Unverified Commit 9e4429f9 authored by Chao Liu's avatar Chao Liu Committed by GitHub
Browse files

Gemm+Bilinear (#316)

* refactor

* update example

* update example

* gemm bilinear

* clean

* update
parent 8e374781
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_bias_activation_add.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_xdlops_v3r3.hpp"
#include "ck/device_utility/device_prop.hpp"
#include "ck/device_utility/kernel_launch.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
// C[M, N] = activate(A[M, K] * B[K, N] + C0[N]) + C1[M, N]
template <
typename ADataType,
typename BDataType,
typename CDataType,
typename AccDataType,
typename ALayout,
typename BLayout,
typename CLayout,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation,
ck::index_t BlockSize,
ck::index_t MPerBlock,
ck::index_t NPerBlock,
ck::index_t K0PerBlock,
ck::index_t K1,
ck::index_t MPerXDL,
ck::index_t NPerXDL,
ck::index_t MXdlPerWave,
ck::index_t NXdlPerWave,
typename ABlockTransferThreadClusterLengths_K0_M_K1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
ck::index_t ABlockTransferSrcVectorDim,
ck::index_t ABlockTransferSrcScalarPerVector,
ck::index_t ABlockTransferDstScalarPerVector_K1,
bool ABlockLdsAddExtraM,
typename BBlockTransferThreadClusterLengths_K0_N_K1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
ck::index_t BBlockTransferSrcVectorDim,
ck::index_t BBlockTransferSrcScalarPerVector,
ck::index_t BBlockTransferDstScalarPerVector_K1,
bool BBlockLdsAddExtraN,
index_t CShuffleMXdlPerWavePerShuffle,
index_t CShuffleNXdlPerWavePerShuffle,
typename CBlockTransferClusterLengths_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl,
index_t CBlockTransferScalarPerVector_NWaveNPerXdl>
struct DeviceGemmXdl_C_Shuffle_Bias_Activation_Add
: public DeviceGemmBiasActivationAdd<AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation>
{
using DeviceOp = DeviceGemmXdl_C_Shuffle_Bias_Activation_Add;
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr auto I4 = Number<4>{};
static constexpr auto K1Number = Number<K1>{};
static auto MakeGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N_C0_M_N_C1_M_N(index_t M,
index_t N,
index_t K,
index_t StrideA,
index_t StrideB,
index_t StrideC,
index_t StrideC1)
{
assert(K % K1 == 0);
const index_t K0 = K / K1;
// A[K0, M, K1]
const auto a_grid_desc_m_k = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, ALayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, K), make_tuple(StrideA, I1));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, ALayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, K), make_tuple(I1, StrideA));
}
}();
const auto a_grid_desc_k0_m_k1 =
transform_tensor_descriptor(a_grid_desc_m_k,
make_tuple(make_unmerge_transform(make_tuple(K0, K1Number)),
make_pass_through_transform(M)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
// B[K0, N, K1]
const auto b_grid_desc_k_n = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, BLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(K, N), make_tuple(StrideB, I1));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, BLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(K, N), make_tuple(I1, StrideB));
}
}();
const auto b_grid_desc_k0_n_k1 =
transform_tensor_descriptor(b_grid_desc_k_n,
make_tuple(make_unmerge_transform(make_tuple(K0, K1Number)),
make_pass_through_transform(N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
// C[M, N]
const auto c_grid_desc_m_n = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, CLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(StrideC, I1));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, CLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(I1, StrideC));
}
}();
// C0[N]: assume a contiguous vector
const auto c0_grid_desc_m_n =
make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(I0, I1));
// C1[M, N]: residual tensor: assume same layout as C
const auto c1_grid_desc_m_n = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, CLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(StrideC1, I1));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, CLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(I1, StrideC1));
}
}();
return make_tuple(a_grid_desc_k0_m_k1,
b_grid_desc_k0_n_k1,
c_grid_desc_m_n,
c0_grid_desc_m_n,
c1_grid_desc_m_n);
}
using GridDescs =
decltype(MakeGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N_C0_M_N_C1_M_N(1, 1, 1, 1, 1, 1, 1));
using AGridDesc_K0_M_K1 = remove_cvref_t<decltype(GridDescs{}[I0])>;
using BGridDesc_K0_N_K1 = remove_cvref_t<decltype(GridDescs{}[I1])>;
using CGridDesc_M_N = remove_cvref_t<decltype(GridDescs{}[I2])>;
using C0GridDesc_M_N = remove_cvref_t<decltype(GridDescs{}[I3])>;
using C1GridDesc_M_N = remove_cvref_t<decltype(GridDescs{}[I4])>;
// GridwiseGemm
using GridwiseGemm = GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v3r3<
BlockSize,
ADataType, // TODO: distinguish A/B datatype
AccDataType,
CDataType,
InMemoryDataOperationEnum::Set,
AGridDesc_K0_M_K1,
BGridDesc_K0_N_K1,
CGridDesc_M_N,
C0GridDesc_M_N,
C1GridDesc_M_N,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
MPerBlock,
NPerBlock,
K0PerBlock,
MPerXDL,
NPerXDL,
K1,
MXdlPerWave,
NXdlPerWave,
ABlockTransferThreadClusterLengths_K0_M_K1,
ABlockTransferThreadClusterArrangeOrder,
ABlockTransferSrcAccessOrder,
ABlockTransferSrcVectorDim,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_K1,
false, // AThreadTransferSrcResetCoordinateAfterRun,
ABlockLdsAddExtraM,
BBlockTransferThreadClusterLengths_K0_N_K1,
BBlockTransferThreadClusterArrangeOrder,
BBlockTransferSrcAccessOrder,
BBlockTransferSrcVectorDim,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_K1,
false, // BThreadTransferSrcResetCoordinateAfterRun,
BBlockLdsAddExtraN,
CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle,
CBlockTransferClusterLengths_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl,
CBlockTransferScalarPerVector_NWaveNPerXdl>;
// Argument
struct Argument : public BaseArgument
{
Argument(const ADataType* p_a_grid,
const BDataType* p_b_grid,
CDataType* p_c_grid,
const CDataType* p_c0_grid,
const CDataType* p_c1_grid,
index_t M,
index_t N,
index_t K,
index_t StrideA,
index_t StrideB,
index_t StrideC,
index_t StrideC1,
index_t M01,
index_t N01,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op)
: p_a_grid_{p_a_grid},
p_b_grid_{p_b_grid},
p_c_grid_{p_c_grid},
p_c0_grid_{p_c0_grid},
p_c1_grid_{p_c1_grid},
a_grid_desc_k0_m_k1_{},
b_grid_desc_k0_n_k1_{},
c_grid_desc_m_n_{},
c0_grid_desc_m_n_{},
c1_grid_desc_m_n_{},
c_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_{},
c0_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_{},
c1_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_{},
block_2_ctile_map_{},
M01_{M01},
N01_{N01},
a_element_op_{a_element_op},
b_element_op_{b_element_op},
c_element_op_{c_element_op}
{
const auto descs = DeviceOp::MakeGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N_C0_M_N_C1_M_N(
M, N, K, StrideA, StrideB, StrideC, StrideC1);
a_grid_desc_k0_m_k1_ = descs[I0];
b_grid_desc_k0_n_k1_ = descs[I1];
c_grid_desc_m_n_ = descs[I2];
c0_grid_desc_m_n_ = descs[I3];
c1_grid_desc_m_n_ = descs[I4];
block_2_ctile_map_ =
GridwiseGemm::MakeDefaultBlock2CTileMap(c_grid_desc_m_n_, M01, N01);
if(GridwiseGemm::CheckValidity(a_grid_desc_k0_m_k1_,
b_grid_desc_k0_n_k1_,
c_grid_desc_m_n_,
block_2_ctile_map_))
{
c_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_ =
GridwiseGemm::
MakeCGridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl(
c_grid_desc_m_n_);
c0_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_ =
GridwiseGemm::
MakeCGridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl(
c0_grid_desc_m_n_);
c1_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_ =
GridwiseGemm::
MakeCGridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl(
c1_grid_desc_m_n_);
}
}
// private:
const ADataType* p_a_grid_;
const BDataType* p_b_grid_;
CDataType* p_c_grid_;
const CDataType* p_c0_grid_;
const CDataType* p_c1_grid_;
AGridDesc_K0_M_K1 a_grid_desc_k0_m_k1_;
BGridDesc_K0_N_K1 b_grid_desc_k0_n_k1_;
CGridDesc_M_N c_grid_desc_m_n_;
C0GridDesc_M_N c0_grid_desc_m_n_;
C1GridDesc_M_N c1_grid_desc_m_n_;
typename GridwiseGemm::
CGridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl
c_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_;
typename GridwiseGemm::
C0GridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl
c0_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_;
typename GridwiseGemm::
C1GridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl
c1_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_;
typename GridwiseGemm::DefaultBlock2CTileMap block_2_ctile_map_;
index_t M01_;
index_t N01_;
AElementwiseOperation a_element_op_;
BElementwiseOperation b_element_op_;
CElementwiseOperation c_element_op_;
};
// Invoker
struct Invoker : public BaseInvoker
{
using Argument = DeviceOp::Argument;
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
{
std::cout << "arg.a_grid_desc_k0_m_k1_{" << arg.a_grid_desc_k0_m_k1_.GetLength(I0)
<< ", " << arg.a_grid_desc_k0_m_k1_.GetLength(I1) << ", "
<< arg.a_grid_desc_k0_m_k1_.GetLength(I2) << "}" << std::endl;
std::cout << "arg.b_grid_desc_k0_n_k1_{" << arg.b_grid_desc_k0_n_k1_.GetLength(I0)
<< ", " << arg.b_grid_desc_k0_n_k1_.GetLength(I1) << ", "
<< arg.b_grid_desc_k0_n_k1_.GetLength(I2) << "}" << std::endl;
std::cout << "arg.c_grid_desc_m_n_{ " << arg.c_grid_desc_m_n_.GetLength(I0) << ", "
<< arg.c_grid_desc_m_n_.GetLength(I1) << "}" << std::endl;
std::cout << "arg.c0_grid_desc_m_n_{ " << arg.c0_grid_desc_m_n_.GetLength(I0)
<< ", " << arg.c0_grid_desc_m_n_.GetLength(I1) << "}" << std::endl;
std::cout << "arg.c1_grid_desc_m_n_{ " << arg.c1_grid_desc_m_n_.GetLength(I0)
<< ", " << arg.c1_grid_desc_m_n_.GetLength(I1) << "}" << std::endl;
}
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_,
arg.c_grid_desc_m_n_,
arg.block_2_ctile_map_))
{
throw std::runtime_error(
"wrong! GridwiseGemm_km_kn_m0m1n0n1_xdlops_v2r5 has invalid setting");
}
const index_t grid_size =
arg.block_2_ctile_map_.CalculateGridSize(arg.c_grid_desc_m_n_);
const auto K =
arg.a_grid_desc_k0_m_k1_.GetLength(I0) * arg.a_grid_desc_k0_m_k1_.GetLength(I2);
float ave_time = 0;
if(GridwiseGemm::CalculateHasMainKBlockLoop(K))
{
const auto kernel = kernel_gemm_xdlops_v3r3<
GridwiseGemm,
ADataType, // TODO: distiguish A/B datatype
CDataType,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
typename GridwiseGemm::
CGridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl>,
remove_reference_t<
typename GridwiseGemm::
C0GridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl>,
remove_reference_t<
typename GridwiseGemm::
C1GridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl>,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
remove_reference_t<typename GridwiseGemm::DefaultBlock2CTileMap>,
true>;
ave_time = launch_and_time_kernel(
stream_config,
kernel,
dim3(grid_size),
dim3(BlockSize),
0,
arg.p_a_grid_,
arg.p_b_grid_,
arg.p_c_grid_,
arg.p_c0_grid_,
arg.p_c1_grid_,
arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_,
arg.c_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_,
arg.c0_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_,
arg.c1_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_,
arg.a_element_op_,
arg.b_element_op_,
arg.c_element_op_,
arg.block_2_ctile_map_);
}
else
{
const auto kernel = kernel_gemm_xdlops_v3r3<
GridwiseGemm,
ADataType, // TODO: distiguish A/B datatype
CDataType,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
typename GridwiseGemm::
CGridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl>,
remove_reference_t<
typename GridwiseGemm::
C0GridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl>,
remove_reference_t<
typename GridwiseGemm::
C1GridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl>,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
remove_reference_t<typename GridwiseGemm::DefaultBlock2CTileMap>,
false>;
ave_time = launch_and_time_kernel(
stream_config,
kernel,
dim3(grid_size),
dim3(BlockSize),
0,
arg.p_a_grid_,
arg.p_b_grid_,
arg.p_c_grid_,
arg.p_c0_grid_,
arg.p_c1_grid_,
arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_,
arg.c_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_,
arg.c0_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_,
arg.c1_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_,
arg.a_element_op_,
arg.b_element_op_,
arg.c_element_op_,
arg.block_2_ctile_map_);
}
return ave_time;
}
// polymorphic
float Run(const BaseArgument* p_arg,
const StreamConfig& stream_config = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), stream_config);
}
};
static constexpr bool IsValidCompilationParameter()
{
// TODO: properly implement this check
return true;
}
static bool IsSupportedArgument(const Argument& arg)
{
return GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_,
arg.c_grid_desc_m_n_,
arg.block_2_ctile_map_);
}
// polymorphic
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
}
static auto MakeArgument(const ADataType* p_a,
const BDataType* p_b,
CDataType* p_c,
const CDataType* p_c0,
const CDataType* p_c1,
index_t M,
index_t N,
index_t K,
index_t StrideA,
index_t StrideB,
index_t StrideC,
index_t StrideC1,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op)
{
return Argument{p_a,
p_b,
p_c,
p_c0,
p_c1,
M,
N,
K,
StrideA,
StrideB,
StrideC,
StrideC1,
1,
1,
a_element_op,
b_element_op,
c_element_op};
}
static auto MakeInvoker() { return Invoker{}; }
// polymorphic
std::unique_ptr<BaseArgument> MakeArgumentPointer(const void* p_a,
const void* p_b,
void* p_c,
const void* p_c0,
const void* p_c1,
index_t M,
index_t N,
index_t K,
index_t StrideA,
index_t StrideB,
index_t StrideC,
index_t StrideC1,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op,
index_t /* KBatch */ = 1) override
{
return std::make_unique<Argument>(static_cast<const ADataType*>(p_a),
static_cast<const BDataType*>(p_b),
static_cast<CDataType*>(p_c),
static_cast<const CDataType*>(p_c0),
static_cast<const CDataType*>(p_c1),
M,
N,
K,
StrideA,
StrideB,
StrideC,
StrideC1,
1,
1,
a_element_op,
b_element_op,
c_element_op);
}
// polymorphic
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>(Invoker{});
}
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "DeviceGemmXdl_C_Shuffle_Bias_Activation_Add"
<< "<"
<< BlockSize << ", "
<< MPerBlock << ", "
<< NPerBlock << ", "
<< K0PerBlock
<< ">";
// clang-format on
return str.str();
}
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -19,6 +19,22 @@ enum struct GemmSpecialization
MNKPadding,
};
inline std::string getGemmSpecializationString(const GemmSpecialization& s)
{
switch(s)
{
case GemmSpecialization::Default: return "Default";
case GemmSpecialization::MPadding: return "MPadding";
case GemmSpecialization::NPadding: return "NPadding";
case GemmSpecialization::KPadding: return "KPadding";
case GemmSpecialization::MNPadding: return "MNPadding";
case GemmSpecialization::MKPadding: return "MKPadding";
case GemmSpecialization::NKPadding: return "NKPadding";
case GemmSpecialization::MNKPadding: return "MNKPadding";
default: return "Unrecognized specialization!";
}
}
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -35,7 +35,6 @@ struct Add
y = type_convert<half_t>(x0) + x1;
};
// Question: should half_t be supported ?
template <>
__host__ __device__ constexpr void
operator()<half_t>(half_t& y, const half_t& x0, const half_t& x1) const
......@@ -43,7 +42,6 @@ struct Add
y = x0 + x1;
};
// Question: should bhalf_t be supported ?
template <>
__host__ __device__ constexpr void
operator()<bhalf_t>(bhalf_t& y, const bhalf_t& x0, const bhalf_t& x1) const
......@@ -74,7 +72,6 @@ struct Subtract
y = x0 - x1;
};
// Question: should half_t be supported ?
template <>
__host__ __device__ constexpr void
operator()<half_t>(half_t& y, const half_t& x0, const half_t& x1) const
......@@ -82,7 +79,6 @@ struct Subtract
y = x0 - x1;
};
// Question: should bhalf_t be supported ?
template <>
__host__ __device__ constexpr void
operator()<bhalf_t>(bhalf_t& y, const bhalf_t& x0, const bhalf_t& x1) const
......@@ -94,33 +90,25 @@ struct Subtract
}
};
struct AlphaBetaAdd
struct Bilinear
{
AlphaBetaAdd(float alpha, float beta) : alpha_(alpha), beta_(beta){};
Bilinear(float alpha, float beta) : alpha_(alpha), beta_(beta){};
template <typename T>
__host__ __device__ constexpr void operator()(T& y, const T& x0, const T& x1) const;
template <typename Y, typename X0, typename X1>
__host__ __device__ constexpr void operator()(Y&, const X0&, const X1&) const;
template <>
__host__ __device__ constexpr void
operator()<float>(float& y, const float& x0, const float& x1) const
operator()<float, float, float>(float& y, const float& x0, const float& x1) const
{
y = alpha_ * x0 + beta_ * x1;
};
template <>
__host__ __device__ constexpr void
operator()<double>(double& y, const double& x0, const double& x1) const
{
y = static_cast<double>(alpha_) * x0 + static_cast<double>(beta_) * x1;
};
// Question: should half_t be supported ?
template <>
__host__ __device__ constexpr void
operator()<half_t>(half_t& y, const half_t& x0, const half_t& x1) const
operator()<half_t, float, half_t>(half_t& y, const float& x0, const half_t& x1) const
{
y = static_cast<half_t>(alpha_ * static_cast<float>(x0) + beta_ * static_cast<float>(x1));
y = type_convert<half_t>(alpha_ * x0 + beta_ * ck::type_convert<float>(x1));
};
float alpha_;
......@@ -148,13 +136,12 @@ struct AddRelu
y = a > 0.0 ? a : 0.0;
};
// Question: should half_t be supported ?
template <>
__host__ __device__ constexpr void
operator()<half_t>(half_t& y, const half_t& x0, const half_t& x1) const
{
const half_t a = x0 + x1;
y = a > static_cast<half_t>(0.0f) ? a : static_cast<half_t>(0.0f);
y = a > type_convert<half_t>(0.0f) ? a : type_convert<half_t>(0.0f);
};
};
......@@ -183,7 +170,6 @@ struct AddHardswish
y = c;
};
// Question: should half_t be supported ?
template <>
__host__ __device__ constexpr void
operator()<half_t>(half_t& y, const half_t& x0, const half_t& x1) const
......
......@@ -159,7 +159,7 @@ struct Normalize
using ck::math::sqrt;
float variance = mean_square - (mean * mean);
y = ((x - mean) / sqrt(variance + static_cast<float>(epsilon_))) * gamma + beta;
y = ((x - mean) / sqrt(variance + type_convert<float>(epsilon_))) * gamma + beta;
};
template <>
......
......@@ -932,14 +932,14 @@ using int8x64_t = typename vector_type<int8_t, 64>::type;
// Convert X to Y
template <typename Y, typename X>
__host__ __device__ Y type_convert(X x)
__host__ __device__ constexpr Y type_convert(X x)
{
return static_cast<Y>(x);
}
// convert bfp16 to fp32
template <>
inline __host__ __device__ float type_convert<float, bhalf_t>(bhalf_t x)
inline __host__ __device__ constexpr float type_convert<float, bhalf_t>(bhalf_t x)
{
union
{
......@@ -952,7 +952,7 @@ inline __host__ __device__ float type_convert<float, bhalf_t>(bhalf_t x)
// convert fp32 to bfp16
template <>
inline __host__ __device__ bhalf_t type_convert<bhalf_t, float>(float x)
inline __host__ __device__ constexpr bhalf_t type_convert<bhalf_t, float>(float x)
{
union
{
......
......@@ -16,12 +16,14 @@ using F32 = float;
using F16 = ck::half_t;
using BF16 = ck::bhalf_t;
using F16_F16 = ck::Tuple<F16, F16>;
using F16_TUPLE = ck::Tuple<F16>;
using F16_F16_TUPLE = ck::Tuple<F16, F16>;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using Bilinear = ck::tensor_operation::element_wise::Bilinear;
using AddAddFastGelu = ck::tensor_operation::element_wise::AddAddFastGelu;
template <typename DeviceOp>
......
......@@ -25,7 +25,7 @@ void add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instanc
Row,
F16,
F16,
F16_F16,
F16_F16_TUPLE,
F16,
PassThrough,
PassThrough,
......@@ -37,7 +37,7 @@ void add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instanc
Row,
F16,
F16,
F16_F16,
F16_F16_TUPLE,
F16,
PassThrough,
PassThrough,
......@@ -49,7 +49,7 @@ void add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instanc
Row,
F16,
F16,
F16_F16,
F16_F16_TUPLE,
F16,
PassThrough,
PassThrough,
......@@ -61,7 +61,7 @@ void add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instanc
Row,
F16,
F16,
F16_F16,
F16_F16_TUPLE,
F16,
PassThrough,
PassThrough,
......@@ -73,7 +73,8 @@ template <typename ALayout,
typename DELayout,
typename ADataType,
typename BDataType,
typename DsDataType,
typename D0DataType,
typename D1DataType,
typename EDataType>
struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGemmMultipleD<
ALayout,
......@@ -81,7 +82,7 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGemmMu
DELayout,
ADataType,
BDataType,
DsDataType,
ck::Tuple<D0DataType, D1DataType>,
EDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
......@@ -92,7 +93,7 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGemmMu
DELayout,
ADataType,
BDataType,
DsDataType,
ck::Tuple<D0DataType, D1DataType>,
EDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
......@@ -103,7 +104,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGemmMu
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(is_same_v<ADataType, half_t> && is_same_v<BDataType, half_t> &&
is_same_v<DsDataType, Tuple<half_t, half_t>> && is_same_v<EDataType, half_t>)
is_same_v<D0DataType, half_t> && is_same_v<D1DataType, half_t> &&
is_same_v<EDataType, half_t>)
{
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> &&
is_same_v<DELayout, Row>)
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include <vector>
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Col,
Row,
Row,
F16,
F16,
F16_TUPLE,
F16,
PassThrough,
PassThrough,
Bilinear>>>& instances);
void add_device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Col,
Col,
Row,
F16,
F16,
F16_TUPLE,
F16,
PassThrough,
PassThrough,
Bilinear>>>& instances);
void add_device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Row,
Row,
F16,
F16,
F16_TUPLE,
F16,
PassThrough,
PassThrough,
Bilinear>>>& instances);
void add_device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Col,
Row,
F16,
F16,
F16_TUPLE,
F16,
PassThrough,
PassThrough,
Bilinear>>>& instances);
// GEMM + Bilinear
template <typename ALayout,
typename BLayout,
typename DELayout,
typename ADataType,
typename BDataType,
typename DDataType,
typename EDataType>
struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGemmMultipleD<
ALayout,
BLayout,
DELayout,
ADataType,
BDataType,
ck::Tuple<DDataType>,
EDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::Bilinear>>
{
using DeviceOp = DeviceGemmMultipleD<ALayout,
BLayout,
DELayout,
ADataType,
BDataType,
ck::Tuple<DDataType>,
EDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::Bilinear>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(is_same_v<ADataType, half_t> && is_same_v<BDataType, half_t> &&
is_same_v<DDataType, half_t> && is_same_v<EDataType, half_t>)
{
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> &&
is_same_v<DELayout, Row>)
{
add_device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances(op_ptrs);
}
else if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Col> &&
is_same_v<DELayout, Row>)
{
add_device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances(op_ptrs);
}
else if constexpr(is_same_v<ALayout, Col> && is_same_v<BLayout, Row> &&
is_same_v<DELayout, Row>)
{
add_device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instances(op_ptrs);
}
else if constexpr(is_same_v<ALayout, Col> && is_same_v<BLayout, Col> &&
is_same_v<DELayout, Row>)
{
add_device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instances(op_ptrs);
}
}
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -5,15 +5,12 @@ function(add_instance_library INSTANCE_NAME)
set_target_properties(${INSTANCE_NAME} PROPERTIES POSITION_INDEPENDENT_CODE ON)
endfunction(add_instance_library INSTANCE_NAME)
add_subdirectory(elementwise)
add_subdirectory(gemm)
add_subdirectory(gemm_splitk)
add_subdirectory(gemm_bias2d)
add_subdirectory(gemm_bias_relu)
add_subdirectory(gemm_bias_relu_add)
add_subdirectory(gemm_bilinear)
add_subdirectory(gemm_add_add_fastgelu)
add_subdirectory(gemm_reduce)
add_subdirectory(gemm_bias_add_reduce)
add_subdirectory(gemm_add_add_fastgelu)
add_subdirectory(batched_gemm)
add_subdirectory(batched_gemm_reduce)
add_subdirectory(grouped_gemm)
......@@ -25,17 +22,16 @@ add_subdirectory(conv2d_fwd_bias_relu_add)
add_subdirectory(conv2d_bwd_data)
add_subdirectory(convnd_bwd_data)
add_subdirectory(conv2d_bwd_weight)
add_subdirectory(normalization)
add_subdirectory(reduce)
add_subdirectory(normalization)
add_subdirectory(elementwise)
add_library(device_operations STATIC
$<TARGET_OBJECTS:device_gemm_instance>
$<TARGET_OBJECTS:device_gemm_splitk_instance>
$<TARGET_OBJECTS:device_gemm_bias_relu_instance>
$<TARGET_OBJECTS:device_gemm_bias_relu_add_instance>
$<TARGET_OBJECTS:device_gemm_bias_add_reduce_instance>
$<TARGET_OBJECTS:device_gemm_bias2d_instance>
$<TARGET_OBJECTS:device_gemm_bilinear_instance>
$<TARGET_OBJECTS:device_gemm_add_add_fastgelu_instance>
$<TARGET_OBJECTS:device_gemm_bias_add_reduce_instance>
$<TARGET_OBJECTS:device_batched_gemm_instance>
$<TARGET_OBJECTS:device_batched_gemm_reduce_instance>
$<TARGET_OBJECTS:device_grouped_gemm_instance>
......@@ -47,9 +43,9 @@ add_library(device_operations STATIC
$<TARGET_OBJECTS:device_conv2d_bwd_data_instance>
$<TARGET_OBJECTS:device_convnd_bwd_data_instance>
$<TARGET_OBJECTS:device_conv2d_bwd_weight_instance>
$<TARGET_OBJECTS:device_elementwise_instance>
$<TARGET_OBJECTS:device_gemm_add_add_fastgelu_instance>
$<TARGET_OBJECTS:device_reduce_instance>
$<TARGET_OBJECTS:device_normalization_instance>
$<TARGET_OBJECTS:device_elementwise_instance>
)
add_library(composablekernels::device_operations ALIAS device_operations)
......@@ -81,7 +77,6 @@ target_include_directories(device_operations PUBLIC
#once new arches are enabled make this an option on the main cmake file
# and pass down here to be exported
target_compile_options(device_operations PRIVATE
--offload-arch=gfx908
--offload-arch=gfx90a
......
......@@ -7,6 +7,8 @@
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
......
......@@ -7,6 +7,8 @@
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
......
......@@ -7,6 +7,8 @@
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
......
......@@ -7,6 +7,8 @@
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
......
......@@ -4,6 +4,8 @@
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
......@@ -16,7 +18,7 @@ namespace instance {
using F16 = ck::half_t;
using F32 = float;
using F16_F16 = ck::Tuple<F16, F16>;
using F16_F16_Tuple = ck::Tuple<F16, F16>;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
......@@ -38,22 +40,22 @@ using device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instances
//##############################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle< Col, Row, Row, F16, F16, F32, F32, F16_F16, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 256, 128, 32, 2, 2, 32, 32, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Col, Row, Row, F16, F16, F32, F32, F16_F16, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Col, Row, Row, F16, F16, F32, F32, F16_F16, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 128, 256, 32, 2, 2, 32, 32, 2, 4, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Col, Row, Row, F16, F16, F32, F32, F16_F16, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 128, 256, 32, 8, 8, 32, 32, 2, 4, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Col, Row, Row, F16, F16, F32, F32, F16_F16, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 128, 128, 128, 32, 2, 2, 32, 32, 4, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Col, Row, Row, F16, F16, F32, F32, F16_F16, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 128, 128, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Col, Row, Row, F16, F16, F32, F32, F16_F16, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 128, 128, 32, 2, 2, 32, 32, 2, 2, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Col, Row, Row, F16, F16, F32, F32, F16_F16, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Col, Row, Row, F16, F16, F32, F32, F16_F16, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 128, 128, 64, 32, 2, 2, 32, 32, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Col, Row, Row, F16, F16, F32, F32, F16_F16, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 128, 128, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Col, Row, Row, F16, F16, F32, F32, F16_F16, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 128, 64, 128, 32, 2, 2, 32, 32, 2, 2, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Col, Row, Row, F16, F16, F32, F32, F16_F16, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 128, 64, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Col, Row, Row, F16, F16, F32, F32, F16_F16, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 128, 64, 32, 2, 2, 32, 32, 2, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, S<16,16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Col, Row, Row, F16, F16, F32, F32, F16_F16, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 128, 64, 32, 8, 8, 32, 32, 2, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Col, Row, Row, F16, F16, F32, F32, F16_F16, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 64, 128, 32, 2, 2, 32, 32, 1, 2, S<16,16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Col, Row, Row, F16, F16, F32, F32, F16_F16, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>
DeviceGemmMultipleD_Xdl_CShuffle< Col, Row, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 256, 128, 32, 2, 2, 32, 32, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Col, Row, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Col, Row, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 128, 256, 32, 2, 2, 32, 32, 2, 4, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Col, Row, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 128, 256, 32, 8, 8, 32, 32, 2, 4, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Col, Row, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 128, 128, 128, 32, 2, 2, 32, 32, 4, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Col, Row, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 128, 128, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Col, Row, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 128, 128, 32, 2, 2, 32, 32, 2, 2, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Col, Row, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Col, Row, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 128, 128, 64, 32, 2, 2, 32, 32, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Col, Row, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 128, 128, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Col, Row, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 128, 64, 128, 32, 2, 2, 32, 32, 2, 2, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Col, Row, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 128, 64, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Col, Row, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 128, 64, 32, 2, 2, 32, 32, 2, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, S<16,16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Col, Row, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 128, 64, 32, 8, 8, 32, 32, 2, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Col, Row, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 64, 128, 32, 2, 2, 32, 32, 1, 2, S<16,16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Col, Row, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>
// clang-format on
>;
......@@ -63,7 +65,7 @@ void add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instanc
Row,
F16,
F16,
F16_F16,
F16_F16_Tuple,
F16,
PassThrough,
PassThrough,
......
......@@ -4,6 +4,8 @@
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
......@@ -16,7 +18,7 @@ namespace instance {
using F16 = ck::half_t;
using F32 = float;
using F16_F16 = ck::Tuple<F16, F16>;
using F16_F16_Tuple = ck::Tuple<F16, F16>;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
......@@ -38,22 +40,22 @@ using device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instances
//##############################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle< Col, Col, Row, F16, F16, F32, F32, F16_F16, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 256, 128, 32, 2, 8, 32, 32, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Col, Col, Row, F16, F16, F32, F32, F16_F16, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Col, Col, Row, F16, F16, F32, F32, F16_F16, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 128, 256, 32, 2, 8, 32, 32, 2, 4, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Col, Col, Row, F16, F16, F32, F32, F16_F16, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 128, 256, 32, 8, 8, 32, 32, 2, 4, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Col, Col, Row, F16, F16, F32, F32, F16_F16, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 128, 128, 128, 32, 2, 8, 32, 32, 4, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Col, Col, Row, F16, F16, F32, F32, F16_F16, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 128, 128, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Col, Col, Row, F16, F16, F32, F32, F16_F16, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 128, 128, 32, 2, 8, 32, 32, 2, 2, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Col, Col, Row, F16, F16, F32, F32, F16_F16, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Col, Col, Row, F16, F16, F32, F32, F16_F16, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 128, 128, 64, 32, 2, 8, 32, 32, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Col, Col, Row, F16, F16, F32, F32, F16_F16, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 128, 128, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Col, Col, Row, F16, F16, F32, F32, F16_F16, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 128, 64, 128, 32, 2, 8, 32, 32, 2, 2, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Col, Col, Row, F16, F16, F32, F32, F16_F16, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 128, 64, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Col, Col, Row, F16, F16, F32, F32, F16_F16, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 128, 64, 32, 2, 8, 32, 32, 2, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Col, Col, Row, F16, F16, F32, F32, F16_F16, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 128, 64, 32, 8, 8, 32, 32, 2, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Col, Col, Row, F16, F16, F32, F32, F16_F16, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 64, 128, 32, 2, 8, 32, 32, 1, 2, S<16,16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Col, Col, Row, F16, F16, F32, F32, F16_F16, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>
DeviceGemmMultipleD_Xdl_CShuffle< Col, Col, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 256, 128, 32, 2, 8, 32, 32, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Col, Col, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Col, Col, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 128, 256, 32, 2, 8, 32, 32, 2, 4, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Col, Col, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 128, 256, 32, 8, 8, 32, 32, 2, 4, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Col, Col, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 128, 128, 128, 32, 2, 8, 32, 32, 4, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Col, Col, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 128, 128, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Col, Col, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 128, 128, 32, 2, 8, 32, 32, 2, 2, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Col, Col, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Col, Col, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 128, 128, 64, 32, 2, 8, 32, 32, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Col, Col, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 128, 128, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Col, Col, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 128, 64, 128, 32, 2, 8, 32, 32, 2, 2, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Col, Col, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 128, 64, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Col, Col, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 128, 64, 32, 2, 8, 32, 32, 2, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Col, Col, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 128, 64, 32, 8, 8, 32, 32, 2, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Col, Col, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 64, 128, 32, 2, 8, 32, 32, 1, 2, S<16,16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Col, Col, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>
// clang-format on
>;
......@@ -63,7 +65,7 @@ void add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instanc
Row,
F16,
F16,
F16_F16,
F16_F16_Tuple,
F16,
PassThrough,
PassThrough,
......
......@@ -4,6 +4,8 @@
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
......@@ -16,7 +18,7 @@ namespace instance {
using F16 = ck::half_t;
using F32 = float;
using F16_F16 = ck::Tuple<F16, F16>;
using F16_F16_Tuple = ck::Tuple<F16, F16>;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
......@@ -38,22 +40,22 @@ using device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances
//##############################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row, F16, F16, F32, F32, F16_F16, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 256, 128, 32, 8, 2, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row, F16, F16, F32, F32, F16_F16, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row, F16, F16, F32, F32, F16_F16, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 128, 256, 32, 8, 2, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row, F16, F16, F32, F32, F16_F16, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 128, 256, 32, 8, 8, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row, F16, F16, F32, F32, F16_F16, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 128, 128, 128, 32, 8, 2, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row, F16, F16, F32, F32, F16_F16, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 128, 128, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row, F16, F16, F32, F32, F16_F16, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 128, 128, 32, 8, 2, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row, F16, F16, F32, F32, F16_F16, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row, F16, F16, F32, F32, F16_F16, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 128, 128, 64, 32, 8, 2, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row, F16, F16, F32, F32, F16_F16, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 128, 128, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row, F16, F16, F32, F32, F16_F16, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 128, 64, 128, 32, 8, 2, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row, F16, F16, F32, F32, F16_F16, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 128, 64, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row, F16, F16, F32, F32, F16_F16, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 128, 64, 32, 8, 2, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<16,16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row, F16, F16, F32, F32, F16_F16, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 128, 64, 32, 8, 8, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row, F16, F16, F32, F32, F16_F16, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 64, 128, 32, 8, 2, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row, F16, F16, F32, F32, F16_F16, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 256, 128, 32, 8, 2, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 128, 256, 32, 8, 2, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 128, 256, 32, 8, 8, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 128, 128, 128, 32, 8, 2, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 128, 128, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 128, 128, 32, 8, 2, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 128, 128, 64, 32, 8, 2, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<8, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 128, 128, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 128, 64, 128, 32, 8, 2, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 128, 64, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 128, 64, 32, 8, 2, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<16,16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 128, 64, 32, 8, 8, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 64, 128, 32, 8, 2, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>
// clang-format on
>;
......@@ -63,7 +65,7 @@ void add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instanc
Row,
F16,
F16,
F16_F16,
F16_F16_Tuple,
F16,
PassThrough,
PassThrough,
......
......@@ -4,6 +4,8 @@
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
......@@ -16,7 +18,7 @@ namespace instance {
using F16 = ck::half_t;
using F32 = float;
using F16_F16 = ck::Tuple<F16, F16>;
using F16_F16_Tuple = ck::Tuple<F16, F16>;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
......@@ -38,19 +40,19 @@ using device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances
//##############################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row, F16, F16, F32, F32, F16_F16, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row, F16, F16, F32, F32, F16_F16, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 128, 256, 32, 8, 8, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row, F16, F16, F32, F32, F16_F16, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 128, 128, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row, F16, F16, F32, F32, F16_F16, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row, F16, F16, F32, F32, F16_F16, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 128, 128, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row, F16, F16, F32, F32, F16_F16, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 128, 64, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row, F16, F16, F32, F32, F16_F16, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 64, 64, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 4>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row, F16, F16, F32, F32, F16_F16, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 128, 64, 32, 8, 8, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row, F16, F16, F32, F32, F16_F16, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row, F16, F16, F32, F32, F16_F16, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 128, 128, 32, 32, 8, 8, 32, 32, 2, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row, F16, F16, F32, F32, F16_F16, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 128, 32, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row, F16, F16, F32, F32, F16_F16, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 64, 64, 32, 32, 8, 8, 32, 32, 2, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 4>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row, F16, F16, F32, F32, F16_F16, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 64, 32, 64, 32, 8, 8, 32, 32, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 4>, 8>
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 128, 256, 32, 8, 8, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 128, 128, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 128, 128, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 128, 64, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 64, 64, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 4>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 128, 64, 32, 8, 8, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 128, 128, 32, 32, 8, 8, 32, 32, 2, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 128, 32, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 64, 64, 32, 32, 8, 8, 32, 32, 2, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 4>, 8>,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row, F16, F16, F32, F32, F16_F16_Tuple, F16, PassThrough, PassThrough, AddAddFastGelu, GemmDefault, 1, 64, 32, 64, 32, 8, 8, 32, 32, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 16, 1, 4>, 8>
// clang-format on
>;
......@@ -60,7 +62,7 @@ void add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instanc
Row,
F16,
F16,
F16_F16,
F16_F16_Tuple,
F16,
PassThrough,
PassThrough,
......
# device_gemm_bias2d_instance
set(DEVICE_GEMM_BIAS2D_INSTANCE_SOURCE
device_gemm_xdl_c_shuffle_bias_2d_f32_f32_f32_km_kn_mn_instance.cpp;
device_gemm_xdl_c_shuffle_bias_2d_f32_f32_f32_km_nk_mn_instance.cpp;
device_gemm_xdl_c_shuffle_bias_2d_f32_f32_f32_mk_kn_mn_instance.cpp;
device_gemm_xdl_c_shuffle_bias_2d_f32_f32_f32_mk_nk_mn_instance.cpp;
device_gemm_xdl_c_shuffle_bias_2d_f16_f16_f16_km_kn_mn_instance.cpp;
device_gemm_xdl_c_shuffle_bias_2d_f16_f16_f16_km_nk_mn_instance.cpp;
device_gemm_xdl_c_shuffle_bias_2d_f16_f16_f16_mk_kn_mn_instance.cpp;
device_gemm_xdl_c_shuffle_bias_2d_f16_f16_f16_mk_nk_mn_instance.cpp;
)
add_library(device_gemm_bias2d_instance OBJECT ${DEVICE_GEMM_BIAS2D_INSTANCE_SOURCE})
set_target_properties(device_gemm_bias2d_instance PROPERTIES POSITION_INDEPENDENT_CODE ON)
clang_tidy_check(device_gemm_bias2d_instance)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_xdl_c_shuffle_bias_2d.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using AlphaBetaAdd = ck::tensor_operation::element_wise::AlphaBetaAdd;
// Compilation parameters for a[m, k] * b[k, n] = c[m, n]
using device_gemm_xdl_c_shuffle_bias_2d_f16_f16_f16_km_kn_mn_instances = std::tuple<
// clang-format off
//#############################|AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#############################| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MXdlPerWave_MWaveMPerXdl| ScalarPerVector|
//#############################| | | | | | | | Operation| Operation| Operation| | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl|
//#############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmXdl_C_Shuffle_Bias_2d< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, AlphaBetaAdd, 256, 256, 128, 4, 8, 32, 32, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, AlphaBetaAdd, 256, 128, 256, 4, 8, 32, 32, 2, 4, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, AlphaBetaAdd, 128, 128, 128, 4, 8, 32, 32, 4, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, 1, 1, S<1, 1, 16, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, AlphaBetaAdd, 256, 128, 128, 4, 8, 32, 32, 2, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, AlphaBetaAdd, 128, 128, 64, 4, 8, 32, 32, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, 1, 1, S<1, 1, 32, 1, 1, 4>, 8>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, AlphaBetaAdd, 128, 64, 128, 4, 8, 32, 32, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, 1, 1, S<1, 1, 16, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, AlphaBetaAdd, 256, 128, 64, 4, 8, 32, 32, 2, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, 1, 1, S<1, 1, 16, 1, 1, 4>, 8>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, AlphaBetaAdd, 256, 64, 128, 4, 8, 32, 32, 1, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>
// clang-format on
>;
void add_device_gemm_xdl_c_shuffle_bias_2d_f16_f16_f16_km_kn_mn_instances(
std::vector<DeviceGemmBiasPtr<PassThrough, PassThrough, AlphaBetaAdd>>& instances)
{
add_device_operation_instances(
instances, device_gemm_xdl_c_shuffle_bias_2d_f16_f16_f16_km_kn_mn_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_xdl_c_shuffle_bias_2d.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using AlphaBetaAdd = ck::tensor_operation::element_wise::AlphaBetaAdd;
// Compilation parameters for a[m, k] * b[k, n] = c[m, n]
using device_gemm_xdl_c_shuffle_bias_2d_f16_f16_f16_km_nk_mn_instances = std::tuple<
// clang-format off
//#############################|AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#############################| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MXdlPerWave_MWaveMPerXdl| ScalarPerVector|
//#############################| | | | | | | | Operation| Operation| Operation| | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl|
//#############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmXdl_C_Shuffle_Bias_2d< F16, F16, F16, F32, Col, Col, Row, PassThrough, PassThrough, AlphaBetaAdd, 256, 256, 128, 4, 8, 32, 32, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F16, F16, F16, F32, Col, Col, Row, PassThrough, PassThrough, AlphaBetaAdd, 256, 128, 256, 4, 8, 32, 32, 2, 4, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F16, F16, F16, F32, Col, Col, Row, PassThrough, PassThrough, AlphaBetaAdd, 128, 128, 128, 4, 8, 32, 32, 4, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 16, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F16, F16, F16, F32, Col, Col, Row, PassThrough, PassThrough, AlphaBetaAdd, 256, 128, 128, 4, 8, 32, 32, 2, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F16, F16, F16, F32, Col, Col, Row, PassThrough, PassThrough, AlphaBetaAdd, 128, 128, 64, 4, 8, 32, 32, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 32, 1, 1, 4>, 8>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F16, F16, F16, F32, Col, Col, Row, PassThrough, PassThrough, AlphaBetaAdd, 128, 64, 128, 4, 8, 32, 32, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 16, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F16, F16, F16, F32, Col, Col, Row, PassThrough, PassThrough, AlphaBetaAdd, 256, 128, 64, 4, 8, 32, 32, 2, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 16, 1, 1, 4>, 8>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F16, F16, F16, F32, Col, Col, Row, PassThrough, PassThrough, AlphaBetaAdd, 256, 64, 128, 4, 8, 32, 32, 1, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>
// clang-format on
>;
void add_device_gemm_xdl_c_shuffle_bias_2d_f16_f16_f16_km_nk_mn_instances(
std::vector<DeviceGemmBiasPtr<PassThrough, PassThrough, AlphaBetaAdd>>& instances)
{
add_device_operation_instances(
instances, device_gemm_xdl_c_shuffle_bias_2d_f16_f16_f16_km_nk_mn_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment