Unverified Commit d1db6a0c authored by Chao Liu's avatar Chao Liu Committed by GitHub
Browse files

Absolute include path (#281)

* ad gelu and fast_gelu

* added GeLU and fast GeLU

* clean up

* add gemm+fastgelu example

* add gemm+gelu instances

* update profiler

* clean up

* clean up

* adding gemm+bias+activation

* clean

* adding bias

* clean

* adding gemm multiple d

* debugging

* add gemm bias add fastgelu

* rename, clean

* refactoring; add readme

* refactor

* refactor

* refactor

* refactor

* refactor

* refactor

* fix

* fix

* update example

* update example

* rename

* update example

* add ckProfiler

* clean

* clean

* clean

* clean

* add client app example

* update readme

* delete obselete files

* remove old client app

* delete old file

* cleaning

* clean

* remove half

* fix header path

* fix header path

* fix header path

* fix header path

* fix header path

* fix header path for all examples

* fix header path

* fix header path

* fix header path

* fix header path

* fix header path

* fix header path

* fix header path

* fix header path

* fix header path

* revert client app example

* clean build

* fix build

* temporary disable client test on Jenkins

* clean

* clean

* clean
parent a49115b9
...@@ -4,7 +4,7 @@ ...@@ -4,7 +4,7 @@
#include <cstdlib> #include <cstdlib>
#include <cstring> #include <cstring>
#include "profile_convnd_fwd.hpp" #include "profiler/include/profile_convnd_fwd.hpp"
int profile_gemm(int, char*[]); int profile_gemm(int, char*[]);
int profile_gemm_bias_2d(int, char*[]); int profile_gemm_bias_2d(int, char*[]);
...@@ -17,7 +17,6 @@ int profile_grouped_gemm(int, char*[]); ...@@ -17,7 +17,6 @@ int profile_grouped_gemm(int, char*[]);
int profile_conv_fwd(int, char*[]); int profile_conv_fwd(int, char*[]);
int profile_conv_fwd_bias_relu(int, char*[]); int profile_conv_fwd_bias_relu(int, char*[]);
int profile_conv_fwd_bias_relu_add(int, char*[]); int profile_conv_fwd_bias_relu_add(int, char*[]);
int profile_conv_fwd_bias_relu_atomic_add(int, char*[]);
int profile_convnd_bwd_data(int, char*[], int); int profile_convnd_bwd_data(int, char*[], int);
int profile_reduce(int, char*[]); int profile_reduce(int, char*[]);
int profile_conv_bwd_weight(int, char*[]); int profile_conv_bwd_weight(int, char*[]);
...@@ -36,7 +35,6 @@ static void print_helper_message() ...@@ -36,7 +35,6 @@ static void print_helper_message()
" conv_fwd: ForwardConvolution\n" " conv_fwd: ForwardConvolution\n"
" conv_fwd_bias_relu: ForwardConvolution+Bias+ReLU\n" " conv_fwd_bias_relu: ForwardConvolution+Bias+ReLU\n"
" conv_fwd_bias_relu_add: ForwardConvolution+Bias+ReLU+Add\n" " conv_fwd_bias_relu_add: ForwardConvolution+Bias+ReLU+Add\n"
" conv_fwd_bias_relu_atomic_add: ForwardConvolution+Bias+ReLU+AtomicAdd\n"
" conv1d_bwd_data: BackwardConvolution data 1 dim\n" " conv1d_bwd_data: BackwardConvolution data 1 dim\n"
" conv2d_bwd_data: BackwardConvolution data 2 dim\n" " conv2d_bwd_data: BackwardConvolution data 2 dim\n"
" conv3d_bwd_data: BackwardConvolution data 3 dim\n" " conv3d_bwd_data: BackwardConvolution data 3 dim\n"
...@@ -103,10 +101,6 @@ int main(int argc, char* argv[]) ...@@ -103,10 +101,6 @@ int main(int argc, char* argv[])
{ {
return profile_conv_fwd_bias_relu_add(argc, argv); return profile_conv_fwd_bias_relu_add(argc, argv);
} }
else if(strcmp(argv[1], "conv_fwd_bias_relu_atomic_add") == 0)
{
return profile_conv_fwd_bias_relu_atomic_add(argc, argv);
}
else if(strcmp(argv[1], "conv1d_bwd_data") == 0) else if(strcmp(argv[1], "conv1d_bwd_data") == 0)
{ {
return profile_convnd_bwd_data(argc, argv, 1); return profile_convnd_bwd_data(argc, argv, 1);
......
include_directories(BEFORE include_directories(BEFORE
${PROJECT_SOURCE_DIR}/ ${PROJECT_SOURCE_DIR}/
${PROJECT_SOURCE_DIR}/include/ck
${PROJECT_SOURCE_DIR}/include/ck/utility
${PROJECT_SOURCE_DIR}/include/ck/host_utility
${PROJECT_SOURCE_DIR}/include/ck/tensor_description
${PROJECT_SOURCE_DIR}/include/ck/tensor
${PROJECT_SOURCE_DIR}/include/ck/problem_transform
${PROJECT_SOURCE_DIR}/include/ck/tensor_operation/gpu/device
${PROJECT_SOURCE_DIR}/include/ck/tensor_operation/gpu/grid
${PROJECT_SOURCE_DIR}/include/ck/tensor_operation/gpu/block
${PROJECT_SOURCE_DIR}/include/ck/tensor_operation/gpu/warp
${PROJECT_SOURCE_DIR}/include/ck/tensor_operation/gpu/thread
${PROJECT_SOURCE_DIR}/include/ck/tensor_operation/gpu/element
${PROJECT_SOURCE_DIR}/library/include/ck/library/host_tensor
${PROJECT_SOURCE_DIR}/library/include/ck/library/tensor_operation_instance
${PROJECT_SOURCE_DIR}/library/include/ck/library/tensor_operation_instance/gpu/reduce
${PROJECT_SOURCE_DIR}/library/include/ck/library/reference_tensor_operation/cpu
${PROJECT_SOURCE_DIR}/library/include/ck/library/reference_tensor_operation/gpu
${PROJECT_SOURCE_DIR}/library/include/ck/library/utility
${PROJECT_SOURCE_DIR}/test/include
${PROJECT_SOURCE_DIR}/profiler/include
${PROJECT_SOURCE_DIR}/external/include/half
) )
include(googletest) include(googletest)
...@@ -66,4 +45,3 @@ add_subdirectory(conv2d_bwd_weight) ...@@ -66,4 +45,3 @@ add_subdirectory(conv2d_bwd_weight)
add_subdirectory(convnd_bwd_data) add_subdirectory(convnd_bwd_data)
add_subdirectory(block_to_ctile_map) add_subdirectory(block_to_ctile_map)
add_subdirectory(softmax) add_subdirectory(softmax)
# DONOT add client_app, that is tested via CI independently
#include <iostream> #include <iostream>
#include "profile_batched_gemm_impl.hpp" #include "profiler/include/profile_batched_gemm_impl.hpp"
namespace { namespace {
using ADataType = ck::half_t; using ADataType = ck::half_t;
......
include_directories(BEFORE
${PROJECT_SOURCE_DIR}/profiler/include
${PROJECT_SOURCE_DIR}/test/include
${PROJECT_SOURCE_DIR}/external/include/half
)
add_test_executable(test_batched_gemm_reduce_fp16 batched_gemm_reduce_fp16.cpp) add_test_executable(test_batched_gemm_reduce_fp16 batched_gemm_reduce_fp16.cpp)
target_link_libraries(test_batched_gemm_reduce_fp16 PRIVATE host_tensor) target_link_libraries(test_batched_gemm_reduce_fp16 PRIVATE host_tensor)
target_link_libraries(test_batched_gemm_reduce_fp16 PRIVATE device_batched_gemm_reduce_instance) target_link_libraries(test_batched_gemm_reduce_fp16 PRIVATE device_batched_gemm_reduce_instance)
#include <iostream> #include <iostream>
#include "profile_batched_gemm_reduce_impl.hpp" #include "profiler/include/profile_batched_gemm_reduce_impl.hpp"
int main() int main()
{ {
......
#include <ck/config.hpp>
#include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "gtest/gtest.h"
#include <iostream> #include <iostream>
#include <vector> #include <vector>
#include <gtest/gtest.h>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp"
using namespace ck; using namespace ck;
......
cmake_minimum_required(VERSION 3.15)
project(ck_app)
add_compile_options(-std=c++14)
find_package(composable_kernel 1.0.0 COMPONENTS device_operations host_tensor)
find_package(hip REQUIRED PATHS /opt/rocm)
message(STATUS "Build with HIP ${hip_VERSION}")
add_executable(test_client_app client_app.cpp)
target_link_libraries(test_client_app PRIVATE composable_kernel::device_operations composable_kernel::host_tensor hip::host)
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include <vector>
#include "client_app_impl.hpp"
int main(int argc, char* argv[])
{
if(argc != 25)
{
printf("arg1: tensor operation (conv_fwd: ForwardConvolution)\n");
printf("arg2: data type (0: fp32; 1: fp16)\n");
printf("arg3: input tensor layout (0: NCHW; 1: NHWC)\n");
printf("arg4: weight tensor layout (0: KCYX; 1: KYXC)\n");
printf("arg5: output tensor layout (0: NKHW; 1: NHWK)\n");
printf("arg6: verification (0: no; 1: yes)\n");
printf("arg7: initialization (0: no init; 1: integer value; 2: decimal value)\n");
printf("arg8: print tensor value (0: no; 1: yes)\n");
printf("arg9: time kernel (0=n0, 1=yes)\n");
printf("arg10 to 24: N, K, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, "
"RightPx\n");
exit(1);
}
const ConvDataType data_type = static_cast<ConvDataType>(std::stoi(argv[2]));
const int in_layout = static_cast<ConvInputLayout>(std::stoi(argv[3]));
const int wei_layout = static_cast<ConvWeightLayout>(std::stoi(argv[4]));
const int out_layout = static_cast<ConvOutputLayout>(std::stoi(argv[5]));
const bool do_verification = std::stoi(argv[6]);
const int init_method = std::stoi(argv[7]);
const bool do_log = std::stoi(argv[8]);
const bool time_kernel = std::stoi(argv[9]);
const ck::index_t N = std::stoi(argv[10]);
const ck::index_t K = std::stoi(argv[11]);
const ck::index_t C = std::stoi(argv[12]);
const ck::index_t Y = std::stoi(argv[13]);
const ck::index_t X = std::stoi(argv[14]);
const ck::index_t Hi = std::stoi(argv[15]);
const ck::index_t Wi = std::stoi(argv[16]);
const ck::index_t conv_stride_h = std::stoi(argv[17]);
const ck::index_t conv_stride_w = std::stoi(argv[18]);
const ck::index_t conv_dilation_h = std::stoi(argv[19]);
const ck::index_t conv_dilation_w = std::stoi(argv[20]);
const ck::index_t in_left_pad_h = std::stoi(argv[21]);
const ck::index_t in_left_pad_w = std::stoi(argv[22]);
const ck::index_t in_right_pad_h = std::stoi(argv[23]);
const ck::index_t in_right_pad_w = std::stoi(argv[24]);
const ck::index_t YEff = (Y - 1) * conv_dilation_h + 1;
const ck::index_t XEff = (X - 1) * conv_dilation_w + 1;
const ck::index_t Ho = (Hi + in_left_pad_h + in_right_pad_h - YEff) / conv_stride_h + 1;
const ck::index_t Wo = (Wi + in_left_pad_w + in_right_pad_w - XEff) / conv_stride_w + 1;
ck::app::profile_conv_fwd_impl(do_verification,
init_method,
do_log,
time_kernel,
data_type,
N,
K,
C,
std::vector<ck::index_t>{Hi, Wi},
std::vector<ck::index_t>{Y, X},
std::vector<ck::index_t>{Ho, Wo},
std::vector<ck::index_t>{conv_stride_h, conv_stride_w},
std::vector<ck::index_t>{conv_dilation_h, conv_dilation_w},
std::vector<ck::index_t>{in_left_pad_h, in_left_pad_w},
std::vector<ck::index_t>{in_right_pad_h, in_right_pad_w});
return 1;
}
#pragma once
#include "host_interface.hpp"
enum ConvDataType
{
F32_F32_F32, // 0
F16_F16_F16, // 1
BF16_BF16_BF16, // 2
INT8_INT8_INT8, // 3
};
enum ConvInputLayout
{
NCHW, // 0
NHWC, // 1
};
enum ConvWeightLayout
{
KCYX, // 0
KYXC, // 1
};
enum ConvOutputLayout
{
NKHW, // 0
NHWK, // 1
};
void check_hip_error(void)
{
hipError_t err = hipGetLastError();
if(err != hipSuccess)
{
std::cerr << "Error: " << hipGetErrorString(err) << std::endl;
exit(err);
}
}
std::string getDeviceName(int device)
{
struct hipDeviceProp_t prop;
hipGetDeviceProperties(&prop, device);
check_hip_error();
return std::string(prop.name);
}
int getDriver(void)
{
int driver;
hipDriverGetVersion(&driver);
check_hip_error();
return driver;
}
namespace ck {
namespace app {
struct DeviceMem
{
DeviceMem() = delete;
DeviceMem(std::size_t mem_size);
void* GetDeviceBuffer();
void ToDevice(const void* p);
void FromDevice(void* p);
~DeviceMem();
void* mpDeviceBuf;
std::size_t mMemSize;
};
DeviceMem::DeviceMem(std::size_t mem_size) : mMemSize(mem_size)
{
hipGetErrorString(hipMalloc(static_cast<void**>(&mpDeviceBuf), mMemSize));
}
void* DeviceMem::GetDeviceBuffer() { return mpDeviceBuf; }
void DeviceMem::ToDevice(const void* p)
{
hipGetErrorString(
hipMemcpy(mpDeviceBuf, const_cast<void*>(p), mMemSize, hipMemcpyHostToDevice));
}
void DeviceMem::FromDevice(void* p)
{
hipGetErrorString(hipMemcpy(p, mpDeviceBuf, mMemSize, hipMemcpyDeviceToHost));
}
DeviceMem::~DeviceMem() { hipGetErrorString(hipFree(mpDeviceBuf)); }
void profile_conv_fwd_impl(int do_verification,
int init_method,
bool do_log,
bool time_kernel,
ConvDataType data_type,
ck::index_t N,
ck::index_t K,
ck::index_t C,
std::vector<ck::index_t> input_spatial_lengths,
std::vector<ck::index_t> filter_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads)
{
const ck::index_t Y = filter_spatial_lengths[0];
const ck::index_t X = filter_spatial_lengths[1];
const ck::index_t Hi = input_spatial_lengths[0];
const ck::index_t Wi = input_spatial_lengths[1];
const ck::index_t Ho = output_spatial_lengths[0];
const ck::index_t Wo = output_spatial_lengths[1];
const auto in_sz = N * C * Hi * Wi;
const auto wei_sz = K * C * Y * X;
const auto out_sz = N * K * Ho * Wo;
using WeiDataType = float;
using InDataType = float;
using OutDataType = float;
app::DeviceMem in_device_buf(sizeof(InDataType) * in_sz);
app::DeviceMem wei_device_buf(sizeof(WeiDataType) * wei_sz);
app::DeviceMem out_device_buf(sizeof(OutDataType) * out_sz);
// data is already on device!
// add device Conv instances
std::vector<DeviceConvFwdPtr_t> conv_ptrs;
if(data_type == F16_F16_F16)
{
add_device_conv2d_fwd_xdl_c_shuffle_nhwc_kyxc_nhwk_f16_instances_t(conv_ptrs);
add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f16_instances_t(conv_ptrs);
}
else if(data_type == BF16_BF16_BF16)
add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_bf16_instances_t(conv_ptrs);
else if(data_type == F32_F32_F32)
add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f32_instances_t(conv_ptrs);
else if(data_type == INT8_INT8_INT8)
add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_int8_instances_t(conv_ptrs);
else
throw std::runtime_error("wrong! Invalid data type");
if(conv_ptrs.empty())
{
throw std::runtime_error("wrong! no device Conv instance found");
}
std::string best_conv_name;
float best_ave_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
int deviceIndex = 0;
hipSetDevice(deviceIndex);
check_hip_error();
StreamConfig stream_config{nullptr, time_kernel};
hipStreamCreate(&stream_config.stream_id_);
check_hip_error();
// profile device Conv instances
for(auto& conv_ptr : conv_ptrs)
{
auto argument_ptr =
conv_ptr.MakeArgumentPointer(static_cast<void*>(in_device_buf.GetDeviceBuffer()),
static_cast<void*>(wei_device_buf.GetDeviceBuffer()),
static_cast<void*>(out_device_buf.GetDeviceBuffer()),
N,
K,
C,
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads);
auto invoker_ptr = conv_ptr.MakeInvokerPointer();
if(conv_ptr.IsSupportedArgument(argument_ptr.get()))
{
std::string conv_name = conv_ptr.GetTypeString();
float ave_time = invoker_ptr->Run(argument_ptr.get(), stream_config);
std::size_t flop = std::size_t(2) * N * K * Ho * Wo * C * Y * X;
std::size_t num_btype = sizeof(InDataType) * (N * C * Hi * Wi) +
sizeof(WeiDataType) * (K * C * Y * X) +
sizeof(OutDataType) * (N * K * Ho * Wo);
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
<< " GB/s, " << conv_name << std::endl;
if(tflops > best_tflops)
{
best_conv_name = conv_name;
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
}
}
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
<< best_gb_per_sec << " GB/s, " << best_conv_name << std::endl;
}
} // namespace app
} // namespace ck
include_directories(BEFORE
${PROJECT_SOURCE_DIR}/profiler/include
${PROJECT_SOURCE_DIR}/external/include/half
)
add_test_executable(test_conv2d_bwd_weight conv2d_bwd_weight.cpp) add_test_executable(test_conv2d_bwd_weight conv2d_bwd_weight.cpp)
target_link_libraries(test_conv2d_bwd_weight PRIVATE host_tensor device_conv2d_bwd_weight_instance conv_util) target_link_libraries(test_conv2d_bwd_weight PRIVATE host_tensor device_conv2d_bwd_weight_instance conv_util)
...@@ -2,12 +2,10 @@ ...@@ -2,12 +2,10 @@
#include <numeric> #include <numeric>
#include <initializer_list> #include <initializer_list>
#include <cstdlib> #include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include <vector> #include <vector>
#include "conv_util.hpp" #include "test/convnd_fwd/conv_util.hpp"
#include "profile_conv_bwd_weight_impl.hpp" #include "profiler/include/profile_conv_bwd_weight_impl.hpp"
int test_self() int test_self()
{ {
......
...@@ -3,10 +3,11 @@ ...@@ -3,10 +3,11 @@
#include <vector> #include <vector>
#include <gtest/gtest.h> #include <gtest/gtest.h>
#include "config.hpp" #include "ck/ck.hpp"
#include "conv_util.hpp" #include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "tensor_layout.hpp"
#include "check_err.hpp" #include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/conv_util.hpp"
namespace { namespace {
......
include_directories(BEFORE
${PROJECT_SOURCE_DIR}/profiler/include
${PROJECT_SOURCE_DIR}/external/include/half
)
add_test_executable(test_convnd_bwd_data convnd_bwd_data.cpp) add_test_executable(test_convnd_bwd_data convnd_bwd_data.cpp)
target_link_libraries(test_convnd_bwd_data PRIVATE host_tensor device_convnd_bwd_data_instance conv_util) target_link_libraries(test_convnd_bwd_data PRIVATE host_tensor device_convnd_bwd_data_instance conv_util)
...@@ -2,11 +2,9 @@ ...@@ -2,11 +2,9 @@
#include <numeric> #include <numeric>
#include <initializer_list> #include <initializer_list>
#include <cstdlib> #include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include <vector> #include <vector>
#include "profile_convnd_bwd_data_impl.hpp" #include "profiler/include/profile_convnd_bwd_data_impl.hpp"
int main() int main()
{ {
......
#include <iostream> #include <iostream>
#include <tuple> #include <tuple>
#include <vector> #include <vector>
#include "gtest/gtest.h" #include <gtest/gtest.h>
#include "data_type.hpp" #include "ck/utility/data_type.hpp"
#include "element_wise_operation.hpp" #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "library/include/ck/library/utility/conv_util.hpp" #include "ck/library/utility/conv_util.hpp"
#include "conv_util.hpp" #include "test/convnd_fwd/conv_util.hpp"
namespace { namespace {
......
#include <tuple> #include <tuple>
#include <vector> #include <vector>
#include "gtest/gtest.h" #include <gtest/gtest.h>
#include "ck/utility/data_type.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/conv_util.hpp" #include "ck/library/utility/conv_util.hpp"
#include "config.hpp" #include "test/convnd_fwd/conv_util.hpp"
#include "conv_util.hpp"
#include "data_type.hpp"
#include "element_wise_operation.hpp"
#include "fill.hpp"
namespace { namespace {
......
#include <half.hpp>
#include <iostream> #include <iostream>
#include <stdexcept> #include <stdexcept>
#include <tuple> #include <tuple>
#include <vector> #include <vector>
#include "gtest/gtest.h" #include <gtest/gtest.h>
#include "data_type.hpp" #include "ck/utility/data_type.hpp"
#include "element_wise_operation.hpp" #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "library/include/ck/library/utility/conv_util.hpp"
#include "conv_util.hpp" #include "ck/library/utility/conv_util.hpp"
#include "test/convnd_fwd/conv_util.hpp"
namespace { namespace {
......
...@@ -2,12 +2,12 @@ ...@@ -2,12 +2,12 @@
#include <tuple> #include <tuple>
#include "config.hpp" #include "ck/ck.hpp"
#include "data_type.hpp" #include "ck/utility/sequence.hpp"
#include "device_convnd_fwd_xdl_nhwc_kyxc_nhwk.hpp" #include "ck/utility/data_type.hpp"
#include "element_wise_operation.hpp" #include "ck/tensor_operation/gpu/device/device_convnd_fwd_xdl_nhwc_kyxc_nhwk.hpp"
#include "host_tensor.hpp" #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "sequence.hpp" #include "ck/library/host_tensor/host_tensor.hpp"
namespace ck { namespace ck {
namespace tensor_operation { namespace tensor_operation {
......
#include <algorithm> #include <algorithm>
#include <cstdlib> #include <cstdlib>
#include <half.hpp>
#include <iostream> #include <iostream>
#include <numeric> #include <numeric>
#include <tuple> #include <tuple>
#include <vector> #include <vector>
#include "../gemm/gemm_util.hpp" #include "ck/ck.hpp"
#include "config.hpp" #include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "print.hpp" #include "ck/tensor_operation/gpu/device/device_gemm_dl.hpp"
#include "device.hpp" #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp" #include "ck/library/utility/check_err.hpp"
#include "host_gemm.hpp" #include "ck/library/host_tensor/device_memory.hpp"
#include "device_tensor.hpp" #include "ck/library/host_tensor/host_tensor.hpp"
#include "device_gemm_dl.hpp" #include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "element_wise_operation.hpp" #include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "reference_gemm.hpp"
#include "gemm_specialization.hpp" #include "test/gemm/gemm_util.hpp"
using PassThrough = ck::tensor_operation::element_wise::PassThrough; using PassThrough = ck::tensor_operation::element_wise::PassThrough;
......
#include <algorithm> #include <algorithm>
#include <cstdlib> #include <cstdlib>
#include <half.hpp>
#include <iostream> #include <iostream>
#include <numeric> #include <numeric>
#include <tuple> #include <tuple>
#include <vector> #include <vector>
#include "../gemm/gemm_util.hpp" #include "ck/ck.hpp"
#include "config.hpp" #include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "print.hpp" #include "ck/tensor_operation/gpu/device/device_gemm.hpp"
#include "device.hpp" #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp" #include "ck/library/utility/check_err.hpp"
#include "host_gemm.hpp" #include "ck/library/host_tensor/device_memory.hpp"
#include "device_tensor.hpp" #include "ck/library/host_tensor/host_tensor.hpp"
#include "device_gemm_dl.hpp" #include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "element_wise_operation.hpp" #include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "reference_gemm.hpp"
#include "gemm_specialization.hpp" #include "test/gemm/gemm_util.hpp"
using PassThrough = ck::tensor_operation::element_wise::PassThrough; using PassThrough = ck::tensor_operation::element_wise::PassThrough;
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment