2dFP32 : public ck::TestLayernorm2d<Tuple>
class TestLayernorm2d : public ::testing::Test
{
protected:
using XDataType = std::tuple_element_t<0, Tuple>;
using GammaDataType = std::tuple_element_t<1, Tuple>;
using BetaDataType = std::tuple_element_t<2, Tuple>;
using AccDataType = std::tuple_element_t<3, Tuple>;
using YDataType = std::tuple_element_t<4, Tuple>;
void Run()
{
// [N, D], reduce D
std::vector<std::vector<ck::index_t>> lengths = {
{4, 256}, {8, 511}, {9, 1032}, {4, 2048}, {1, 8192}, {4000, 2000}};
for(auto length : lengths)
{
bool success = ck::profiler::profile_layernorm_impl<XDataType,
GammaDataType,
BetaDataType,
AccDataType,
YDataType,
2>(true, 2, false, false, length);
EXPECT_TRUE(success);
}
}
};
// clang-format off
using KernelTypes = ::testing::Types<
// XDataType, GammaDataType, BetaDataType, AccDataType, YDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorDim, GammaSrcVectorSize, BetaSrcVectorDim, BetaSrcVectorSize, YDstVectorSize>
std::tuple<float, float, float, float, float, I<2>, I<1>, I<256>, I<8>, I<32>, I<1>, I<8>, I<1>, I<4>, I<1>, I<4>, I<1>, I<4>, I<4>>,
std::tuple<float, float, float, float, float, I<2>, I<1>, I<256>, I<8>, I<32>, I<2>, I<8>, I<1>, I<4>, I<1>, I<4>, I<1>, I<4>, I<4>>,
std::tuple<float, float, float, float, float, I<2>, I<1>, I<256>, I<4>, I<64>, I<1>, I<8>, I<1>, I<4>, I<1>, I<4>, I<1>, I<4>, I<4>>,
std::tuple<float, float, float, float, float, I<2>, I<1>, I<256>, I<4>, I<64>, I<2>, I<8>, I<1>, I<4>, I<1>, I<4>, I<1>, I<4>, I<4>>,
std::tuple<float, float, float, float, float, I<2>, I<1>, I<256>, I<2>, I<128>, I<1>, I<8>, I<1>, I<4>, I<1>, I<4>, I<1>, I<4>, I<4>>,
std::tuple<float, float, float, float, float, I<2>, I<1>, I<256>, I<2>, I<128>, I<2>, I<8>, I<1>, I<4>, I<1>, I<4>, I<1>, I<4>, I<4>>,
std::tuple<float, float, float, float, float, I<2>, I<1>, I<256>, I<1>, I<256>, I<1>, I<8>, I<1>, I<4>, I<1>, I<4>, I<1>, I<4>, I<4>>,
std::tuple<float, float, float, float, float, I<2>, I<1>, I<256>, I<1>, I<256>, I<2>, I<8>, I<1>, I<4>, I<1>, I<4>, I<1>, I<4>, I<4>>
>;
// clang-format on
TYPED_TEST_SUITE(TestLayernorm2dFP32, KernelTypes);
TYPED_TEST(TestLayernorm2dFP32, Test_FP32) { this->Run(); }
// XDataType, GammaDataType, BetaDataType, AccDataType, YDataType>
std::tuple<F32, F32, F32, F32, F32>>;
TYPED_TEST_SUITE(TestLayernorm2d, KernelTypes);
TYPED_TEST(TestLayernorm2d, Test_FP32) { this->Run(); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <vector>
#include <iostream>
#include <gtest/gtest.h>
#include "ck/ck.hpp"
#include "ck/utility/number.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_normalization_impl.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_layernorm.hpp"
namespace ck {
template <typename Range>
std::string serialize_range(const Range& range)
{
std::stringstream ss;
for(auto& r : range)
{
ss << r << ", ";
}
std::string str = ss.str();
return std::string(str.begin(), str.end() - 2);
}
template <typename Tuple>
class TestLayernorm2d : public ::testing::Test
{
protected:
using XDataType = std::tuple_element_t<0, Tuple>;
using GammaDataType = std::tuple_element_t<1, Tuple>;
using BetaDataType = std::tuple_element_t<2, Tuple>;
using AccDataType = std::tuple_element_t<3, Tuple>;
using YDataType = std::tuple_element_t<4, Tuple>;
static constexpr index_t Rank = std::tuple_element_t<5, Tuple>{}.value;
static constexpr index_t NumReduceDim = std::tuple_element_t<6, Tuple>{}.value;
static constexpr index_t BlockSize = std::tuple_element_t<7, Tuple>{}.value;
static constexpr index_t MThreadClusterSize = std::tuple_element_t<8, Tuple>{}.value;
static constexpr index_t KThreadClusterSize = std::tuple_element_t<9, Tuple>{}.value;
static constexpr index_t MThreadSliceSize = std::tuple_element_t<10, Tuple>{}.value;
static constexpr index_t KThreadSliceSize = std::tuple_element_t<11, Tuple>{}.value;
static constexpr index_t XYSrcVectorDim = std::tuple_element_t<12, Tuple>{}.value;
static constexpr index_t XSrcVectorSize = std::tuple_element_t<13, Tuple>{}.value;
static constexpr index_t GammaSrcVectorDim = std::tuple_element_t<14, Tuple>{}.value;
static constexpr index_t GammaSrcVectorSize = std::tuple_element_t<15, Tuple>{}.value;
static constexpr index_t BetaSrcVectorDim = std::tuple_element_t<16, Tuple>{}.value;
static constexpr index_t BetaSrcVectorSize = std::tuple_element_t<17, Tuple>{}.value;
static constexpr index_t YDstVectorSize = std::tuple_element_t<18, Tuple>{}.value;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ReferenceInstance = tensor_operation::host::ReferenceLayernorm<XDataType,
GammaDataType,
BetaDataType,
YDataType,
AccDataType,
PassThrough,
Rank,
NumReduceDim>;
using DeviceInstance = tensor_operation::device::DeviceNormalizationImpl<XDataType,
GammaDataType,
BetaDataType,
AccDataType,
YDataType,
PassThrough,
Rank,
NumReduceDim,
BlockSize,
MThreadClusterSize,
KThreadClusterSize,
MThreadSliceSize,
KThreadSliceSize,
XYSrcVectorDim,
XSrcVectorSize,
GammaSrcVectorDim,
GammaSrcVectorSize,
BetaSrcVectorDim,
BetaSrcVectorSize,
YDstVectorSize>;
TestLayernorm2d() : ref_instance_invoker_(ReferenceInstance{}.MakeInvoker()) {}
void RunSingle(const std::vector<index_t>& lengths,
const std::vector<index_t>& reduceDims,
const std::vector<index_t>& GammaLength,
const std::vector<index_t>& GammaStride,
const std::vector<index_t>& BetaLength,
const std::vector<index_t>& BetaStride)
{
Tensor<XDataType> x(lengths);
Tensor<GammaDataType> gamma(GammaLength);
Tensor<BetaDataType> beta(BetaLength);
Tensor<YDataType> y(lengths);
Tensor<YDataType> y_ref(lengths);
x.GenerateTensorValue(GeneratorTensor_3<XDataType>{0, 1.0});
gamma.GenerateTensorValue(GeneratorTensor_3<GammaDataType>{0.0, 1.0});
beta.GenerateTensorValue(GeneratorTensor_3<BetaDataType>{0.0, 1.0});
DeviceMem x_dev(sizeof(XDataType) * x.mDesc.GetElementSpaceSize());
DeviceMem gamma_dev(sizeof(GammaDataType) * gamma.mDesc.GetElementSpaceSize());
DeviceMem beta_dev(sizeof(BetaDataType) * beta.mDesc.GetElementSpaceSize());
DeviceMem y_dev(sizeof(YDataType) * y.mDesc.GetElementSpaceSize());
x_dev.ToDevice(x.mData.data());
gamma_dev.ToDevice(gamma.mData.data());
beta_dev.ToDevice(beta.mData.data());
auto device_instance = DeviceInstance{};
auto argument_ptr = device_instance.MakeArgumentPointer(
lengths,
std::vector<ck::index_t>{x.mDesc.GetStrides().begin(), x.mDesc.GetStrides().end()},
GammaStride,
BetaStride,
std::vector<ck::index_t>{y.mDesc.GetStrides().begin(), y.mDesc.GetStrides().end()},
reduceDims,
1e-4,
x_dev.GetDeviceBuffer(),
gamma_dev.GetDeviceBuffer(),
beta_dev.GetDeviceBuffer(),
y_dev.GetDeviceBuffer(),
PassThrough{});
if(!device_instance.IsSupportedArgument(argument_ptr.get()))
{
return;
}
auto invoker_ptr = device_instance.MakeInvokerPointer();
invoker_ptr->Run(argument_ptr.get());
ref_instance_invoker_.Run(
{x, gamma, beta, y_ref, PassThrough{}, lengths, reduceDims, 1e-4});
y_dev.FromDevice(y.mData.data());
bool pass;
if(std::is_same<XDataType, int8_t>::value)
{
EXPECT_TRUE(pass = ck::utils::check_err(
y.mData, y_ref.mData, "Error: Incorrect results!", 0, 1));
}
else
{
EXPECT_TRUE(pass = ck::utils::check_err(
y.mData, y_ref.mData, "Error: Incorrect results d1", 1e-3, 1e-3));
}
if(!pass)
{
FAIL() << "Failure in input lengths = [" << serialize_range(lengths) << "], "
<< "reduce dim = [" << serialize_range(reduceDims) << "].";
}
}
void Run()
{
std::vector<std::vector<index_t>> lengths = {
{4, 256}, {8, 511}, {9, 1032}, {4, 2048}, {1, 8192}, {4000, 2000}};
for(auto length : lengths)
{
this->RunSingle(length, {1}, {length[1]}, {0, 1}, {length[1]}, {0, 1});
}
}
typename ReferenceInstance::Invoker ref_instance_invoker_;
};
} // namespace ck
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment