Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
yangql
composable_kernel-1
Commits
9e4429f9
Unverified
Commit
9e4429f9
authored
Jul 02, 2022
by
Chao Liu
Committed by
GitHub
Jul 02, 2022
Browse files
Gemm+Bilinear (#316)
* refactor * update example * update example * gemm bilinear * clean * update
parent
8e374781
Changes
73
Hide whitespace changes
Inline
Side-by-side
Showing
13 changed files
with
515 additions
and
1205 deletions
+515
-1205
library/src/tensor_operation_instance/gpu/gemm_bilinear/device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instance.cpp
..._bilinear_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instance.cpp
+97
-0
profiler/CMakeLists.txt
profiler/CMakeLists.txt
+8
-12
profiler/include/profile_batched_gemm_impl.hpp
profiler/include/profile_batched_gemm_impl.hpp
+2
-2
profiler/include/profile_gemm_bias_2d_impl.hpp
profiler/include/profile_gemm_bias_2d_impl.hpp
+0
-315
profiler/include/profile_gemm_bias_relu_add_impl.hpp
profiler/include/profile_gemm_bias_relu_add_impl.hpp
+0
-291
profiler/include/profile_gemm_bilinear_impl.hpp
profiler/include/profile_gemm_bilinear_impl.hpp
+233
-0
profiler/src/profile_batched_gemm.cpp
profiler/src/profile_batched_gemm.cpp
+19
-9
profiler/src/profile_gemm_add_add_fastgelu.cpp
profiler/src/profile_gemm_add_add_fastgelu.cpp
+2
-2
profiler/src/profile_gemm_bias_2d.cpp
profiler/src/profile_gemm_bias_2d.cpp
+0
-258
profiler/src/profile_gemm_bias_relu.cpp
profiler/src/profile_gemm_bias_relu.cpp
+0
-145
profiler/src/profile_gemm_bias_relu_add.cpp
profiler/src/profile_gemm_bias_relu_add.cpp
+0
-150
profiler/src/profile_gemm_bilinear.cpp
profiler/src/profile_gemm_bilinear.cpp
+143
-0
profiler/src/profiler.cpp
profiler/src/profiler.cpp
+11
-21
No files found.
library/src/tensor_operation_instance/gpu/gemm_bilinear/device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instance.cpp
0 → 100644
View file @
9e4429f9
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
F16_TUPLE
=
ck
::
Tuple
<
F16
>
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Bilinear
=
ck
::
tensor_operation
::
element_wise
::
Bilinear
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
static
constexpr
auto
GemmMNKPadding
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
// Compilation parameters for a[m, k] * b[k, n] = c[m, n]
using
device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances
=
std
::
tuple
<
// clang-format off
// no padding
//##############################| ALayout| BLayout| CLayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##############################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle
<
Row
,
Col
,
Row
,
F16
,
F16
,
F32
,
F32
,
F16_TUPLE
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGemmMultipleD_Xdl_CShuffle
<
Row
,
Col
,
Row
,
F16
,
F16
,
F32
,
F32
,
F16_TUPLE
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmDefault
,
1
,
256
,
128
,
256
,
32
,
8
,
8
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGemmMultipleD_Xdl_CShuffle
<
Row
,
Col
,
Row
,
F16
,
F16
,
F32
,
F32
,
F16_TUPLE
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmDefault
,
1
,
128
,
128
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
>
,
DeviceGemmMultipleD_Xdl_CShuffle
<
Row
,
Col
,
Row
,
F16
,
F16
,
F32
,
F32
,
F16_TUPLE
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmDefault
,
1
,
256
,
128
,
128
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGemmMultipleD_Xdl_CShuffle
<
Row
,
Col
,
Row
,
F16
,
F16
,
F32
,
F32
,
F16_TUPLE
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmDefault
,
1
,
128
,
128
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGemmMultipleD_Xdl_CShuffle
<
Row
,
Col
,
Row
,
F16
,
F16
,
F32
,
F32
,
F16_TUPLE
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmDefault
,
1
,
128
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
>
,
DeviceGemmMultipleD_Xdl_CShuffle
<
Row
,
Col
,
Row
,
F16
,
F16
,
F32
,
F32
,
F16_TUPLE
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmDefault
,
1
,
64
,
64
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
8
>
,
DeviceGemmMultipleD_Xdl_CShuffle
<
Row
,
Col
,
Row
,
F16
,
F16
,
F32
,
F32
,
F16_TUPLE
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmDefault
,
1
,
256
,
128
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGemmMultipleD_Xdl_CShuffle
<
Row
,
Col
,
Row
,
F16
,
F16
,
F32
,
F32
,
F16_TUPLE
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmDefault
,
1
,
256
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGemmMultipleD_Xdl_CShuffle
<
Row
,
Col
,
Row
,
F16
,
F16
,
F32
,
F32
,
F16_TUPLE
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmDefault
,
1
,
128
,
128
,
32
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGemmMultipleD_Xdl_CShuffle
<
Row
,
Col
,
Row
,
F16
,
F16
,
F32
,
F32
,
F16_TUPLE
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmDefault
,
1
,
128
,
32
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
>
,
DeviceGemmMultipleD_Xdl_CShuffle
<
Row
,
Col
,
Row
,
F16
,
F16
,
F32
,
F32
,
F16_TUPLE
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmDefault
,
1
,
64
,
64
,
32
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
8
>
,
DeviceGemmMultipleD_Xdl_CShuffle
<
Row
,
Col
,
Row
,
F16
,
F16
,
F32
,
F32
,
F16_TUPLE
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmDefault
,
1
,
64
,
32
,
64
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
8
>
,
// M/N/N padding
//##############################| ALayout| BLayout| CLayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##############################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle
<
Row
,
Col
,
Row
,
F16
,
F16
,
F32
,
F32
,
F16_TUPLE
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGemmMultipleD_Xdl_CShuffle
<
Row
,
Col
,
Row
,
F16
,
F16
,
F32
,
F32
,
F16_TUPLE
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
128
,
256
,
32
,
8
,
8
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGemmMultipleD_Xdl_CShuffle
<
Row
,
Col
,
Row
,
F16
,
F16
,
F32
,
F32
,
F16_TUPLE
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
128
,
128
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
>
,
DeviceGemmMultipleD_Xdl_CShuffle
<
Row
,
Col
,
Row
,
F16
,
F16
,
F32
,
F32
,
F16_TUPLE
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
128
,
128
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGemmMultipleD_Xdl_CShuffle
<
Row
,
Col
,
Row
,
F16
,
F16
,
F32
,
F32
,
F16_TUPLE
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
128
,
128
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGemmMultipleD_Xdl_CShuffle
<
Row
,
Col
,
Row
,
F16
,
F16
,
F32
,
F32
,
F16_TUPLE
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
128
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
>
,
DeviceGemmMultipleD_Xdl_CShuffle
<
Row
,
Col
,
Row
,
F16
,
F16
,
F32
,
F32
,
F16_TUPLE
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
64
,
64
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
8
>
,
DeviceGemmMultipleD_Xdl_CShuffle
<
Row
,
Col
,
Row
,
F16
,
F16
,
F32
,
F32
,
F16_TUPLE
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
128
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGemmMultipleD_Xdl_CShuffle
<
Row
,
Col
,
Row
,
F16
,
F16
,
F32
,
F32
,
F16_TUPLE
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGemmMultipleD_Xdl_CShuffle
<
Row
,
Col
,
Row
,
F16
,
F16
,
F32
,
F32
,
F16_TUPLE
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
128
,
128
,
32
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGemmMultipleD_Xdl_CShuffle
<
Row
,
Col
,
Row
,
F16
,
F16
,
F32
,
F32
,
F16_TUPLE
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
128
,
32
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
>
,
DeviceGemmMultipleD_Xdl_CShuffle
<
Row
,
Col
,
Row
,
F16
,
F16
,
F32
,
F32
,
F16_TUPLE
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
64
,
64
,
32
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
8
>
,
DeviceGemmMultipleD_Xdl_CShuffle
<
Row
,
Col
,
Row
,
F16
,
F16
,
F32
,
F32
,
F16_TUPLE
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
64
,
32
,
64
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
8
>
// clang-format on
>
;
void
add_device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmMultipleD
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16_TUPLE
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
profiler/CMakeLists.txt
View file @
9e4429f9
...
...
@@ -7,21 +7,19 @@ set(PROFILER_SOURCE
src/profiler.cpp
src/profile_gemm.cpp
src/profile_gemm_splitk.cpp
src/profile_gemm_bias_2d.cpp
src/profile_gemm_bias_relu.cpp
src/profile_gemm_bias_relu_add.cpp
src/profile_gemm_reduce.cpp
src/profile_gemm_bilinear.cpp
src/profile_gemm_bias_add_reduce.cpp
src/profile_gemm_add_add_fastgelu.cpp
src/profile_gemm_reduce.cpp
src/profile_batched_gemm.cpp
src/profile_batched_gemm_reduce.cpp
src/profile_grouped_gemm.cpp
src/profile_conv_fwd_bias_relu.cpp
src/profile_conv_fwd_bias_relu_add.cpp
src/profile_convnd_fwd.cpp
src/profile_convnd_bwd_data.cpp
src/profile_reduce.cpp
src/profile_grouped_gemm.cpp
src/profile_conv_bwd_weight.cpp
src/profile_batched_gemm_reduce.cpp
src/profile_gemm_add_add_fastgelu.cpp
src/profile_reduce.cpp
src/profile_normalization.cpp
)
...
...
@@ -31,12 +29,10 @@ target_link_libraries(ckProfiler PRIVATE host_tensor)
target_link_libraries
(
ckProfiler PRIVATE conv_util
)
target_link_libraries
(
ckProfiler PRIVATE device_gemm_instance
)
target_link_libraries
(
ckProfiler PRIVATE device_gemm_splitk_instance
)
target_link_libraries
(
ckProfiler PRIVATE device_gemm_bias2d_instance
)
target_link_libraries
(
ckProfiler PRIVATE device_gemm_bias_relu_instance
)
target_link_libraries
(
ckProfiler PRIVATE device_gemm_bias_relu_add_instance
)
target_link_libraries
(
ckProfiler PRIVATE device_gemm_bilinear_instance
)
target_link_libraries
(
ckProfiler PRIVATE device_gemm_add_add_fastgelu_instance
)
target_link_libraries
(
ckProfiler PRIVATE device_gemm_reduce_instance
)
target_link_libraries
(
ckProfiler PRIVATE device_gemm_bias_add_reduce_instance
)
target_link_libraries
(
ckProfiler PRIVATE device_gemm_add_add_fastgelu_instance
)
target_link_libraries
(
ckProfiler PRIVATE device_batched_gemm_instance
)
target_link_libraries
(
ckProfiler PRIVATE device_batched_gemm_reduce_instance
)
target_link_libraries
(
ckProfiler PRIVATE device_grouped_gemm_instance
)
...
...
profiler/include/profile_batched_gemm_impl.hpp
View file @
9e4429f9
...
...
@@ -159,10 +159,10 @@ bool profile_batched_gemm_impl(int do_verification,
BatchStrideA
,
BatchStrideB
,
BatchStrideC
,
BatchCount
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
{},
ck
::
tensor_operation
::
element_wise
::
PassThrough
{},
ck
::
tensor_operation
::
element_wise
::
PassThrough
{},
BatchCount
);
ck
::
tensor_operation
::
element_wise
::
PassThrough
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
...
...
profiler/include/profile_gemm_bias_2d_impl.hpp
deleted
100644 → 0
View file @
8e374781
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_bias.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm_bias_2d.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
DeviceGemmAlphaBetaPtr
=
ck
::
tensor_operation
::
device
::
DeviceGemmBiasPtr
<
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
AlphaBetaAdd
>
;
void
add_device_gemm_xdl_c_shuffle_bias_2d_f32_f32_f32_km_kn_mn_instances
(
std
::
vector
<
DeviceGemmAlphaBetaPtr
>&
);
void
add_device_gemm_xdl_c_shuffle_bias_2d_f32_f32_f32_km_nk_mn_instances
(
std
::
vector
<
DeviceGemmAlphaBetaPtr
>&
);
void
add_device_gemm_xdl_c_shuffle_bias_2d_f32_f32_f32_mk_kn_mn_instances
(
std
::
vector
<
DeviceGemmAlphaBetaPtr
>&
);
void
add_device_gemm_xdl_c_shuffle_bias_2d_f32_f32_f32_mk_nk_mn_instances
(
std
::
vector
<
DeviceGemmAlphaBetaPtr
>&
);
void
add_device_gemm_xdl_c_shuffle_bias_2d_f16_f16_f16_km_kn_mn_instances
(
std
::
vector
<
DeviceGemmAlphaBetaPtr
>&
);
void
add_device_gemm_xdl_c_shuffle_bias_2d_f16_f16_f16_km_nk_mn_instances
(
std
::
vector
<
DeviceGemmAlphaBetaPtr
>&
);
void
add_device_gemm_xdl_c_shuffle_bias_2d_f16_f16_f16_mk_kn_mn_instances
(
std
::
vector
<
DeviceGemmAlphaBetaPtr
>&
);
void
add_device_gemm_xdl_c_shuffle_bias_2d_f16_f16_f16_mk_nk_mn_instances
(
std
::
vector
<
DeviceGemmAlphaBetaPtr
>&
);
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
namespace
ck
{
namespace
profiler
{
template
<
typename
ADataType
,
typename
BDataType
,
typename
C0DataType
,
typename
CDataType
,
typename
AccDataType
,
typename
ALayout
,
typename
BLayout
,
typename
CLayout
>
void
profile_gemm_bias_2d_impl
(
int
do_verification
,
int
init_method
,
bool
do_log
,
bool
time_kernel
,
int
M
,
int
N
,
int
K
,
int
StrideA
,
int
StrideB
,
int
StrideC
,
float
alpha
,
float
beta
)
{
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
is_same
<
decltype
(
layout
),
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
}
};
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
C0DataType
>
c0_m_n
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
CDataType
>
c_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
CDataType
>
c_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c0_m_n: "
<<
c0_m_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_m_n: "
<<
c_m_n_host_result
.
mDesc
<<
std
::
endl
;
std
::
size_t
num_thread
=
1
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
},
num_thread
);
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
},
num_thread
);
c0_m_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
C0DataType
>
{
-
5
,
5
},
num_thread
);
break
;
default:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
},
num_thread
);
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
},
num_thread
);
c0_m_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
C0DataType
>
{
-
0.5
,
0.5
},
num_thread
);
}
// set zero to c_device_buf
c_m_n_device_result
.
GenerateTensorValue
(
GeneratorTensor_0
<
CDataType
>
{},
num_thread
);
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CElementOp
=
ck
::
tensor_operation
::
element_wise
::
AlphaBetaAdd
;
const
auto
a_element_op
=
AElementOp
{};
const
auto
b_element_op
=
BElementOp
{};
const
auto
c_element_op
=
CElementOp
{
alpha
,
beta
};
if
(
do_verification
)
{
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemmBias2D
<
ADataType
,
BDataType
,
C0DataType
,
CDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
c0_m_n
,
c_m_n_host_result
,
a_element_op
,
b_element_op
,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
}
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpace
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpace
());
DeviceMem
c0_device_buf
(
sizeof
(
C0DataType
)
*
c0_m_n
.
mDesc
.
GetElementSpace
());
DeviceMem
c_device_buf
(
sizeof
(
CDataType
)
*
c_m_n_device_result
.
mDesc
.
GetElementSpace
());
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
c0_device_buf
.
ToDevice
(
c0_m_n
.
mData
.
data
());
c_device_buf
.
ToDevice
(
c_m_n_device_result
.
mData
.
data
());
// add device GEMM instances
std
::
vector
<
ck
::
tensor_operation
::
device
::
instance
::
DeviceGemmAlphaBetaPtr
>
gemm_ptrs
;
if
constexpr
(
is_same
<
ADataType
,
half_t
>::
value
&&
is_same
<
BDataType
,
half_t
>::
value
&&
is_same
<
CDataType
,
half_t
>::
value
)
{
if
constexpr
(
is_same
<
ALayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
&&
is_same
<
BLayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
&&
is_same
<
CLayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
ck
::
tensor_operation
::
device
::
instance
::
add_device_gemm_xdl_c_shuffle_bias_2d_f16_f16_f16_mk_kn_mn_instances
(
gemm_ptrs
);
}
else
if
constexpr
(
is_same
<
ALayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
&&
is_same
<
BLayout
,
tensor_layout
::
gemm
::
ColumnMajor
>::
value
&&
is_same
<
CLayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
ck
::
tensor_operation
::
device
::
instance
::
add_device_gemm_xdl_c_shuffle_bias_2d_f16_f16_f16_mk_nk_mn_instances
(
gemm_ptrs
);
}
else
if
constexpr
(
is_same
<
ALayout
,
tensor_layout
::
gemm
::
ColumnMajor
>::
value
&&
is_same
<
BLayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
&&
is_same
<
CLayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
ck
::
tensor_operation
::
device
::
instance
::
add_device_gemm_xdl_c_shuffle_bias_2d_f16_f16_f16_km_kn_mn_instances
(
gemm_ptrs
);
}
else
if
constexpr
(
is_same
<
ALayout
,
tensor_layout
::
gemm
::
ColumnMajor
>::
value
&&
is_same
<
BLayout
,
tensor_layout
::
gemm
::
ColumnMajor
>::
value
&&
is_same
<
CLayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
ck
::
tensor_operation
::
device
::
instance
::
add_device_gemm_xdl_c_shuffle_bias_2d_f16_f16_f16_km_nk_mn_instances
(
gemm_ptrs
);
}
}
else
if
constexpr
(
is_same
<
ADataType
,
float
>::
value
&&
is_same
<
BDataType
,
float
>::
value
&&
is_same
<
CDataType
,
float
>::
value
)
{
if
constexpr
(
is_same
<
ALayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
&&
is_same
<
BLayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
&&
is_same
<
CLayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
ck
::
tensor_operation
::
device
::
instance
::
add_device_gemm_xdl_c_shuffle_bias_2d_f32_f32_f32_mk_kn_mn_instances
(
gemm_ptrs
);
}
else
if
constexpr
(
is_same
<
ALayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
&&
is_same
<
BLayout
,
tensor_layout
::
gemm
::
ColumnMajor
>::
value
&&
is_same
<
CLayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
ck
::
tensor_operation
::
device
::
instance
::
add_device_gemm_xdl_c_shuffle_bias_2d_f32_f32_f32_mk_nk_mn_instances
(
gemm_ptrs
);
}
else
if
constexpr
(
is_same
<
ALayout
,
tensor_layout
::
gemm
::
ColumnMajor
>::
value
&&
is_same
<
BLayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
&&
is_same
<
CLayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
ck
::
tensor_operation
::
device
::
instance
::
add_device_gemm_xdl_c_shuffle_bias_2d_f32_f32_f32_km_kn_mn_instances
(
gemm_ptrs
);
}
else
if
constexpr
(
is_same
<
ALayout
,
tensor_layout
::
gemm
::
ColumnMajor
>::
value
&&
is_same
<
BLayout
,
tensor_layout
::
gemm
::
ColumnMajor
>::
value
&&
is_same
<
CLayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
ck
::
tensor_operation
::
device
::
instance
::
add_device_gemm_xdl_c_shuffle_bias_2d_f32_f32_f32_km_nk_mn_instances
(
gemm_ptrs
);
}
}
if
(
gemm_ptrs
.
size
()
<=
0
)
{
throw
std
::
runtime_error
(
"wrong! no device GEMM instance found"
);
}
std
::
string
best_gemm_name
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
// profile device GEMM instances
for
(
auto
&
gemm_ptr
:
gemm_ptrs
)
{
auto
argument_ptr
=
gemm_ptr
->
MakeArgumentPointer
(
static_cast
<
ADataType
*>
(
a_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_device_buf
.
GetDeviceBuffer
()),
static_cast
<
C0DataType
*>
(
c0_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_device_buf
.
GetDeviceBuffer
()),
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
a_element_op
,
b_element_op
,
c_element_op
);
auto
invoker_ptr
=
gemm_ptr
->
MakeInvokerPointer
();
if
(
gemm_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
std
::
string
gemm_name
=
gemm_ptr
->
GetTypeString
();
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
M
+
sizeof
(
CDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_gemm_name
=
gemm_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
if
(
do_verification
)
{
c_device_buf
.
FromDevice
(
c_m_n_device_result
.
mData
.
data
());
ck
::
utils
::
check_err
(
c_m_n_device_result
.
mData
,
c_m_n_host_result
.
mData
);
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"a : "
,
a_m_k
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"b: "
,
b_k_n
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c0 : "
,
c0_m_n
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_host : "
,
c_m_n_host_result
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_device: "
,
c_m_n_device_result
.
mData
,
","
)
<<
std
::
endl
;
}
}
}
else
{
std
::
cout
<<
"does not support this GEMM problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_gemm_name
<<
std
::
endl
;
}
}
// namespace profiler
}
// namespace ck
profiler/include/profile_gemm_bias_relu_add_impl.hpp
deleted
100644 → 0
View file @
8e374781
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_bias_activation_add.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/conv_util.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm_bias_activation_add.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
DeviceGemmBiasReluAddPtr
=
ck
::
tensor_operation
::
device
::
DeviceGemmBiasActivationAddPtr
<
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
AddReluAdd
>
;
void
add_device_gemm_xdl_c_shuffle_bias_relu_add_f16_f16_f16_mk_kn_mn_instances
(
std
::
vector
<
DeviceGemmBiasReluAddPtr
>&
);
void
add_device_gemm_xdl_c_shuffle_bias_relu_add_f16_f16_f16_mk_nk_mn_instances
(
std
::
vector
<
DeviceGemmBiasReluAddPtr
>&
);
void
add_device_gemm_xdl_c_shuffle_bias_relu_add_f16_f16_f16_km_kn_mn_instances
(
std
::
vector
<
DeviceGemmBiasReluAddPtr
>&
);
void
add_device_gemm_xdl_c_shuffle_bias_relu_add_f16_f16_f16_km_nk_mn_instances
(
std
::
vector
<
DeviceGemmBiasReluAddPtr
>&
);
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
namespace
ck
{
namespace
profiler
{
template
<
typename
ADataType
,
typename
BDataType
,
typename
CDataType
,
typename
ALayout
,
typename
BLayout
,
typename
CLayout
>
void
profile_gemm_bias_relu_add_impl
(
int
do_verification
,
int
init_method
,
bool
do_log
,
bool
time_kernel
,
int
M
,
int
N
,
int
K
,
int
StrideA
,
int
StrideB
,
int
StrideC
,
int
StrideC1
,
int
KBatch
=
1
)
{
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
is_same
<
decltype
(
layout
),
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
}
};
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
CDataType
>
c_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
CDataType
>
c_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
// c0_n[n]
Tensor
<
CDataType
>
c0_n
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
static_cast
<
std
::
size_t
>
(
N
)}),
std
::
vector
<
std
::
size_t
>
({
1
})));
// c1_m_n[m ,n]
Tensor
<
BDataType
>
c1_m_n
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_m_n: "
<<
c_m_n_host_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c0_n: "
<<
c0_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c1_m_n: "
<<
c1_m_n
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
c0_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
CDataType
>
{
-
5
,
5
});
c1_m_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
CDataType
>
{
-
5
,
5
});
break
;
default:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
c0_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
CDataType
>
{
0.0
,
1.0
});
c1_m_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
CDataType
>
{
0.0
,
1.0
});
}
// set zero to c_device_buf
c_m_n_device_result
.
GenerateTensorValue
(
GeneratorTensor_0
<
CDataType
>
{});
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CElementOp
=
ck
::
tensor_operation
::
element_wise
::
AddReluAdd
;
const
auto
a_element_op
=
AElementOp
{};
const
auto
b_element_op
=
BElementOp
{};
const
auto
c_element_op
=
CElementOp
{};
if
(
do_verification
)
{
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemmBiasActivationAdd
<
ADataType
,
BDataType
,
CDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
c_m_n_host_result
,
c0_n
,
c1_m_n
,
a_element_op
,
b_element_op
,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
}
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpace
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpace
());
DeviceMem
c_device_buf
(
sizeof
(
CDataType
)
*
c_m_n_device_result
.
mDesc
.
GetElementSpace
());
DeviceMem
c0_n_device_buf
(
sizeof
(
CDataType
)
*
c0_n
.
mDesc
.
GetElementSpace
());
DeviceMem
c1_m_n_device_buf
(
sizeof
(
CDataType
)
*
c1_m_n
.
mDesc
.
GetElementSpace
());
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
c_device_buf
.
ToDevice
(
c_m_n_device_result
.
mData
.
data
());
c0_n_device_buf
.
ToDevice
(
c0_n
.
mData
.
data
());
c1_m_n_device_buf
.
ToDevice
(
c1_m_n
.
mData
.
data
());
// add device GEMM instances
std
::
vector
<
ck
::
tensor_operation
::
device
::
instance
::
DeviceGemmBiasReluAddPtr
>
gemm_ptrs
;
if
constexpr
(
is_same
<
ADataType
,
half_t
>::
value
&&
is_same
<
BDataType
,
half_t
>::
value
&&
is_same
<
CDataType
,
half_t
>::
value
)
{
if
constexpr
(
is_same
<
ALayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
&&
is_same
<
BLayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
&&
is_same
<
CLayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
ck
::
tensor_operation
::
device
::
instance
::
add_device_gemm_xdl_c_shuffle_bias_relu_add_f16_f16_f16_mk_kn_mn_instances
(
gemm_ptrs
);
}
else
if
constexpr
(
is_same
<
ALayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
&&
is_same
<
BLayout
,
tensor_layout
::
gemm
::
ColumnMajor
>::
value
&&
is_same
<
CLayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
ck
::
tensor_operation
::
device
::
instance
::
add_device_gemm_xdl_c_shuffle_bias_relu_add_f16_f16_f16_mk_nk_mn_instances
(
gemm_ptrs
);
}
else
if
constexpr
(
is_same
<
ALayout
,
tensor_layout
::
gemm
::
ColumnMajor
>::
value
&&
is_same
<
BLayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
&&
is_same
<
CLayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
ck
::
tensor_operation
::
device
::
instance
::
add_device_gemm_xdl_c_shuffle_bias_relu_add_f16_f16_f16_km_kn_mn_instances
(
gemm_ptrs
);
}
else
if
constexpr
(
is_same
<
ALayout
,
tensor_layout
::
gemm
::
ColumnMajor
>::
value
&&
is_same
<
BLayout
,
tensor_layout
::
gemm
::
ColumnMajor
>::
value
&&
is_same
<
CLayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
ck
::
tensor_operation
::
device
::
instance
::
add_device_gemm_xdl_c_shuffle_bias_relu_add_f16_f16_f16_km_nk_mn_instances
(
gemm_ptrs
);
}
}
if
(
gemm_ptrs
.
size
()
<=
0
)
{
throw
std
::
runtime_error
(
"wrong! no device GEMM instance found"
);
}
std
::
string
best_gemm_name
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
// profile device GEMM instances
for
(
auto
&
gemm_ptr
:
gemm_ptrs
)
{
auto
argument_ptr
=
gemm_ptr
->
MakeArgumentPointer
(
static_cast
<
ADataType
*>
(
a_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c0_n_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c1_m_n_device_buf
.
GetDeviceBuffer
()),
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
StrideC1
,
a_element_op
,
b_element_op
,
c_element_op
,
KBatch
);
auto
invoker_ptr
=
gemm_ptr
->
MakeInvokerPointer
();
if
(
gemm_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
std
::
string
gemm_name
=
gemm_ptr
->
GetTypeString
();
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
M
+
sizeof
(
CDataType
)
*
M
*
N
+
sizeof
(
CDataType
)
*
N
+
sizeof
(
CDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_gemm_name
=
gemm_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
if
(
do_verification
)
{
c_device_buf
.
FromDevice
(
c_m_n_device_result
.
mData
.
data
());
ck
::
utils
::
check_err
(
c_m_n_device_result
.
mData
,
c_m_n_host_result
.
mData
);
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"a: "
,
a_m_k
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"b: "
,
b_k_n
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c0: "
,
c0_n
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c1: "
,
c1_m_n
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_host: "
,
c_m_n_host_result
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_device: "
,
c_m_n_device_result
.
mData
,
","
)
<<
std
::
endl
;
}
}
}
else
{
std
::
cout
<<
"does not support this GEMM problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_gemm_name
<<
std
::
endl
;
}
}
// namespace profiler
}
// namespace ck
profiler/include/profile_gemm_bi
as_relu
_impl.hpp
→
profiler/include/profile_gemm_bi
linear
_impl.hpp
View file @
9e4429f9
...
...
@@ -3,62 +3,45 @@
#pragma once
#include <iomanip>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_
bias_activation
.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_
multiple_d
.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/gemm_bilinear.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/conv_util.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm_bias_activation.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
DeviceGemmBiasReluPtr
=
ck
::
tensor_operation
::
device
::
DeviceGemmBiasActivationPtr
<
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
AddRelu
>
;
void
add_device_gemm_xdl_c_shuffle_bias_relu_f16_f16_f16_mk_kn_mn_instances
(
std
::
vector
<
DeviceGemmBiasReluPtr
>&
);
void
add_device_gemm_xdl_c_shuffle_bias_relu_f16_f16_f16_mk_nk_mn_instances
(
std
::
vector
<
DeviceGemmBiasReluPtr
>&
);
void
add_device_gemm_xdl_c_shuffle_bias_relu_f16_f16_f16_km_kn_mn_instances
(
std
::
vector
<
DeviceGemmBiasReluPtr
>&
);
void
add_device_gemm_xdl_c_shuffle_bias_relu_f16_f16_f16_km_nk_mn_instances
(
std
::
vector
<
DeviceGemmBiasReluPtr
>&
);
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
namespace
ck
{
namespace
profiler
{
template
<
typename
ADataType
,
typename
BDataType
,
typename
CDataType
,
typename
AccDataType
,
typename
DDataType
,
typename
EDataType
,
typename
ALayout
,
typename
BLayout
,
typename
CLayout
>
void
profile_gemm_bias_relu_impl
(
int
do_verification
,
int
init_method
,
bool
do_log
,
bool
time_kernel
,
int
M
,
int
N
,
int
K
,
int
StrideA
,
int
StrideB
,
int
StrideC
,
int
KBatch
=
1
)
typename
DELayout
>
// assume Ds and E have same layout
bool
profile_gemm_bilinear_impl
(
int
do_verification
,
int
init_method
,
bool
/*do_log*/
,
bool
time_kernel
,
int
M
,
int
N
,
int
K
,
int
StrideA
,
int
StrideB
,
int
StrideD
,
int
StrideE
,
float
alpha
,
float
beta
)
{
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
...
...
@@ -76,162 +59,151 @@ void profile_gemm_bias_relu_impl(int do_verification,
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
CDataType
>
c_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
CDataType
>
c_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
// c0_n[n]
Tensor
<
CDataType
>
c0_n
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
static_cast
<
std
::
size_t
>
(
N
)}),
std
::
vector
<
std
::
size_t
>
({
1
})));
Tensor
<
DDataType
>
d_m_n
(
f_host_tensor_descriptor
(
M
,
N
,
StrideD
,
DELayout
{}));
Tensor
<
EDataType
>
e_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideE
,
DELayout
{}));
Tensor
<
EDataType
>
e_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideE
,
DELayout
{}));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"
c
_m_n: "
<<
c
_m_n
_host_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"
c0
_n: "
<<
c0_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"
d
_m_n: "
<<
d
_m_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"
e_m
_n: "
<<
e_m_n_device_result
.
mDesc
<<
std
::
endl
;
std
::
size_t
num_thread
=
1
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
}
,
num_thread
);
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
}
,
num_thread
);
c0
_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
C
DataType
>
{
-
5
,
5
});
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
d_m
_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
D
DataType
>
{
-
5
,
5
});
break
;
default:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
}
,
num_thread
);
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
}
,
num_thread
);
c0
_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
C
DataType
>
{
0.0
,
1.0
});
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
d_m
_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D
DataType
>
{
0.0
,
1.0
});
}
// set zero to c_device_buf
c_m_n_device_result
.
GenerateTensorValue
(
GeneratorTensor_0
<
CDataType
>
{},
num_thread
);
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Bilinear
=
ck
::
tensor_operation
::
element_wise
::
Bilinear
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
Bilinear
;
const
auto
a_element_op
=
AElementOp
{};
const
auto
b_element_op
=
BElementOp
{};
const
auto
cde_element_op
=
CDEElementOp
{
alpha
,
beta
};
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleD
<
ALayout
,
BLayout
,
DELayout
,
ADataType
,
BDataType
,
ck
::
Tuple
<
DDataType
>
,
EDataType
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
Bilinear
>
;
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CElementOp
=
ck
::
tensor_operation
::
element_wise
::
AddRelu
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
()
;
const
auto
a_element_op
=
AElementOp
{};
const
auto
b_element_op
=
BElementOp
{};
const
auto
c_element_op
=
CElementOp
{};
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
// run reference
if
(
do_verification
)
{
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemmBiasActivation
<
ADataType
,
BDataType
,
CDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
Tensor
<
AccDataType
>
c_m_n
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
{
static_cast
<
std
::
size_t
>
(
M
),
static_cast
<
std
::
size_t
>
(
N
)}));
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
AccDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
PassThrough
>
;
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
c_m_n
_host_result
,
c0_n
,
a_element_op
,
b_element_op
,
c_element_op
);
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
c_m_n
,
a_element_op
,
b_element_op
,
PassThrough
{}
);
ref_invoker
.
Run
(
ref_argument
);
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
cde_element_op
(
e_m_n_host_result
(
m
,
n
),
c_m_n
(
m
,
n
),
d_m_n
(
m
,
n
));
}
}
}
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpace
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpace
());
DeviceMem
c
_device_buf
(
sizeof
(
C
DataType
)
*
c
_m_n
_device_result
.
mDesc
.
GetElementSpace
());
DeviceMem
c0_n
_device_buf
(
sizeof
(
C
DataType
)
*
c0_n
.
mDesc
.
GetElementSpace
());
DeviceMem
d_m_n
_device_buf
(
sizeof
(
D
DataType
)
*
d
_m_n
.
mDesc
.
GetElementSpace
());
DeviceMem
e
_device_buf
(
sizeof
(
E
DataType
)
*
e_m_n_device_result
.
mDesc
.
GetElementSpace
());
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
c_device_buf
.
ToDevice
(
c_m_n_device_result
.
mData
.
data
());
c0_n_device_buf
.
ToDevice
(
c0_n
.
mData
.
data
());
// add device GEMM instances
std
::
vector
<
ck
::
tensor_operation
::
device
::
instance
::
DeviceGemmBiasReluPtr
>
gemm_ptrs
;
if
constexpr
(
is_same
<
ADataType
,
half_t
>::
value
&&
is_same
<
BDataType
,
half_t
>::
value
&&
is_same
<
CDataType
,
half_t
>::
value
)
{
if
constexpr
(
is_same
<
ALayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
&&
is_same
<
BLayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
&&
is_same
<
CLayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
ck
::
tensor_operation
::
device
::
instance
::
add_device_gemm_xdl_c_shuffle_bias_relu_f16_f16_f16_mk_kn_mn_instances
(
gemm_ptrs
);
}
else
if
constexpr
(
is_same
<
ALayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
&&
is_same
<
BLayout
,
tensor_layout
::
gemm
::
ColumnMajor
>::
value
&&
is_same
<
CLayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
ck
::
tensor_operation
::
device
::
instance
::
add_device_gemm_xdl_c_shuffle_bias_relu_f16_f16_f16_mk_nk_mn_instances
(
gemm_ptrs
);
}
else
if
constexpr
(
is_same
<
ALayout
,
tensor_layout
::
gemm
::
ColumnMajor
>::
value
&&
is_same
<
BLayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
&&
is_same
<
CLayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
ck
::
tensor_operation
::
device
::
instance
::
add_device_gemm_xdl_c_shuffle_bias_relu_f16_f16_f16_km_kn_mn_instances
(
gemm_ptrs
);
}
else
if
constexpr
(
is_same
<
ALayout
,
tensor_layout
::
gemm
::
ColumnMajor
>::
value
&&
is_same
<
BLayout
,
tensor_layout
::
gemm
::
ColumnMajor
>::
value
&&
is_same
<
CLayout
,
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
ck
::
tensor_operation
::
device
::
instance
::
add_device_gemm_xdl_c_shuffle_bias_relu_f16_f16_f16_km_nk_mn_instances
(
gemm_ptrs
);
}
}
if
(
gemm_ptrs
.
size
()
<=
0
)
{
throw
std
::
runtime_error
(
"wrong! no device GEMM instance found"
);
}
d_m_n_device_buf
.
ToDevice
(
d_m_n
.
mData
.
data
());
std
::
string
best_
gemm
_name
;
std
::
string
best_
op
_name
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
// profile device GEMM instances
for
(
auto
&
gemm_ptr
:
gemm_ptrs
)
bool
pass
=
true
;
// profile device operation instances
for
(
auto
&
op_ptr
:
op_ptrs
)
{
auto
argument_ptr
=
gemm
_ptr
->
MakeArgumentPointer
(
static_cast
<
ADataType
*>
(
a_device_buf
.
GetDeviceBuffer
()
)
,
static_cast
<
BDataType
*>
(
b_device_buf
.
GetDeviceBuffer
()
)
,
st
atic_cast
<
CDataType
*>
(
c
_device_buf
.
GetDeviceBuffer
()
)
,
static_cast
<
CDataType
*>
(
c0_n
_device_buf
.
GetDeviceBuffer
()
)
,
auto
argument_ptr
=
op
_ptr
->
MakeArgumentPointer
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
st
d
::
array
<
const
void
*
,
1
>
{
d_m_n
_device_buf
.
GetDeviceBuffer
()
}
,
e
_device_buf
.
GetDeviceBuffer
(),
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
std
::
array
<
ck
::
index_t
,
1
>
{
StrideD
},
StrideE
,
a_element_op
,
b_element_op
,
c_element_op
,
KBatch
);
cde_element_op
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
auto
invoker_ptr
=
gemm_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
gemm
_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
if
(
op
_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
std
::
string
gemm_name
=
gemm_ptr
->
GetTypeString
();
// re-init E to zero before profiling a kernel
e_device_buf
.
SetZero
();
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
M
+
sizeof
(
C
DataType
)
*
M
*
N
+
sizeof
(
C
DataType
)
*
N
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
B
DataType
)
*
K
*
N
+
sizeof
(
E
DataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
_name
<<
std
::
endl
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op
_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_
gemm
_name
=
gemm
_name
;
best_
op
_name
=
op
_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
...
...
@@ -239,30 +211,22 @@ void profile_gemm_bias_relu_impl(int do_verification,
if
(
do_verification
)
{
c_device_buf
.
FromDevice
(
c_m_n_device_result
.
mData
.
data
());
ck
::
utils
::
check_err
(
c_m_n_device_result
.
mData
,
c_m_n_host_result
.
mData
);
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"a : "
,
a_m_k
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"b: "
,
b_k_n
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c0 : "
,
c0_n
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_host : "
,
c_m_n_host_result
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_device: "
,
c_m_n_device_result
.
mData
,
","
)
<<
std
::
endl
;
}
e_device_buf
.
FromDevice
(
e_m_n_device_result
.
mData
.
data
());
pass
=
pass
&&
ck
::
utils
::
check_err
(
e_m_n_device_result
.
mData
,
e_m_n_host_result
.
mData
);
}
}
else
{
std
::
cout
<<
"
does not support this
GEMM
problem"
<<
std
::
endl
;
std
::
cout
<<
op_name
<<
"
does not support this problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_gemm_name
<<
std
::
endl
;
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
return
pass
;
}
}
// namespace profiler
...
...
profiler/src/profile_batched_gemm.cpp
View file @
9e4429f9
...
...
@@ -27,8 +27,9 @@ enum struct GemmDataType
int
profile_batched_gemm
(
int
argc
,
char
*
argv
[])
{
if
(
argc
!=
1
5
)
if
(
argc
!=
1
8
)
{
// clang-format off
printf
(
"arg1: tensor operation (batched_gemm: Batched GEMM)
\n
"
);
printf
(
"arg2: data type (0: fp32; 1: fp16, 2: bf16, 3: int8)
\n
"
);
printf
(
"arg3: matrix layout (0: A[g, m, k] * B[g, k, n] = C[g, m, n];
\n
"
);
...
...
@@ -39,7 +40,8 @@ int profile_batched_gemm(int argc, char* argv[])
printf
(
"arg5: initialization (0: no init; 1: integer value; 2: decimal value)
\n
"
);
printf
(
"arg6: print tensor value (0: no; 1: yes)
\n
"
);
printf
(
"arg7: time kernel (0=n0, 1=yes)
\n
"
);
printf
(
"arg8 to 14: M, N, K, StrideA, StrideB, StrideC, BatchCount
\n
"
);
printf
(
"arg8 to 17: M, N, K, StrideA, StrideB, StrideC, BatchStrideA, BatchStrideB, BatchStrideC, BatchCount
\n
"
);
// clang-format on
exit
(
1
);
}
...
...
@@ -58,7 +60,11 @@ int profile_batched_gemm(int argc, char* argv[])
const
int
StrideB
=
std
::
stoi
(
argv
[
12
]);
const
int
StrideC
=
std
::
stoi
(
argv
[
13
]);
const
int
BatchCount
=
std
::
stoi
(
argv
[
14
]);
const
int
BatchStrideA
=
std
::
stoi
(
argv
[
14
]);
const
int
BatchStrideB
=
std
::
stoi
(
argv
[
15
]);
const
int
BatchStrideC
=
std
::
stoi
(
argv
[
16
]);
const
int
BatchCount
=
std
::
stoi
(
argv
[
17
]);
using
F32
=
float
;
using
F16
=
ck
::
half_t
;
...
...
@@ -90,9 +96,13 @@ int profile_batched_gemm(int argc, char* argv[])
const
int
StrideB_
=
(
StrideB
<
0
)
?
DefaultStrideB
:
StrideB
;
const
int
StrideC_
=
(
StrideC
<
0
)
?
DefaultStrideC
:
StrideC
;
const
int
BatchStrideA
=
(
ck
::
is_same_v
<
ALayout
,
Row
>
?
M
:
K
)
*
StrideA_
;
const
int
BatchStrideB
=
(
ck
::
is_same_v
<
BLayout
,
Row
>
?
K
:
N
)
*
StrideB_
;
const
int
BatchStrideC
=
(
ck
::
is_same_v
<
CLayout
,
Row
>
?
M
:
N
)
*
StrideC_
;
const
int
DefaultBatchStrideA
=
(
ck
::
is_same_v
<
ALayout
,
Row
>
?
M
:
K
)
*
StrideA_
;
const
int
DefaultBatchStrideB
=
(
ck
::
is_same_v
<
BLayout
,
Row
>
?
K
:
N
)
*
StrideB_
;
const
int
DefaultBatchStrideC
=
(
ck
::
is_same_v
<
CLayout
,
Row
>
?
M
:
N
)
*
StrideC_
;
const
int
BatchStrideA_
=
(
BatchStrideA
<
0
)
?
DefaultBatchStrideA
:
BatchStrideA
;
const
int
BatchStrideB_
=
(
BatchStrideB
<
0
)
?
DefaultBatchStrideB
:
BatchStrideB
;
const
int
BatchStrideC_
=
(
BatchStrideC
<
0
)
?
DefaultBatchStrideC
:
BatchStrideC
;
bool
pass
=
ck
::
profiler
::
profile_batched_gemm_impl
<
ADataType
,
BDataType
,
CDataType
,
ALayout
,
BLayout
,
CLayout
>
(
...
...
@@ -103,9 +113,9 @@ int profile_batched_gemm(int argc, char* argv[])
M
,
N
,
K
,
BatchStrideA
,
BatchStrideB
,
BatchStrideC
,
BatchStrideA
_
,
BatchStrideB
_
,
BatchStrideC
_
,
StrideA_
,
StrideB_
,
StrideC_
,
...
...
profiler/src/profile_gemm_add_add_fastgelu.cpp
View file @
9e4429f9
...
...
@@ -29,7 +29,7 @@ int profile_gemm_add_add_fastgelu(int argc, char* argv[])
if
(
argc
!=
16
)
{
// clang-format off
printf
(
"arg1: tensor operation (gemm_add_add_fastgelu: GEMM+Add+Add+GeLU)
\n
"
);
printf
(
"arg1: tensor operation (gemm_add_add_fastgelu: GEMM+Add+Add+
Fast
GeLU)
\n
"
);
printf
(
"arg2: data type (0: fp32; 1: fp16; 2: bf16; 3: int8)
\n
"
);
printf
(
"arg3: matrix layout (0: E[m, n] = FastGeLU(A[m, k] * B[k, n] + D0[m, n] + D1[m, n]);
\n
"
);
printf
(
" 1: E[m, n] = FastGeLU(A[m, k] * B[n, k] + D0[m, n] + D1[m, n]);
\n
"
);
...
...
@@ -39,7 +39,7 @@ int profile_gemm_add_add_fastgelu(int argc, char* argv[])
printf
(
"arg5: initialization (0: no init; 1: integer value; 2: decimal value)
\n
"
);
printf
(
"arg6: print tensor value (0: no; 1: yes)
\n
"
);
printf
(
"arg7: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg8 to 1
3
: M, N, K, StrideA, StrideB, StrideD0, StrideD1, StrideE
\n
"
);
printf
(
"arg8 to 1
5
: M, N, K, StrideA, StrideB, StrideD0, StrideD1, StrideE
\n
"
);
// clang-format on
exit
(
1
);
}
...
...
profiler/src/profile_gemm_bias_2d.cpp
deleted
100644 → 0
View file @
8e374781
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "profiler/include/profile_gemm_bias_2d_impl.hpp"
enum
struct
GemmMatrixLayout
{
MK_KN_MN
,
// 0
MK_NK_MN
,
// 1
KM_KN_MN
,
// 2
KM_NK_MN
,
// 3
MK_KN_NM
,
// 4
MK_NK_NM
,
// 5
KM_KN_NM
,
// 6
KM_NK_NM
,
// 7
};
enum
struct
GemmDataType
{
F32_F32_F32
,
// 0
F16_F16_F16
,
// 1
};
int
profile_gemm_bias_2d
(
int
argc
,
char
*
argv
[])
{
if
(
!
(
argc
==
16
||
argc
==
17
))
{
printf
(
"arg1: tensor operation (gemm: GEMM+Bias_2d)
\n
"
);
printf
(
"arg2: data type (0: fp32; 1: fp16)
\n
"
);
printf
(
"arg3: matrix layout (0: A[m, k] * B[k, n] = C[m, n];
\n
"
);
printf
(
" 1: A[m, k] * B[n, k] = C[m, n];
\n
"
);
printf
(
" 2: A[k, m] * B[k, n] = C[m, n];
\n
"
);
printf
(
" 3: A[k, m] * B[n, k] = C[m, n])
\n
"
);
printf
(
"arg4: verification (0: no; 1: yes)
\n
"
);
printf
(
"arg5: initialization (0: no init; 1: integer value; 2: decimal value)
\n
"
);
printf
(
"arg6: print tensor value (0: no; 1: yes)
\n
"
);
printf
(
"arg7: time kernel (0=n0, 1=yes)
\n
"
);
printf
(
"arg8 to 13: M, N, K, StrideA, StrideB, StrideC
\n
"
);
printf
(
"arg14: alpha
\n
"
);
printf
(
"arg15: beta
\n
"
);
printf
(
"arg16: split k into mulitiple batch
\n
"
);
exit
(
1
);
}
const
auto
data_type
=
static_cast
<
GemmDataType
>
(
std
::
stoi
(
argv
[
2
]));
const
auto
layout
=
static_cast
<
GemmMatrixLayout
>
(
std
::
stoi
(
argv
[
3
]));
const
bool
do_verification
=
std
::
stoi
(
argv
[
4
]);
const
int
init_method
=
std
::
stoi
(
argv
[
5
]);
const
bool
do_log
=
std
::
stoi
(
argv
[
6
]);
const
bool
time_kernel
=
std
::
stoi
(
argv
[
7
]);
const
int
M
=
std
::
stoi
(
argv
[
8
]);
const
int
N
=
std
::
stoi
(
argv
[
9
]);
const
int
K
=
std
::
stoi
(
argv
[
10
]);
const
int
StrideA
=
std
::
stoi
(
argv
[
11
]);
const
int
StrideB
=
std
::
stoi
(
argv
[
12
]);
const
int
StrideC
=
std
::
stoi
(
argv
[
13
]);
const
float
alpha
=
std
::
stof
(
argv
[
14
]);
const
float
beta
=
std
::
stof
(
argv
[
15
]);
if
(
data_type
==
GemmDataType
::
F32_F32_F32
&&
layout
==
GemmMatrixLayout
::
MK_KN_MN
)
{
ck
::
profiler
::
profile_gemm_bias_2d_impl
<
float
,
float
,
float
,
float
,
float
,
ck
::
tensor_layout
::
gemm
::
RowMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
M
,
N
,
K
,
(
StrideA
<
0
)
?
K
:
StrideA
,
(
StrideB
<
0
)
?
N
:
StrideB
,
(
StrideC
<
0
)
?
N
:
StrideC
,
alpha
,
beta
);
}
else
if
(
data_type
==
GemmDataType
::
F32_F32_F32
&&
layout
==
GemmMatrixLayout
::
MK_NK_MN
)
{
ck
::
profiler
::
profile_gemm_bias_2d_impl
<
float
,
float
,
float
,
float
,
float
,
ck
::
tensor_layout
::
gemm
::
RowMajor
,
ck
::
tensor_layout
::
gemm
::
ColumnMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
M
,
N
,
K
,
(
StrideA
<
0
)
?
K
:
StrideA
,
(
StrideB
<
0
)
?
N
:
StrideB
,
(
StrideC
<
0
)
?
N
:
StrideC
,
alpha
,
beta
);
}
else
if
(
data_type
==
GemmDataType
::
F32_F32_F32
&&
layout
==
GemmMatrixLayout
::
KM_KN_MN
)
{
ck
::
profiler
::
profile_gemm_bias_2d_impl
<
float
,
float
,
float
,
float
,
float
,
ck
::
tensor_layout
::
gemm
::
ColumnMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
M
,
N
,
K
,
(
StrideA
<
0
)
?
K
:
StrideA
,
(
StrideB
<
0
)
?
N
:
StrideB
,
(
StrideC
<
0
)
?
N
:
StrideC
,
alpha
,
beta
);
}
else
if
(
data_type
==
GemmDataType
::
F32_F32_F32
&&
layout
==
GemmMatrixLayout
::
KM_NK_MN
)
{
ck
::
profiler
::
profile_gemm_bias_2d_impl
<
float
,
float
,
float
,
float
,
float
,
ck
::
tensor_layout
::
gemm
::
ColumnMajor
,
ck
::
tensor_layout
::
gemm
::
ColumnMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
M
,
N
,
K
,
(
StrideA
<
0
)
?
K
:
StrideA
,
(
StrideB
<
0
)
?
N
:
StrideB
,
(
StrideC
<
0
)
?
N
:
StrideC
,
alpha
,
beta
);
}
else
if
(
data_type
==
GemmDataType
::
F16_F16_F16
&&
layout
==
GemmMatrixLayout
::
MK_KN_MN
)
{
ck
::
profiler
::
profile_gemm_bias_2d_impl
<
ck
::
half_t
,
ck
::
half_t
,
ck
::
half_t
,
ck
::
half_t
,
float
,
ck
::
tensor_layout
::
gemm
::
RowMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
M
,
N
,
K
,
(
StrideA
<
0
)
?
K
:
StrideA
,
(
StrideB
<
0
)
?
N
:
StrideB
,
(
StrideC
<
0
)
?
N
:
StrideC
,
alpha
,
beta
);
}
else
if
(
data_type
==
GemmDataType
::
F16_F16_F16
&&
layout
==
GemmMatrixLayout
::
MK_NK_MN
)
{
ck
::
profiler
::
profile_gemm_bias_2d_impl
<
ck
::
half_t
,
ck
::
half_t
,
ck
::
half_t
,
ck
::
half_t
,
float
,
ck
::
tensor_layout
::
gemm
::
RowMajor
,
ck
::
tensor_layout
::
gemm
::
ColumnMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
M
,
N
,
K
,
(
StrideA
<
0
)
?
K
:
StrideA
,
(
StrideB
<
0
)
?
N
:
StrideB
,
(
StrideC
<
0
)
?
N
:
StrideC
,
alpha
,
beta
);
}
else
if
(
data_type
==
GemmDataType
::
F16_F16_F16
&&
layout
==
GemmMatrixLayout
::
KM_KN_MN
)
{
ck
::
profiler
::
profile_gemm_bias_2d_impl
<
ck
::
half_t
,
ck
::
half_t
,
ck
::
half_t
,
ck
::
half_t
,
float
,
ck
::
tensor_layout
::
gemm
::
ColumnMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
M
,
N
,
K
,
(
StrideA
<
0
)
?
K
:
StrideA
,
(
StrideB
<
0
)
?
N
:
StrideB
,
(
StrideC
<
0
)
?
N
:
StrideC
,
alpha
,
beta
);
}
else
if
(
data_type
==
GemmDataType
::
F16_F16_F16
&&
layout
==
GemmMatrixLayout
::
KM_NK_MN
)
{
ck
::
profiler
::
profile_gemm_bias_2d_impl
<
ck
::
half_t
,
ck
::
half_t
,
ck
::
half_t
,
ck
::
half_t
,
float
,
ck
::
tensor_layout
::
gemm
::
ColumnMajor
,
ck
::
tensor_layout
::
gemm
::
ColumnMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
M
,
N
,
K
,
(
StrideA
<
0
)
?
K
:
StrideA
,
(
StrideB
<
0
)
?
N
:
StrideB
,
(
StrideC
<
0
)
?
N
:
StrideC
,
alpha
,
beta
);
}
else
{
throw
std
::
runtime_error
(
"wrong! this data_type & layout is not implemented"
);
}
return
0
;
}
profiler/src/profile_gemm_bias_relu.cpp
deleted
100644 → 0
View file @
8e374781
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "profiler/include/profile_gemm_bias_relu_impl.hpp"
enum
struct
GemmMatrixLayout
{
MK_KN_MN
,
// 0
MK_NK_MN
,
// 1
KM_KN_MN
,
// 2
KM_NK_MN
,
// 3
MK_KN_NM
,
// 4
MK_NK_NM
,
// 5
KM_KN_NM
,
// 6
KM_NK_NM
,
// 7
};
enum
struct
GemmDataType
{
F32_F32_F32
,
// 0
F16_F16_F16
,
// 1
};
int
profile_gemm_bias_relu
(
int
argc
,
char
*
argv
[])
{
if
(
!
(
argc
==
14
||
argc
==
15
))
{
printf
(
"arg1: tensor operation (gemm: GEMM+Bias+ReLU)
\n
"
);
printf
(
"arg2: data type (0: fp32; 1: fp16)
\n
"
);
printf
(
"arg3: matrix layout (0: A[m, k] * B[k, n] = C[m, n];
\n
"
);
printf
(
" 1: A[m, k] * B[n, k] = C[m, n];
\n
"
);
printf
(
" 2: A[k, m] * B[k, n] = C[m, n];
\n
"
);
printf
(
" 3: A[k, m] * B[n, k] = C[m, n])
\n
"
);
printf
(
"arg4: verification (0: no; 1: yes)
\n
"
);
printf
(
"arg5: initialization (0: no init; 1: integer value; 2: decimal value)
\n
"
);
printf
(
"arg6: print tensor value (0: no; 1: yes)
\n
"
);
printf
(
"arg7: time kernel (0=n0, 1=yes)
\n
"
);
printf
(
"arg8 to 13: M, N, K, StrideA, StrideB, StrideC
\n
"
);
printf
(
"arg14: split k into mulitiple batch
\n
"
);
exit
(
1
);
}
const
auto
data_type
=
static_cast
<
GemmDataType
>
(
std
::
stoi
(
argv
[
2
]));
const
auto
layout
=
static_cast
<
GemmMatrixLayout
>
(
std
::
stoi
(
argv
[
3
]));
const
bool
do_verification
=
std
::
stoi
(
argv
[
4
]);
const
int
init_method
=
std
::
stoi
(
argv
[
5
]);
const
bool
do_log
=
std
::
stoi
(
argv
[
6
]);
const
bool
time_kernel
=
std
::
stoi
(
argv
[
7
]);
const
int
M
=
std
::
stoi
(
argv
[
8
]);
const
int
N
=
std
::
stoi
(
argv
[
9
]);
const
int
K
=
std
::
stoi
(
argv
[
10
]);
const
int
StrideA
=
std
::
stoi
(
argv
[
11
]);
const
int
StrideB
=
std
::
stoi
(
argv
[
12
]);
const
int
StrideC
=
std
::
stoi
(
argv
[
13
]);
if
(
data_type
==
GemmDataType
::
F16_F16_F16
&&
layout
==
GemmMatrixLayout
::
MK_KN_MN
)
{
ck
::
profiler
::
profile_gemm_bias_relu_impl
<
ck
::
half_t
,
ck
::
half_t
,
ck
::
half_t
,
ck
::
tensor_layout
::
gemm
::
RowMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
M
,
N
,
K
,
(
StrideA
<
0
)
?
K
:
StrideA
,
(
StrideB
<
0
)
?
N
:
StrideB
,
(
StrideC
<
0
)
?
N
:
StrideC
);
}
else
if
(
data_type
==
GemmDataType
::
F16_F16_F16
&&
layout
==
GemmMatrixLayout
::
MK_NK_MN
)
{
ck
::
profiler
::
profile_gemm_bias_relu_impl
<
ck
::
half_t
,
ck
::
half_t
,
ck
::
half_t
,
ck
::
tensor_layout
::
gemm
::
RowMajor
,
ck
::
tensor_layout
::
gemm
::
ColumnMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
M
,
N
,
K
,
(
StrideA
<
0
)
?
K
:
StrideA
,
(
StrideB
<
0
)
?
K
:
StrideB
,
(
StrideC
<
0
)
?
N
:
StrideC
);
}
else
if
(
data_type
==
GemmDataType
::
F16_F16_F16
&&
layout
==
GemmMatrixLayout
::
KM_KN_MN
)
{
ck
::
profiler
::
profile_gemm_bias_relu_impl
<
ck
::
half_t
,
ck
::
half_t
,
ck
::
half_t
,
ck
::
tensor_layout
::
gemm
::
ColumnMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
M
,
N
,
K
,
(
StrideA
<
0
)
?
M
:
StrideA
,
(
StrideB
<
0
)
?
N
:
StrideB
,
(
StrideC
<
0
)
?
N
:
StrideC
);
}
else
if
(
data_type
==
GemmDataType
::
F16_F16_F16
&&
layout
==
GemmMatrixLayout
::
KM_NK_MN
)
{
ck
::
profiler
::
profile_gemm_bias_relu_impl
<
ck
::
half_t
,
ck
::
half_t
,
ck
::
half_t
,
ck
::
tensor_layout
::
gemm
::
ColumnMajor
,
ck
::
tensor_layout
::
gemm
::
ColumnMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
M
,
N
,
K
,
(
StrideA
<
0
)
?
M
:
StrideA
,
(
StrideB
<
0
)
?
K
:
StrideB
,
(
StrideC
<
0
)
?
N
:
StrideC
);
}
else
{
throw
std
::
runtime_error
(
"wrong! this data_type & layout is not implemented"
);
}
return
0
;
}
profiler/src/profile_gemm_bias_relu_add.cpp
deleted
100644 → 0
View file @
8e374781
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "profiler/include/profile_gemm_bias_relu_add_impl.hpp"
enum
struct
GemmMatrixLayout
{
MK_KN_MN
,
// 0
MK_NK_MN
,
// 1
KM_KN_MN
,
// 2
KM_NK_MN
,
// 3
MK_KN_NM
,
// 4
MK_NK_NM
,
// 5
KM_KN_NM
,
// 6
KM_NK_NM
,
// 7
};
enum
struct
GemmDataType
{
F32_F32_F32
,
// 0
F16_F16_F16
,
// 1
};
int
profile_gemm_bias_relu_add
(
int
argc
,
char
*
argv
[])
{
if
(
!
(
argc
==
15
||
argc
==
16
))
{
printf
(
"arg1: tensor operation (gemm: GEMM+Bias+ReLU+Add)
\n
"
);
printf
(
"arg2: data type (0: fp32; 1: fp16)
\n
"
);
printf
(
"arg3: matrix layout (0: A[m, k] * B[k, n] = C[m, n];
\n
"
);
printf
(
" 1: A[m, k] * B[n, k] = C[m, n];
\n
"
);
printf
(
" 2: A[k, m] * B[k, n] = C[m, n];
\n
"
);
printf
(
" 3: A[k, m] * B[n, k] = C[m, n])
\n
"
);
printf
(
"arg4: verification (0: no; 1: yes)
\n
"
);
printf
(
"arg5: initialization (0: no init; 1: integer value; 2: decimal value)
\n
"
);
printf
(
"arg6: print tensor value (0: no; 1: yes)
\n
"
);
printf
(
"arg7: time kernel (0=n0, 1=yes)
\n
"
);
printf
(
"arg8 to 14: M, N, K, StrideA, StrideB, StrideC, StrideC1
\n
"
);
printf
(
"arg15: split k into mulitiple batch
\n
"
);
exit
(
1
);
}
const
auto
data_type
=
static_cast
<
GemmDataType
>
(
std
::
stoi
(
argv
[
2
]));
const
auto
layout
=
static_cast
<
GemmMatrixLayout
>
(
std
::
stoi
(
argv
[
3
]));
const
bool
do_verification
=
std
::
stoi
(
argv
[
4
]);
const
int
init_method
=
std
::
stoi
(
argv
[
5
]);
const
bool
do_log
=
std
::
stoi
(
argv
[
6
]);
const
bool
time_kernel
=
std
::
stoi
(
argv
[
7
]);
const
int
M
=
std
::
stoi
(
argv
[
8
]);
const
int
N
=
std
::
stoi
(
argv
[
9
]);
const
int
K
=
std
::
stoi
(
argv
[
10
]);
const
int
StrideA
=
std
::
stoi
(
argv
[
11
]);
const
int
StrideB
=
std
::
stoi
(
argv
[
12
]);
const
int
StrideC
=
std
::
stoi
(
argv
[
13
]);
const
int
StrideC1
=
std
::
stoi
(
argv
[
14
]);
if
(
data_type
==
GemmDataType
::
F16_F16_F16
&&
layout
==
GemmMatrixLayout
::
MK_KN_MN
)
{
ck
::
profiler
::
profile_gemm_bias_relu_add_impl
<
ck
::
half_t
,
ck
::
half_t
,
ck
::
half_t
,
ck
::
tensor_layout
::
gemm
::
RowMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
M
,
N
,
K
,
(
StrideA
<
0
)
?
K
:
StrideA
,
(
StrideB
<
0
)
?
N
:
StrideB
,
(
StrideC
<
0
)
?
N
:
StrideC
,
(
StrideC1
<
0
)
?
N
:
StrideC1
);
}
else
if
(
data_type
==
GemmDataType
::
F16_F16_F16
&&
layout
==
GemmMatrixLayout
::
MK_NK_MN
)
{
ck
::
profiler
::
profile_gemm_bias_relu_add_impl
<
ck
::
half_t
,
ck
::
half_t
,
ck
::
half_t
,
ck
::
tensor_layout
::
gemm
::
RowMajor
,
ck
::
tensor_layout
::
gemm
::
ColumnMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
M
,
N
,
K
,
(
StrideA
<
0
)
?
K
:
StrideA
,
(
StrideB
<
0
)
?
K
:
StrideB
,
(
StrideC
<
0
)
?
N
:
StrideC
,
(
StrideC1
<
0
)
?
N
:
StrideC1
);
}
else
if
(
data_type
==
GemmDataType
::
F16_F16_F16
&&
layout
==
GemmMatrixLayout
::
KM_KN_MN
)
{
ck
::
profiler
::
profile_gemm_bias_relu_add_impl
<
ck
::
half_t
,
ck
::
half_t
,
ck
::
half_t
,
ck
::
tensor_layout
::
gemm
::
ColumnMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
M
,
N
,
K
,
(
StrideA
<
0
)
?
M
:
StrideA
,
(
StrideB
<
0
)
?
N
:
StrideB
,
(
StrideC
<
0
)
?
N
:
StrideC
,
(
StrideC1
<
0
)
?
N
:
StrideC1
);
}
else
if
(
data_type
==
GemmDataType
::
F16_F16_F16
&&
layout
==
GemmMatrixLayout
::
KM_NK_MN
)
{
ck
::
profiler
::
profile_gemm_bias_relu_add_impl
<
ck
::
half_t
,
ck
::
half_t
,
ck
::
half_t
,
ck
::
tensor_layout
::
gemm
::
ColumnMajor
,
ck
::
tensor_layout
::
gemm
::
ColumnMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
M
,
N
,
K
,
(
StrideA
<
0
)
?
M
:
StrideA
,
(
StrideB
<
0
)
?
K
:
StrideB
,
(
StrideC
<
0
)
?
N
:
StrideC
,
(
StrideC1
<
0
)
?
N
:
StrideC1
);
}
else
{
throw
std
::
runtime_error
(
"wrong! this data_type & layout is not implemented"
);
}
return
0
;
}
profiler/src/profile_gemm_bilinear.cpp
0 → 100644
View file @
9e4429f9
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "profiler/include/profile_gemm_bilinear_impl.hpp"
int
profile_gemm_bilinear
(
int
argc
,
char
*
argv
[])
{
enum
struct
MatrixLayout
{
MK_KN_MN_MN
,
// 0
MK_NK_MN_MN
,
// 1
KM_KN_MN_MN
,
// 2
KM_NK_MN_MN
,
// 3
};
enum
struct
MatrixDataType
{
F32_F32_F32_F32
,
// 0
F16_F16_F16_F16
,
// 1
BF16_BF16_BF16_BF16
,
// 2
INT8_INT8_INT8_INT8
,
// 3
};
if
(
argc
!=
17
)
{
// clang-format off
printf
(
"arg1: tensor operation (gemm_bilinear: GEMM+Bilinear)
\n
"
);
printf
(
"arg2: data type (0: fp32; 1: fp16; 2: bf16; 3: int8)
\n
"
);
printf
(
"arg3: matrix layout (0: E[m, n] = alpha * A[m, k] * B[k, n] + beta * D[m, n];
\n
"
);
printf
(
" 1: E[m, n] = alpha * A[m, k] * B[n, k] + beta * D[m, n];
\n
"
);
printf
(
" 2: E[m, n] = alpha * A[k, m] * B[k, n] + beta * D[m, n];
\n
"
);
printf
(
" 3: E[m, n] = alpha * A[k, m] * B[n, k] + beta * D[m, n])
\n
"
);
printf
(
"arg4: verification (0: no; 1: yes)
\n
"
);
printf
(
"arg5: initialization (0: no init; 1: integer value; 2: decimal value)
\n
"
);
printf
(
"arg6: print tensor value (0: no; 1: yes)
\n
"
);
printf
(
"arg7: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg8 to 14: M, N, K, StrideA, StrideB, StrideD, StrideE
\n
"
);
printf
(
"arg15 to 16: alhpa, beta
\n
"
);
// clang-format on
exit
(
1
);
}
const
auto
data_type
=
static_cast
<
MatrixDataType
>
(
std
::
stoi
(
argv
[
2
]));
const
auto
layout
=
static_cast
<
MatrixLayout
>
(
std
::
stoi
(
argv
[
3
]));
const
bool
do_verification
=
std
::
stoi
(
argv
[
4
]);
const
int
init_method
=
std
::
stoi
(
argv
[
5
]);
const
bool
do_log
=
std
::
stoi
(
argv
[
6
]);
const
bool
time_kernel
=
std
::
stoi
(
argv
[
7
]);
const
int
M
=
std
::
stoi
(
argv
[
8
]);
const
int
N
=
std
::
stoi
(
argv
[
9
]);
const
int
K
=
std
::
stoi
(
argv
[
10
]);
const
int
StrideA
=
std
::
stoi
(
argv
[
11
]);
const
int
StrideB
=
std
::
stoi
(
argv
[
12
]);
const
int
StrideD
=
std
::
stoi
(
argv
[
13
]);
const
int
StrideE
=
std
::
stoi
(
argv
[
14
]);
const
float
alpha
=
std
::
stof
(
argv
[
15
]);
const
float
beta
=
std
::
stof
(
argv
[
16
]);
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
auto
profile
=
[
&
](
auto
a_type
,
auto
b_type
,
auto
acc_type
,
auto
d_type
,
auto
e_type
,
auto
a_layout
,
auto
b_layout
,
auto
de_layout
)
{
using
ADataType
=
decltype
(
a_type
);
using
BDataType
=
decltype
(
b_type
);
using
AccDataType
=
decltype
(
acc_type
);
using
DDataType
=
decltype
(
d_type
);
using
EDataType
=
decltype
(
e_type
);
using
ALayout
=
decltype
(
a_layout
);
using
BLayout
=
decltype
(
b_layout
);
using
DELayout
=
decltype
(
de_layout
);
const
int
DefaultStrideA
=
ck
::
is_same_v
<
ALayout
,
Row
>
?
K
:
M
;
const
int
DefaultStrideB
=
ck
::
is_same_v
<
BLayout
,
Row
>
?
N
:
K
;
const
int
DefaultStrideD
=
ck
::
is_same_v
<
DELayout
,
Row
>
?
N
:
M
;
const
int
DefaultStrideE
=
ck
::
is_same_v
<
DELayout
,
Row
>
?
N
:
M
;
bool
pass
=
ck
::
profiler
::
profile_gemm_bilinear_impl
<
ADataType
,
BDataType
,
AccDataType
,
DDataType
,
EDataType
,
ALayout
,
BLayout
,
DELayout
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
M
,
N
,
K
,
(
StrideA
<
0
)
?
DefaultStrideA
:
StrideA
,
(
StrideB
<
0
)
?
DefaultStrideB
:
StrideB
,
(
StrideD
<
0
)
?
DefaultStrideD
:
StrideD
,
(
StrideE
<
0
)
?
DefaultStrideE
:
StrideE
,
alpha
,
beta
);
return
pass
?
0
:
1
;
};
if
(
data_type
==
MatrixDataType
::
F16_F16_F16_F16
&&
layout
==
MatrixLayout
::
MK_KN_MN_MN
)
{
return
profile
(
F16
{},
F16
{},
F32
{},
F16
{},
F16
{},
Row
{},
Row
{},
Row
{});
}
else
if
(
data_type
==
MatrixDataType
::
F16_F16_F16_F16
&&
layout
==
MatrixLayout
::
MK_NK_MN_MN
)
{
return
profile
(
F16
{},
F16
{},
F32
{},
F16
{},
F16
{},
Row
{},
Col
{},
Row
{});
}
else
if
(
data_type
==
MatrixDataType
::
F16_F16_F16_F16
&&
layout
==
MatrixLayout
::
KM_KN_MN_MN
)
{
return
profile
(
F16
{},
F16
{},
F32
{},
F16
{},
F16
{},
Col
{},
Row
{},
Row
{});
}
else
if
(
data_type
==
MatrixDataType
::
F16_F16_F16_F16
&&
layout
==
MatrixLayout
::
KM_NK_MN_MN
)
{
return
profile
(
F16
{},
F16
{},
F32
{},
F16
{},
F16
{},
Col
{},
Col
{},
Row
{});
}
else
{
std
::
cout
<<
"this data_type & layout is not implemented"
<<
std
::
endl
;
return
1
;
}
}
profiler/src/profiler.cpp
View file @
9e4429f9
...
...
@@ -5,12 +5,10 @@
int
profile_gemm
(
int
,
char
*
[]);
int
profile_gemm_splitk
(
int
,
char
*
[]);
int
profile_gemm_bias_2d
(
int
,
char
*
[]);
int
profile_gemm_bias_relu
(
int
,
char
*
[]);
int
profile_gemm_bias_relu_add
(
int
,
char
*
[]);
int
profile_gemm_bias_add_reduce
(
int
,
char
*
[]);
int
profile_gemm_bilinear
(
int
,
char
*
[]);
int
profile_gemm_add_add_fastgelu
(
int
,
char
*
[]);
int
profile_gemm_reduce
(
int
,
char
*
[]);
int
profile_gemm_bias_add_reduce
(
int
,
char
*
[]);
int
profile_batched_gemm
(
int
,
char
*
[]);
int
profile_batched_gemm_reduce
(
int
,
char
*
[]);
int
profile_grouped_gemm
(
int
,
char
*
[]);
...
...
@@ -28,12 +26,12 @@ static void print_helper_message()
// clang-format off
printf
(
"arg1: tensor operation (gemm: GEMM
\n
"
" gemm_splitk: Split-K GEMM
\n
"
" gemm_bias_2d: GEMM+Bias(2D)
\n
"
" gemm_bias_relu: GEMM+Bias+ReLU
\n
"
" gemm_bias_relu_add: GEMM+Bias+ReLU+Add
\n
"
" gemm_bilinear: GEMM+Bilinear
\n
"
" gemm_add_add_fastgelu: GEMM+Add+Add+FastGeLU
\n
"
" gemm_reduce: GEMM+Reduce
\n
"
" gemm_bias_add_reduce: GEMM+Bias+Add+Reduce
\n
"
" batched_gemm: Batched GEMM
\n
"
" batched_gemm_reduce: Batched GEMM+Reduce
\n
"
" grouped_gemm: Grouped GEMM
\n
"
" conv_fwd: ForwardConvolution
\n
"
" conv_fwd_bias_relu: ForwardConvolution+Bias+ReLU
\n
"
...
...
@@ -63,17 +61,13 @@ int main(int argc, char* argv[])
{
return
profile_gemm_splitk
(
argc
,
argv
);
}
else
if
(
strcmp
(
argv
[
1
],
"gemm_bias_2d"
)
==
0
)
{
return
profile_gemm_bias_2d
(
argc
,
argv
);
}
else
if
(
strcmp
(
argv
[
1
],
"gemm_bias_relu"
)
==
0
)
else
if
(
strcmp
(
argv
[
1
],
"gemm_bilinear"
)
==
0
)
{
return
profile_gemm_bi
as_relu
(
argc
,
argv
);
return
profile_gemm_bi
linear
(
argc
,
argv
);
}
else
if
(
strcmp
(
argv
[
1
],
"gemm_
bias_relu_add
"
)
==
0
)
else
if
(
strcmp
(
argv
[
1
],
"gemm_
add_add_fastgelu
"
)
==
0
)
{
return
profile_gemm_
bias_relu_add
(
argc
,
argv
);
return
profile_gemm_
add_add_fastgelu
(
argc
,
argv
);
}
else
if
(
strcmp
(
argv
[
1
],
"gemm_reduce"
)
==
0
)
{
...
...
@@ -119,17 +113,13 @@ int main(int argc, char* argv[])
{
return
profile_convnd_bwd_data
(
argc
,
argv
,
3
);
}
else
if
(
strcmp
(
argv
[
1
],
"reduce"
)
==
0
)
{
return
profile_reduce
(
argc
,
argv
);
}
else
if
(
strcmp
(
argv
[
1
],
"conv2d_bwd_weight"
)
==
0
)
{
return
profile_conv_bwd_weight
(
argc
,
argv
);
}
else
if
(
strcmp
(
argv
[
1
],
"
gemm_add_add_fastgelu
"
)
==
0
)
else
if
(
strcmp
(
argv
[
1
],
"
reduce
"
)
==
0
)
{
return
profile_
gemm_add_add_fastgelu
(
argc
,
argv
);
return
profile_
reduce
(
argc
,
argv
);
}
else
if
(
strcmp
(
argv
[
1
],
"batchnorm"
)
==
0
||
strcmp
(
argv
[
1
],
"layernorm"
)
==
0
||
strcmp
(
argv
[
1
],
"softmax"
)
==
0
)
...
...
Prev
1
2
3
4
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment