"...resnet50_tensorflow.git" did not exist on "21b11c7fce57c9160730c5fb32c41194e43e3595"
Unverified Commit 9a8ee8a3 authored by Qianfeng's avatar Qianfeng Committed by GitHub
Browse files

Reduction for int8 and bfloat16 (#125)



* Use thread cluster descriptor and explicit M_K 2d descriptor to simply Blockwise Reduction

* Change by replacing ReduceDims by NumReduceDims as Device Reduce interface template parameter

* Rename the folder name for the pool2d and reduce examples

* Update to reduction test scripts

* Add Readme for pool2d_fwd and reduce_blockwise examples

* Add support for int8_t reduction (ADD/AVG, MIN/MAX/AMAX)

* Tiny fix in reduce profiler and tiny update in reduce testing scripts

* Tiny fix in testing script profile_reduce_no_index.sh

* Tiny fix in testing script profile_reduce_no_index.sh

* Add support for bfp16 reduction (using bhalf_t = ushort)

* Tiny fix in amd_buffer_addressing.hpp

* Tiny change in script/profile_reduce_with_index.sh

* Use AccDataType for Beta value and use element_wise::PassThrough

* Use type_convert for type converting in host layer reduction

* Renaming and refining in Reduction profiler/device layer/examples

* Renaming and refining in Reduction profiler/device layer/examples

* Renaming all NumReduceDims to NumReduceDim

* Fix the leaked type_convert in ThreadwiseTensorSliceTransfer_v2

* Update to testing scripts to add bf16 support

* added more static_assert

* Remove buggy tunable configurations defined in device_reduce_instance_xxx.hpp

* Add static_assert to give compile-time warning for incorrect thread slice-size/vector-size configurations

* minor change

* Refine and fix (in GetWorkspaceSizeInBytes of MultiBlockPartialReduce) to make int8 completely pass

* Tiny renaming in gridwise_2d_reduction_multiblock_partial_reduce.hpp

* Tiny fix in script/profile_reduce_no_index.sh

* Refine in DeviceReduce layer with regard to using NumInvariantDim/NumReduceDim or InvariantDims/ReduceDims

* Generic renaming in host reduction and DeviceReduce layer

* Add support for 4-d all dimension reduction in the profiler and add_device_reduce_xxx instances

* Use multi-thread and simplification for host Reduction implementation

* Add ctest for reduction

* Update to clarify the using of data init method in produce_reduce/example_reduce/test_reduce/

* Update to the reduce CTest executables to enable default testing behavior when no command argument

* Renaming
Co-authored-by: default avatarJianfeng yan <jfyan008@gmail.com>
parent cb87b049
......@@ -37,7 +37,7 @@ cmake \
```bash
# -D <xxx> : input 4-d tensor lengths
# -v <x> : verification (0=no, 1=yes)
#arg1: initialization (0=no init, 1=integer value, 2=decimal value)
#arg1: initialization (0=no init, 1=single integer value, 2=scope integer value, 3=decimal value)
#arg2: run kernel # of times (>1)
./bin/reduce_blockwise -D 16,64,32,960 -v 1 1 10
```
......
......@@ -13,7 +13,7 @@
#include "device_base.hpp"
#include "device_reduce_blockwise.hpp"
#include "host_reduce_util.hpp"
#include "host_generic_reduction.hpp"
#include "host_reduction.hpp"
#include "reduction_enums.hpp"
#include "reduction_operator_mapping.hpp"
......@@ -21,13 +21,13 @@
using namespace ck;
using namespace ck::tensor_operation::device;
using InDataType = half_float::half;
using OutDataType = half_float::half;
using InDataType = ck::half_t;
using OutDataType = ck::half_t;
using AccDataType = float;
using kInDataType = ck::half_t;
using kOutDataType = ck::half_t;
using kAccDataType = float;
using HostInDataType = half_float::half;
using HostOutDataType = half_float::half;
using HostAccDataType = float;
constexpr int Rank = 4;
constexpr int NumReduceDim = 3;
......@@ -43,9 +43,9 @@ using InElementwiseOperation =
using AccElementwiseOperation =
typename reduce_unary_operator<AccDataType, ReduceOpId, true, true>::AccElementwiseOperation;
using DeviceReduceInstance = DeviceReduceBlockWise<kInDataType,
kAccDataType,
kOutDataType,
using DeviceReduceInstance = DeviceReduceBlockWise<InDataType,
AccDataType,
OutDataType,
Rank,
NumReduceDim,
ReduceOperation,
......@@ -135,6 +135,10 @@ class SimpleAppArgs
std::cout << "--verify or -v, 1/0 to indicate whether to verify the reduction result by "
"comparing with the host-based reduction"
<< std::endl;
std::cout << "Arg1 -- init method (0=no init, 1=single integer value, 2=scope integer "
"value, 3=decimal value)"
<< std::endl;
std::cout << "Arg2 -- number of repeats to run the kernel" << std::endl;
};
int processArgs(int argc, char* argv[])
......@@ -263,20 +267,21 @@ int main(int argc, char* argv[])
{
switch(args.init_method)
{
case 0:
in.GenerateTensorValue(GeneratorTensor_1<InDataType>{}, num_thread);
case 0: break;
case 1:
in.GenerateTensorValue(GeneratorTensor_1<InDataType>{1}, num_thread);
if(beta != 0.0f)
out_ref.GenerateTensorValue(GeneratorTensor_1<InDataType>{}, num_thread);
out_ref.GenerateTensorValue(GeneratorTensor_1<InDataType>{1}, num_thread);
break;
case 1:
case 2:
in.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5}, num_thread);
if(beta != 0.0f)
out_ref.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5}, num_thread);
break;
default:
in.GenerateTensorValue(GeneratorTensor_2<InDataType>{1, 5}, num_thread);
in.GenerateTensorValue(GeneratorTensor_3<InDataType>{-5.0, 5.0}, num_thread);
if(beta != 0.0f)
out_ref.GenerateTensorValue(GeneratorTensor_2<InDataType>{1, 5}, num_thread);
out_ref.GenerateTensorValue(GeneratorTensor_3<InDataType>{-5.0, 5.0}, num_thread);
}
if(beta != 0.0f)
......@@ -293,17 +298,27 @@ int main(int argc, char* argv[])
if(beta != 0.0f)
out_dev.ToDevice(out.mData.data());
size_t indicesSizeInBytes = NeedIndices ? out.mDesc.GetElementSize() * sizeof(int) : 0;
size_t indicesSizeInBytes = NeedIndices ? out.mDesc.GetElementSize() * sizeof(int32_t) : 0;
DeviceMem out_indices_dev(indicesSizeInBytes);
if(args.do_verification)
{
ReductionHost<InDataType, AccDataType, OutDataType, ReduceOpId, PropagateNan, NeedIndices>
ReductionHost<HostInDataType,
HostAccDataType,
HostOutDataType,
ReduceOpId,
Rank,
NumReduceDim,
PropagateNan,
NeedIndices>
hostReduce(in.mDesc, out_ref.mDesc, invariantDims, reduceDims);
hostReduce.Run(
alpha, in.mData.data(), beta, out_ref.mData.data(), out_indices_ref.mData.data());
hostReduce.Run(alpha,
reinterpret_cast<const HostInDataType*>(in.mData.data()),
beta,
reinterpret_cast<HostOutDataType*>(out_ref.mData.data()),
out_indices_ref.mData.data());
};
const auto i_inLengths = to_int_vector(args.inLengths);
......@@ -313,7 +328,7 @@ int main(int argc, char* argv[])
auto reduce = DeviceReduceInstance{};
auto wsSizeInBytes = reduce.GetWorkspaceSizeInBytes(i_inLengths);
auto wsSizeInBytes = reduce.GetWorkspaceSizeInBytes(i_inLengths, reduceDims);
DeviceMem ws_dev(wsSizeInBytes);
......
......@@ -36,7 +36,7 @@ cmake \
## Run ```pool2d_fwd```
```bash
#arg1: verification (0=no, 1=yes)
#arg2: initialization (0=no init, 1=integer value, 2=decimal value)
#arg2: initialization (0=no init, 1=single integer value, 2=scope integer value, 3=decimal value)
#arg3: run kernel # of times (>1)
#arg4 to 15: N, C, Y, X, Hi, Wi, Sy, Sx, LeftPy, LeftPx, RightPy, RightPx
./example/pool2d_fwd 1 1 10
......
......@@ -236,8 +236,9 @@ int main(int argc, char* argv[])
switch(init_method)
{
case 0: break;
case 1: in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5}); break;
default: in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_3<InDataType>{0.0, 1.0});
case 1: in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_1<InDataType>{1}); break;
case 2: in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5}); break;
default: in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_3<InDataType>{-5.0, 5.0});
}
DeviceMem in_device_buf(sizeof(InDataType) * in_n_c_hi_wi.mDesc.GetElementSpace());
......
......@@ -16,9 +16,11 @@ namespace device {
template <typename InElementwiseOperation, typename AccElementwiseOperation>
struct DeviceReduce : public BaseOperator
{
virtual size_t GetWorkspaceSizeInBytes(const std::vector<int>& inLengths)
virtual long_index_t GetWorkspaceSizeInBytes(const std::vector<int> inLengths,
const std::vector<int> reduceDims)
{
(void)inLengths;
(void)reduceDims;
return (0);
};
......@@ -32,19 +34,19 @@ struct DeviceReduce : public BaseOperator
};
virtual std::unique_ptr<BaseArgument>
MakeArgumentPointer(const std::vector<int>& inLengths,
const std::vector<int>& inStrides,
const std::vector<int>& outLengths,
const std::vector<int>& outStrides,
const std::vector<int>& reduceDims,
MakeArgumentPointer(const std::vector<int> inLengths,
const std::vector<int> inStrides,
const std::vector<int> outLengths,
const std::vector<int> outStrides,
const std::vector<int> reduceDims,
float alpha,
float beta,
const void* in_dev,
void* out_dev,
void* out_indices_dev,
void* workspace_dev,
const InElementwiseOperation& in_elementwise_op,
const AccElementwiseOperation& acc_elementwise_op) = 0;
const InElementwiseOperation in_elementwise_op,
const AccElementwiseOperation acc_elementwise_op) = 0;
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
};
......
......@@ -36,20 +36,20 @@ struct DeviceReduceBlockWise : public DeviceReduce<InElementwiseOperation, AccEl
static_assert(BlockSize == MThreadClusterSize * KThreadClusterSize,
"Invalid thread cluster size assignments!");
static_assert(((InSrcVectorDim == 0 && MThreadSliceSize % InSrcVectorSize == 0) ||
(InSrcVectorDim == 1 && KThreadSliceSize % InSrcVectorSize == 0)) &&
(MThreadSliceSize % OutDstVectorSize == 0),
"Invalid thread slice sizes and/or vector sizes configuration, please check!");
using IndexDataType = int32_t;
static constexpr bool BetaIsZero = NeedIndices;
static constexpr index_t NumInvariantDim = Rank - NumReduceDim;
using InvariantDims =
typename conditional<NumInvariantDim == 0,
Sequence<>,
typename arithmetic_sequence_gen<0, NumInvariantDim, 1>::type>::type;
using ReduceDims = typename arithmetic_sequence_gen<NumInvariantDim, Rank, 1>::type;
static constexpr index_t srcDims = Rank;
static constexpr index_t dstDims = (InvariantDims::Size() == 0) ? 1 : InvariantDims::Size();
static constexpr bool reduceAllDims = (InvariantDims::Size() == 0);
static constexpr index_t numSrcDim = Rank;
static constexpr index_t numDstDim = (NumInvariantDim == 0) ? 1 : NumInvariantDim;
static constexpr bool reduceAllDim = (NumInvariantDim == 0);
static constexpr int M_BlockTileSize = MThreadClusterSize * MThreadSliceSize;
static constexpr int K_BlockTileSize = KThreadClusterSize * KThreadSliceSize;
......@@ -57,18 +57,18 @@ struct DeviceReduceBlockWise : public DeviceReduce<InElementwiseOperation, AccEl
static auto MakeSrc2dDescriptor(const std::vector<int>& inLengths,
const std::vector<int>& inStrides)
{
const auto tupleSrcLengths = make_tuple_from_array(inLengths, Number<srcDims>{});
const auto tupleSrcStrides = make_tuple_from_array(inStrides, Number<srcDims>{});
const auto tupleSrcLengths = make_tuple_from_array(inLengths, Number<numSrcDim>{});
const auto tupleSrcStrides = make_tuple_from_array(inStrides, Number<numSrcDim>{});
const auto inDesc = make_naive_tensor_descriptor(tupleSrcLengths, tupleSrcStrides);
const auto in_grid_desc_m_k = [&]() {
if constexpr(reduceAllDims)
if constexpr(reduceAllDim)
{
const auto one_dim_inDesc = transform_tensor_descriptor(
inDesc,
make_tuple(make_merge_transform(tupleSrcLengths)),
make_tuple(typename arithmetic_sequence_gen<0, srcDims, 1>::type{}),
make_tuple(typename arithmetic_sequence_gen<0, numSrcDim, 1>::type{}),
make_tuple(Sequence<0>{}));
return transform_tensor_descriptor(one_dim_inDesc,
......@@ -79,6 +79,9 @@ struct DeviceReduceBlockWise : public DeviceReduce<InElementwiseOperation, AccEl
}
else
{
using InvariantDims = typename arithmetic_sequence_gen<0, NumInvariantDim, 1>::type;
using ReduceDims = typename arithmetic_sequence_gen<NumInvariantDim, Rank, 1>::type;
const auto reduceDimLengths =
make_tuple_from_array_and_index_seq(inLengths, ReduceDims{});
const auto invariantDimLengths =
......@@ -93,16 +96,18 @@ struct DeviceReduceBlockWise : public DeviceReduce<InElementwiseOperation, AccEl
}
}();
const auto outerLen = in_grid_desc_m_k.GetLength(Number<0>{});
const auto innerLen = in_grid_desc_m_k.GetLength(Number<1>{});
const auto invariantLength = in_grid_desc_m_k.GetLength(Number<0>{});
const auto reduceLength = in_grid_desc_m_k.GetLength(Number<1>{});
const auto inPad_M = math::integer_least_multiple(outerLen, M_BlockTileSize) - outerLen;
const auto inPad_K = math::integer_least_multiple(innerLen, K_BlockTileSize) - innerLen;
const auto inPad_M =
math::integer_least_multiple(invariantLength, M_BlockTileSize) - invariantLength;
const auto inPad_K =
math::integer_least_multiple(reduceLength, K_BlockTileSize) - reduceLength;
auto in_grid_desc_m_k_padded =
transform_tensor_descriptor(in_grid_desc_m_k,
make_tuple(make_right_pad_transform(outerLen, inPad_M),
make_right_pad_transform(innerLen, inPad_K)),
auto in_grid_desc_m_k_padded = transform_tensor_descriptor(
in_grid_desc_m_k,
make_tuple(make_right_pad_transform(invariantLength, inPad_M),
make_right_pad_transform(reduceLength, inPad_K)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
......@@ -112,24 +117,25 @@ struct DeviceReduceBlockWise : public DeviceReduce<InElementwiseOperation, AccEl
static auto MakeDst1dDescriptor(const std::vector<int>& outLengths,
const std::vector<int>& outStrides)
{
const auto tupleDstLengths = make_tuple_from_array(outLengths, Number<dstDims>{});
const auto tupleDstStrides = make_tuple_from_array(outStrides, Number<dstDims>{});
const auto tupleDstLengths = make_tuple_from_array(outLengths, Number<numDstDim>{});
const auto tupleDstStrides = make_tuple_from_array(outStrides, Number<numDstDim>{});
auto outDesc = make_naive_tensor_descriptor(tupleDstLengths, tupleDstStrides);
auto out_grid_desc_m = transform_tensor_descriptor(
outDesc,
make_tuple(make_merge_transform(tupleDstLengths)),
make_tuple(typename arithmetic_sequence_gen<0, dstDims, 1>::type{}),
make_tuple(typename arithmetic_sequence_gen<0, numDstDim, 1>::type{}),
make_tuple(Sequence<0>{}));
const auto outerLen = out_grid_desc_m.GetLength(Number<0>{});
const auto invariantLength = out_grid_desc_m.GetLength(Number<0>{});
const auto inPad = math::integer_least_multiple(outerLen, M_BlockTileSize) - outerLen;
const auto inPad =
math::integer_least_multiple(invariantLength, M_BlockTileSize) - invariantLength;
auto out_grid_desc_m_padded =
transform_tensor_descriptor(out_grid_desc_m,
make_tuple(make_right_pad_transform(outerLen, inPad)),
auto out_grid_desc_m_padded = transform_tensor_descriptor(
out_grid_desc_m,
make_tuple(make_right_pad_transform(invariantLength, inPad)),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0>{}));
return (out_grid_desc_m_padded);
......@@ -137,19 +143,19 @@ struct DeviceReduceBlockWise : public DeviceReduce<InElementwiseOperation, AccEl
struct Argument : public BaseArgument
{
Argument(const std::vector<int>& inLengths,
const std::vector<int>& inStrides,
const std::vector<int>& outLengths,
const std::vector<int>& outStrides,
const std::vector<int>& reduceDims,
Argument(const std::vector<int> inLengths,
const std::vector<int> inStrides,
const std::vector<int> outLengths,
const std::vector<int> outStrides,
const std::vector<int> reduceDims,
float alpha,
float beta,
const InDataType* in_dev,
OutDataType* out_dev,
IndexDataType* out_indices_dev,
AccDataType* workspace_dev,
const InElementwiseOperation& in_elementwise_op,
const AccElementwiseOperation& acc_elementwise_op)
const InElementwiseOperation in_elementwise_op,
const AccElementwiseOperation acc_elementwise_op)
: outLengths_{outLengths},
outStrides_{outStrides},
in_dev_{in_dev},
......@@ -160,21 +166,21 @@ struct DeviceReduceBlockWise : public DeviceReduce<InElementwiseOperation, AccEl
{
(void)workspace_dev;
std::tie(inLengths_, inStrides_) =
shuffle_tensor_dimensions<Rank, NumReduceDim>(inLengths, inStrides, reduceDims);
inLengths_ = shuffle_tensor_dimensions<Rank, NumReduceDim>(inLengths, reduceDims);
inStrides_ = shuffle_tensor_dimensions<Rank, NumReduceDim>(inStrides, reduceDims);
alpha_ = static_cast<AccDataType>(alpha);
beta_ = static_cast<OutDataType>(beta);
alpha_ = type_convert<AccDataType>(alpha);
beta_ = type_convert<AccDataType>(beta);
std::tie(invariant_total_length, reduce_total_length) =
get_2d_lengths<Rank, ReduceDims>(inLengths_);
get_2d_lengths<Rank, NumReduceDim>(inLengths_);
if constexpr(InvariantDims::Size() == 0)
if constexpr(NumInvariantDim == 0)
invariant_lowest_length = 1;
else
invariant_lowest_length = inLengths_[InvariantDims::At(InvariantDims::Size() - 1)];
invariant_lowest_length = inLengths_[NumInvariantDim - 1];
reduce_lowest_length = inLengths_[ReduceDims::At(ReduceDims::Size() - 1)];
reduce_lowest_length = inLengths_[Rank - 1];
gridSize = math::integer_least_multiple(invariant_total_length, M_BlockTileSize) /
M_BlockTileSize;
......@@ -186,7 +192,7 @@ struct DeviceReduceBlockWise : public DeviceReduce<InElementwiseOperation, AccEl
std::vector<int> outStrides_;
AccDataType alpha_;
OutDataType beta_;
AccDataType beta_;
const InDataType* in_dev_;
OutDataType* out_dev_;
......@@ -278,18 +284,22 @@ struct DeviceReduceBlockWise : public DeviceReduce<InElementwiseOperation, AccEl
if constexpr(InSrcVectorDim == 0)
{
if constexpr(InvariantDims::Size() == 0)
if constexpr(NumInvariantDim == 0)
{
return (false);
if(pArg->inStrides_[InvariantDims::At(InvariantDims::Size() - 1)] != 1)
}
else
{
if(pArg->inStrides_[NumInvariantDim - 1] != 1)
return (false);
if(pArg->invariant_lowest_length % InSrcVectorSize != 0)
return (false);
};
}
else
{
if(pArg->inStrides_[ReduceDims::At(ReduceDims::Size() - 1)] != 1)
if(pArg->inStrides_[Rank - 1] != 1)
return (false);
if(pArg->reduce_lowest_length % InSrcVectorSize != 0)
......@@ -308,19 +318,19 @@ struct DeviceReduceBlockWise : public DeviceReduce<InElementwiseOperation, AccEl
};
std::unique_ptr<BaseArgument>
MakeArgumentPointer(const std::vector<int>& inLengths,
const std::vector<int>& inStrides,
const std::vector<int>& outLengths,
const std::vector<int>& outStrides,
const std::vector<int>& reduceDims,
MakeArgumentPointer(const std::vector<int> inLengths,
const std::vector<int> inStrides,
const std::vector<int> outLengths,
const std::vector<int> outStrides,
const std::vector<int> reduceDims,
float alpha,
float beta,
const void* in_dev,
void* out_dev,
void* out_indices_dev,
void* workspace_dev,
const InElementwiseOperation& in_elementwise_op,
const AccElementwiseOperation& acc_elementwise_op) override
const InElementwiseOperation in_elementwise_op,
const AccElementwiseOperation acc_elementwise_op) override
{
return std::make_unique<Argument>(inLengths,
inStrides,
......
......@@ -37,6 +37,10 @@ struct DeviceReduceBlockWiseSecondCall
static_assert(BlockSize == MThreadClusterSize * KThreadClusterSize,
"Invalid thread cluster size assignments!");
static_assert((InSrcVectorDim == 1 && KThreadSliceSize % InSrcVectorSize == 0) &&
(MThreadSliceSize % OutDstVectorSize == 0),
"Invalid thread slice sizes and/or vector sizes configuration, please check!");
using IndexDataType = int32_t;
static constexpr bool BetaIsZero = NeedIndices;
......@@ -46,12 +50,8 @@ struct DeviceReduceBlockWiseSecondCall
"InDataType and AccDataType should be the same to use DEviceReduceBlockWiseSecondCall!");
static constexpr index_t NumInvariantDim = Rank - NumReduceDim;
using InvariantDims =
typename conditional<NumInvariantDim == 0,
Sequence<>,
typename arithmetic_sequence_gen<0, NumInvariantDim, 1>::type>::type;
static constexpr index_t dstDims = (InvariantDims::Size() == 0) ? 1 : InvariantDims::Size();
static constexpr index_t numDstDim = (NumInvariantDim == 0) ? 1 : NumInvariantDim;
static constexpr int M_BlockTileSize = MThreadClusterSize * MThreadSliceSize;
static constexpr int K_BlockTileSize = KThreadClusterSize * KThreadSliceSize;
......@@ -65,16 +65,18 @@ struct DeviceReduceBlockWiseSecondCall
const auto in_grid_desc_m_k =
make_naive_tensor_descriptor(tupleSrcLengths, tupleSrcStrides);
const auto outerLen = in_grid_desc_m_k.GetLength(Number<0>{});
const auto innerLen = in_grid_desc_m_k.GetLength(Number<1>{});
const auto invariantLength = in_grid_desc_m_k.GetLength(Number<0>{});
const auto reduceLength = in_grid_desc_m_k.GetLength(Number<1>{});
const auto inPad_M = math::integer_least_multiple(outerLen, M_BlockTileSize) - outerLen;
const auto inPad_K = math::integer_least_multiple(innerLen, K_BlockTileSize) - innerLen;
const auto inPad_M =
math::integer_least_multiple(invariantLength, M_BlockTileSize) - invariantLength;
const auto inPad_K =
math::integer_least_multiple(reduceLength, K_BlockTileSize) - reduceLength;
auto in_grid_desc_m_k_padded =
transform_tensor_descriptor(in_grid_desc_m_k,
make_tuple(make_right_pad_transform(outerLen, inPad_M),
make_right_pad_transform(innerLen, inPad_K)),
auto in_grid_desc_m_k_padded = transform_tensor_descriptor(
in_grid_desc_m_k,
make_tuple(make_right_pad_transform(invariantLength, inPad_M),
make_right_pad_transform(reduceLength, inPad_K)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
......@@ -84,24 +86,25 @@ struct DeviceReduceBlockWiseSecondCall
static auto MakeDst1dDescriptor(const std::vector<int>& outLengths,
const std::vector<int>& outStrides)
{
const auto tupleDstLengths = make_tuple_from_array(outLengths, Number<dstDims>{});
const auto tupleDstStrides = make_tuple_from_array(outStrides, Number<dstDims>{});
const auto tupleDstLengths = make_tuple_from_array(outLengths, Number<numDstDim>{});
const auto tupleDstStrides = make_tuple_from_array(outStrides, Number<numDstDim>{});
auto outDesc = make_naive_tensor_descriptor(tupleDstLengths, tupleDstStrides);
auto out_grid_desc_m = transform_tensor_descriptor(
outDesc,
make_tuple(make_merge_transform(tupleDstLengths)),
make_tuple(typename arithmetic_sequence_gen<0, dstDims, 1>::type{}),
make_tuple(typename arithmetic_sequence_gen<0, numDstDim, 1>::type{}),
make_tuple(Sequence<0>{}));
const auto outerLen = out_grid_desc_m.GetLength(Number<0>{});
const auto invariantLength = out_grid_desc_m.GetLength(Number<0>{});
const auto outPad = math::integer_least_multiple(outerLen, M_BlockTileSize) - outerLen;
const auto outPad =
math::integer_least_multiple(invariantLength, M_BlockTileSize) - invariantLength;
auto out_grid_desc_m_padded =
transform_tensor_descriptor(out_grid_desc_m,
make_tuple(make_right_pad_transform(outerLen, outPad)),
auto out_grid_desc_m_padded = transform_tensor_descriptor(
out_grid_desc_m,
make_tuple(make_right_pad_transform(invariantLength, outPad)),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0>{}));
return (out_grid_desc_m_padded);
......@@ -131,8 +134,8 @@ struct DeviceReduceBlockWiseSecondCall
in_elementwise_op_(in_elementwise_op),
acc_elementwise_op_(acc_elementwise_op)
{
alpha_ = static_cast<AccDataType>(alpha);
beta_ = static_cast<OutDataType>(beta);
alpha_ = type_convert<AccDataType>(alpha);
beta_ = type_convert<AccDataType>(beta);
invariant_total_length = inLengths[0];
reduce_total_length = inLengths[1];
......@@ -159,7 +162,7 @@ struct DeviceReduceBlockWiseSecondCall
std::vector<int> outStrides_;
AccDataType alpha_;
OutDataType beta_;
AccDataType beta_;
const InDataType* in_dev_;
OutDataType* out_dev_;
......@@ -268,19 +271,19 @@ struct DeviceReduceBlockWiseSecondCall
};
std::unique_ptr<BaseArgument>
MakeArgumentPointer(const std::vector<int>& inLengths,
const std::vector<int>& inStrides,
const std::vector<int>& outLengths,
const std::vector<int>& outStrides,
const std::vector<int>& reduceDims,
MakeArgumentPointer(const std::vector<int> inLengths,
const std::vector<int> inStrides,
const std::vector<int> outLengths,
const std::vector<int> outStrides,
const std::vector<int> reduceDims,
float alpha,
float beta,
const void* in_dev,
void* out_dev,
void* out_indices_dev,
void* workspace_dev,
const InElementwiseOperation& in_elementwise_op,
const AccElementwiseOperation& acc_elementwise_op) override
const InElementwiseOperation in_elementwise_op,
const AccElementwiseOperation acc_elementwise_op) override
{
(void)reduceDims;
......
......@@ -12,38 +12,30 @@ namespace ck {
namespace tensor_operation {
namespace device {
// template <typename preUnaryOpType, typename posUnaryOpType>
// using DeviceReducePtr = std::unique_ptr<DeviceReduce<preUnaryOpType, posUnaryOpType>>;
template <int Rank, typename ReduceDims>
// here, inLengths[] is already shuffled so that lengths of invariant dims are included before those
// of reduce dims
template <int Rank, int NumReduceDim>
std::pair<size_t, size_t> get_2d_lengths(const std::vector<int>& inLengths)
{
static_assert(Rank <= 6, "bigger Rank size not supported!");
size_t tensor_total_length = 1;
size_t invariant_total_length = 1;
size_t reduce_total_length = 1;
static_for<0, ReduceDims::Size(), 1>{}(
[&](auto i) { reduce_total_length *= inLengths[ReduceDims::At(i)]; });
static_for<0, Rank, 1>{}([&](auto i) { tensor_total_length *= inLengths[i.value]; });
constexpr int NumInvariantDim = Rank - NumReduceDim;
return std::make_pair(tensor_total_length / reduce_total_length, reduce_total_length);
};
template <int x, typename Seq>
constexpr bool belong()
{
bool inside = false;
for(int i = NumInvariantDim; i < Rank; i++)
reduce_total_length *= inLengths[i];
static_for<0, Seq::Size(), 1>{}([&](auto i) { inside = (inside || (x == Seq::At(i))); });
for(int i = 0; i < NumInvariantDim; i++)
invariant_total_length *= inLengths[i];
return (inside);
return std::make_pair(invariant_total_length, reduce_total_length);
};
// helper functions using variadic template arguments
template <index_t... Ns>
static auto make_tuple_from_array_and_index_seq(const std::vector<int>& lengths, Sequence<Ns...>)
auto make_tuple_from_array_and_index_seq(const std::vector<int>& lengths, Sequence<Ns...>)
{
return make_tuple(static_cast<index_t>(lengths[Ns])...);
};
......@@ -59,16 +51,12 @@ static auto make_tuple_from_array(const std::vector<int>& lengths, Number<arrayS
};
template <index_t Rank, index_t NumReduceDim>
static inline std::pair<std::vector<int>, std::vector<int>>
shuffle_tensor_dimensions(const std::vector<int>& dimLengths,
const std::vector<int>& dimStrides,
std::vector<int> shuffle_tensor_dimensions(const std::vector<int>& origLengthsStrides,
const std::vector<int>& reduceDims)
{
std::vector<int> newDimLengths;
std::vector<int> newDimStrides;
std::vector<int> newLengthsStrides;
assert(Rank == dimLengths.size() && Rank == dimStrides.size() &&
NumReduceDim == reduceDims.size());
assert(Rank == origLengthsStrides.size() && NumReduceDim == reduceDims.size());
int reduceFlag = 0;
......@@ -82,19 +70,17 @@ shuffle_tensor_dimensions(const std::vector<int>& dimLengths,
for(int i = 0; i < Rank; i++)
if((reduceFlag & (1 << i)) == 0)
{
newDimLengths.push_back(dimLengths[i]);
newDimStrides.push_back(dimStrides[i]);
newLengthsStrides.push_back(origLengthsStrides[i]);
};
// collect reduce dimensions
for(int i = 0; i < Rank; i++)
if((reduceFlag & (1 << i)) > 0)
{
newDimLengths.push_back(dimLengths[i]);
newDimStrides.push_back(dimStrides[i]);
newLengthsStrides.push_back(origLengthsStrides[i]);
};
return std::make_pair(newDimLengths, newDimStrides);
return newLengthsStrides;
};
} // namespace device
......
......@@ -39,18 +39,18 @@ struct DeviceReduceMultiBlockAtomicAdd
static_assert(BlockSize == MThreadClusterSize * KThreadClusterSize,
"Invalid thread cluster size assignments!");
static_assert(((InSrcVectorDim == 0 && MThreadSliceSize % InSrcVectorSize == 0) ||
(InSrcVectorDim == 1 && KThreadSliceSize % InSrcVectorSize == 0)) &&
(MThreadSliceSize % OutDstVectorSize == 0),
"Invalid thread slice sizes and/or vector sizes configuration, please check!");
using IndexDataType = int32_t;
static constexpr index_t NumInvariantDim = Rank - NumReduceDim;
using InvariantDims =
typename conditional<NumInvariantDim == 0,
Sequence<>,
typename arithmetic_sequence_gen<0, NumInvariantDim, 1>::type>::type;
using ReduceDims = typename arithmetic_sequence_gen<NumInvariantDim, Rank, 1>::type;
static constexpr index_t srcDims = Rank;
static constexpr index_t dstDims = (InvariantDims::Size() == 0) ? 1 : InvariantDims::Size();
static constexpr bool reduceAllDims = (InvariantDims::Size() == 0);
static constexpr index_t numSrcDim = Rank;
static constexpr index_t numDstDim = (NumInvariantDim == 0) ? 1 : NumInvariantDim;
static constexpr bool reduceAllDim = (NumInvariantDim == 0);
static constexpr bool support_AtomicAdd =
std::is_same<OutDataType, float>::value || std::is_same<OutDataType, double>::value;
......@@ -67,18 +67,18 @@ struct DeviceReduceMultiBlockAtomicAdd
int blkGroupSize,
int kBlockTileIterations)
{
const auto tupleSrcLengths = make_tuple_from_array(inLengths, Number<srcDims>{});
const auto tupleSrcStrides = make_tuple_from_array(inStrides, Number<srcDims>{});
const auto tupleSrcLengths = make_tuple_from_array(inLengths, Number<numSrcDim>{});
const auto tupleSrcStrides = make_tuple_from_array(inStrides, Number<numSrcDim>{});
const auto inDesc = make_naive_tensor_descriptor(tupleSrcLengths, tupleSrcStrides);
const auto in_grid_desc_m_k = [&]() {
if constexpr(reduceAllDims)
if constexpr(reduceAllDim)
{
const auto one_dim_inDesc = transform_tensor_descriptor(
inDesc,
make_tuple(make_merge_transform(tupleSrcLengths)),
make_tuple(typename arithmetic_sequence_gen<0, srcDims, 1>::type{}),
make_tuple(typename arithmetic_sequence_gen<0, numSrcDim, 1>::type{}),
make_tuple(Sequence<0>{}));
return transform_tensor_descriptor(one_dim_inDesc,
......@@ -89,6 +89,9 @@ struct DeviceReduceMultiBlockAtomicAdd
}
else
{
using InvariantDims = typename arithmetic_sequence_gen<0, NumInvariantDim, 1>::type;
using ReduceDims = typename arithmetic_sequence_gen<NumInvariantDim, Rank, 1>::type;
const auto reduceDimLengths =
make_tuple_from_array_and_index_seq(inLengths, ReduceDims{});
const auto invariantDimLengths =
......@@ -103,17 +106,18 @@ struct DeviceReduceMultiBlockAtomicAdd
}
}();
const auto outerLen = in_grid_desc_m_k.GetLength(Number<0>{});
const auto innerLen = in_grid_desc_m_k.GetLength(Number<1>{});
const auto invariantLength = in_grid_desc_m_k.GetLength(Number<0>{});
const auto reduceLength = in_grid_desc_m_k.GetLength(Number<1>{});
const int reduceSizePerBlock = K_BlockTileSize * kBlockTileIterations;
const auto inPad_M = math::integer_least_multiple(outerLen, M_BlockTileSize) - outerLen;
const auto inPad_K = reduceSizePerBlock * blkGroupSize - innerLen;
const auto inPad_M =
math::integer_least_multiple(invariantLength, M_BlockTileSize) - invariantLength;
const auto inPad_K = reduceSizePerBlock * blkGroupSize - reduceLength;
auto in_grid_desc_m_k_padded =
transform_tensor_descriptor(in_grid_desc_m_k,
make_tuple(make_right_pad_transform(outerLen, inPad_M),
make_right_pad_transform(innerLen, inPad_K)),
auto in_grid_desc_m_k_padded = transform_tensor_descriptor(
in_grid_desc_m_k,
make_tuple(make_right_pad_transform(invariantLength, inPad_M),
make_right_pad_transform(reduceLength, inPad_K)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
......@@ -123,24 +127,25 @@ struct DeviceReduceMultiBlockAtomicAdd
static auto MakeDst1dDescriptor(const std::vector<int>& outLengths,
const std::vector<int>& outStrides)
{
const auto tupleDstLengths = make_tuple_from_array(outLengths, Number<dstDims>{});
const auto tupleDstStrides = make_tuple_from_array(outStrides, Number<dstDims>{});
const auto tupleDstLengths = make_tuple_from_array(outLengths, Number<numDstDim>{});
const auto tupleDstStrides = make_tuple_from_array(outStrides, Number<numDstDim>{});
auto outDesc = make_naive_tensor_descriptor(tupleDstLengths, tupleDstStrides);
auto out_grid_desc_m = transform_tensor_descriptor(
outDesc,
make_tuple(make_merge_transform(tupleDstLengths)),
make_tuple(typename arithmetic_sequence_gen<0, dstDims, 1>::type{}),
make_tuple(typename arithmetic_sequence_gen<0, numDstDim, 1>::type{}),
make_tuple(Sequence<0>{}));
const auto outerLen = out_grid_desc_m.GetLength(Number<0>{});
const auto invariantLength = out_grid_desc_m.GetLength(Number<0>{});
const auto outPad = math::integer_least_multiple(outerLen, M_BlockTileSize) - outerLen;
const auto outPad =
math::integer_least_multiple(invariantLength, M_BlockTileSize) - invariantLength;
auto out_grid_desc_m_padded =
transform_tensor_descriptor(out_grid_desc_m,
make_tuple(make_right_pad_transform(outerLen, outPad)),
auto out_grid_desc_m_padded = transform_tensor_descriptor(
out_grid_desc_m,
make_tuple(make_right_pad_transform(invariantLength, outPad)),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0>{}));
return (out_grid_desc_m_padded);
......@@ -148,19 +153,19 @@ struct DeviceReduceMultiBlockAtomicAdd
struct Argument : public BaseArgument
{
Argument(const std::vector<int>& inLengths,
const std::vector<int>& inStrides,
const std::vector<int>& outLengths,
const std::vector<int>& outStrides,
const std::vector<int>& reduceDims,
Argument(const std::vector<int> inLengths,
const std::vector<int> inStrides,
const std::vector<int> outLengths,
const std::vector<int> outStrides,
const std::vector<int> reduceDims,
float alpha,
float beta,
const InDataType* in_dev,
OutDataType* out_dev,
IndexDataType* out_indices_dev,
AccDataType* workspace_dev,
const InElementwiseOperation& in_elementwise_op,
const AccElementwiseOperation& acc_elementwise_op)
const InElementwiseOperation in_elementwise_op,
const AccElementwiseOperation acc_elementwise_op)
: outLengths_{outLengths},
outStrides_{outStrides},
in_dev_{in_dev},
......@@ -171,21 +176,21 @@ struct DeviceReduceMultiBlockAtomicAdd
(void)out_indices_dev;
(void)workspace_dev;
std::tie(inLengths_, inStrides_) =
shuffle_tensor_dimensions<Rank, NumReduceDim>(inLengths, inStrides, reduceDims);
inLengths_ = shuffle_tensor_dimensions<Rank, NumReduceDim>(inLengths, reduceDims);
inStrides_ = shuffle_tensor_dimensions<Rank, NumReduceDim>(inStrides, reduceDims);
alpha_ = static_cast<AccDataType>(alpha);
beta_ = static_cast<OutDataType>(beta);
alpha_ = type_convert<AccDataType>(alpha);
beta_ = type_convert<AccDataType>(beta);
std::tie(invariant_total_length, reduce_total_length) =
get_2d_lengths<Rank, ReduceDims>(inLengths_);
get_2d_lengths<Rank, NumReduceDim>(inLengths_);
if constexpr(InvariantDims::Size() == 0)
if constexpr(NumInvariantDim == 0)
invariant_lowest_length = 1;
else
invariant_lowest_length = inLengths_[InvariantDims::At(InvariantDims::Size() - 1)];
invariant_lowest_length = inLengths_[NumInvariantDim - 1];
reduce_lowest_length = inLengths_[ReduceDims::At(ReduceDims::Size() - 1)];
reduce_lowest_length = inLengths_[Rank - 1];
int iterations = 1;
while(true)
......@@ -218,7 +223,7 @@ struct DeviceReduceMultiBlockAtomicAdd
std::vector<int> outStrides_;
AccDataType alpha_;
OutDataType beta_;
AccDataType beta_;
const InDataType* in_dev_;
OutDataType* out_dev_;
......@@ -334,18 +339,22 @@ struct DeviceReduceMultiBlockAtomicAdd
if constexpr(InSrcVectorDim == 0)
{
if constexpr(InvariantDims::Size() == 0)
if constexpr(NumInvariantDim == 0)
{
return (false);
if(pArg->inStrides_[InvariantDims::At(InvariantDims::Size() - 1)] != 1)
}
else
{
if(pArg->inStrides_[NumInvariantDim - 1] != 1)
return (false);
if(pArg->invariant_lowest_length % InSrcVectorSize != 0)
return (false);
};
}
else
{
if(pArg->inStrides_[ReduceDims::At(ReduceDims::Size() - 1)] != 1)
if(pArg->inStrides_[Rank - 1] != 1)
return (false);
if(pArg->reduce_lowest_length % InSrcVectorSize != 0)
......@@ -371,19 +380,19 @@ struct DeviceReduceMultiBlockAtomicAdd
};
std::unique_ptr<BaseArgument>
MakeArgumentPointer(const std::vector<int>& inLengths,
const std::vector<int>& inStrides,
const std::vector<int>& outLengths,
const std::vector<int>& outStrides,
const std::vector<int>& reduceDims,
MakeArgumentPointer(const std::vector<int> inLengths,
const std::vector<int> inStrides,
const std::vector<int> outLengths,
const std::vector<int> outStrides,
const std::vector<int> reduceDims,
float alpha,
float beta,
const void* in_dev,
void* out_dev,
void* out_indices_dev,
void* workspace_dev,
const InElementwiseOperation& in_elementwise_op,
const AccElementwiseOperation& acc_elementwise_op) override
const InElementwiseOperation in_elementwise_op,
const AccElementwiseOperation acc_elementwise_op) override
{
return std::make_unique<Argument>(inLengths,
inStrides,
......
......@@ -37,31 +37,35 @@ struct DeviceReduceMultiBlockPartialReduce
static_assert(BlockSize == MThreadClusterSize * KThreadClusterSize,
"Invalid thread cluster size assignments!");
static_assert((InSrcVectorDim == 0 && MThreadSliceSize % InSrcVectorSize == 0) ||
(InSrcVectorDim == 1 && KThreadSliceSize % InSrcVectorSize == 0),
"Invalid thread slice sizes and/or vector sizes configuration, please check!");
static_assert(OutDstVectorSize == 1, "OutDstVectorSize must be 1 for MultiBlockPartialReduce!");
using IndexDataType = int32_t;
static constexpr index_t NumInvariantDim = Rank - NumReduceDim;
using InvariantDims =
typename conditional<NumInvariantDim == 0,
Sequence<>,
typename arithmetic_sequence_gen<0, NumInvariantDim, 1>::type>::type;
using ReduceDims = typename arithmetic_sequence_gen<NumInvariantDim, Rank, 1>::type;
static constexpr index_t srcDims = Rank;
static constexpr index_t dstDims = (InvariantDims::Size() == 0) ? 1 : InvariantDims::Size();
static constexpr bool reduceAllDims = (InvariantDims::Size() == 0);
static constexpr index_t numSrcDim = Rank;
static constexpr index_t numDstDim = (NumInvariantDim == 0) ? 1 : NumInvariantDim;
static constexpr bool reduceAllDim = (NumInvariantDim == 0);
static constexpr int M_BlockTileSize = MThreadClusterSize * MThreadSliceSize;
static constexpr int K_BlockTileSize = KThreadClusterSize * KThreadSliceSize;
size_t GetWorkspaceSizeInBytes(const std::vector<int>& inLengths) override
static constexpr int MaxBlockGroupSize = 256;
long_index_t GetWorkspaceSizeInBytes(const std::vector<int> inLengths,
const std::vector<int> reduceDims) override
{
size_t invariant_total_length;
size_t reduce_total_length;
auto inLengths_ = shuffle_tensor_dimensions<Rank, NumReduceDim>(inLengths, reduceDims);
std::tie(invariant_total_length, reduce_total_length) =
get_2d_lengths<Rank, ReduceDims>(inLengths);
get_2d_lengths<Rank, NumReduceDim>(inLengths_);
int iterations = 1;
while(true)
......@@ -69,8 +73,7 @@ struct DeviceReduceMultiBlockPartialReduce
int testBlkGroupSize = (reduce_total_length + (K_BlockTileSize * iterations) - 1) /
(K_BlockTileSize * iterations);
// we want the blkGroupSize be not more than 128
if(testBlkGroupSize <= 128)
if(testBlkGroupSize <= MaxBlockGroupSize)
break;
iterations++;
......@@ -79,11 +82,12 @@ struct DeviceReduceMultiBlockPartialReduce
int blkGroupSize = (reduce_total_length + (K_BlockTileSize * iterations) - 1) /
(K_BlockTileSize * iterations);
size_t workspace_size = invariant_total_length * blkGroupSize;
long_index_t workspace_size = invariant_total_length * blkGroupSize;
size_t wsSizeInBytes =
!NeedIndices ? workspace_size * sizeof(AccDataType)
: workspace_size * (sizeof(AccDataType) + sizeof(int)) + 64 + sizeof(int);
long_index_t wsSizeInBytes =
!NeedIndices
? workspace_size * sizeof(AccDataType)
: workspace_size * (sizeof(AccDataType) + sizeof(int32_t)) + 64 + sizeof(int);
return (wsSizeInBytes);
};
......@@ -95,18 +99,18 @@ struct DeviceReduceMultiBlockPartialReduce
int blkGroupSize,
int kBlockTileIterations)
{
const auto tupleSrcLengths = make_tuple_from_array(inLengths, Number<srcDims>{});
const auto tupleSrcStrides = make_tuple_from_array(inStrides, Number<srcDims>{});
const auto tupleSrcLengths = make_tuple_from_array(inLengths, Number<numSrcDim>{});
const auto tupleSrcStrides = make_tuple_from_array(inStrides, Number<numSrcDim>{});
const auto inDesc = make_naive_tensor_descriptor(tupleSrcLengths, tupleSrcStrides);
const auto in_grid_desc_m_k = [&]() {
if constexpr(reduceAllDims)
if constexpr(reduceAllDim)
{
const auto one_dim_inDesc = transform_tensor_descriptor(
inDesc,
make_tuple(make_merge_transform(tupleSrcLengths)),
make_tuple(typename arithmetic_sequence_gen<0, srcDims, 1>::type{}),
make_tuple(typename arithmetic_sequence_gen<0, numSrcDim, 1>::type{}),
make_tuple(Sequence<0>{}));
return transform_tensor_descriptor(one_dim_inDesc,
......@@ -117,6 +121,9 @@ struct DeviceReduceMultiBlockPartialReduce
}
else
{
using InvariantDims = typename arithmetic_sequence_gen<0, NumInvariantDim, 1>::type;
using ReduceDims = typename arithmetic_sequence_gen<NumInvariantDim, Rank, 1>::type;
const auto reduceDimLengths =
make_tuple_from_array_and_index_seq(inLengths, ReduceDims{});
const auto invariantDimLengths =
......@@ -131,32 +138,35 @@ struct DeviceReduceMultiBlockPartialReduce
}
}();
const auto outerLen = in_grid_desc_m_k.GetLength(Number<0>{});
const auto innerLen = in_grid_desc_m_k.GetLength(Number<1>{});
const auto invariantLength = in_grid_desc_m_k.GetLength(Number<0>{});
const auto reduceLength = in_grid_desc_m_k.GetLength(Number<1>{});
const int reduceSizePerBlock = K_BlockTileSize * kBlockTileIterations;
const auto inPad_M = math::integer_least_multiple(outerLen, M_BlockTileSize) - outerLen;
const auto inPad_K = reduceSizePerBlock * blkGroupSize - innerLen;
const auto inPad_M =
math::integer_least_multiple(invariantLength, M_BlockTileSize) - invariantLength;
const auto inPad_K = reduceSizePerBlock * blkGroupSize - reduceLength;
auto in_grid_desc_m_k_padded =
transform_tensor_descriptor(in_grid_desc_m_k,
make_tuple(make_right_pad_transform(outerLen, inPad_M),
make_right_pad_transform(innerLen, inPad_K)),
auto in_grid_desc_m_k_padded = transform_tensor_descriptor(
in_grid_desc_m_k,
make_tuple(make_right_pad_transform(invariantLength, inPad_M),
make_right_pad_transform(reduceLength, inPad_K)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
return (in_grid_desc_m_k_padded);
};
static auto MakeWorkspace2dDescriptor(int outerLen, int blkGroupSize)
static auto MakeWorkspace2dDescriptor(int invariantLength, int blkGroupSize)
{
auto ws_desc_m_k = make_naive_tensor_descriptor_packed(make_tuple(outerLen, blkGroupSize));
auto ws_desc_m_k =
make_naive_tensor_descriptor_packed(make_tuple(invariantLength, blkGroupSize));
const auto wsPad = math::integer_least_multiple(outerLen, M_BlockTileSize) - outerLen;
const auto wsPad =
math::integer_least_multiple(invariantLength, M_BlockTileSize) - invariantLength;
auto ws_desc_m_k_padded =
transform_tensor_descriptor(ws_desc_m_k,
make_tuple(make_right_pad_transform(outerLen, wsPad),
make_tuple(make_right_pad_transform(invariantLength, wsPad),
make_pass_through_transform(blkGroupSize)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
......@@ -166,19 +176,19 @@ struct DeviceReduceMultiBlockPartialReduce
struct Argument : public BaseArgument
{
Argument(const std::vector<int>& inLengths,
const std::vector<int>& inStrides,
const std::vector<int>& outLengths,
const std::vector<int>& outStrides,
const std::vector<int>& reduceDims,
Argument(const std::vector<int> inLengths,
const std::vector<int> inStrides,
const std::vector<int> outLengths,
const std::vector<int> outStrides,
const std::vector<int> reduceDims,
float alpha,
float beta,
const InDataType* in_dev,
OutDataType* out_dev,
IndexDataType* out_indices_dev,
AccDataType* workspace_dev,
const InElementwiseOperation& in_elementwise_op,
const AccElementwiseOperation& acc_elementwise_op)
const InElementwiseOperation in_elementwise_op,
const AccElementwiseOperation acc_elementwise_op)
: outLengths_{outLengths},
outStrides_{outStrides},
in_dev_{in_dev},
......@@ -188,21 +198,21 @@ struct DeviceReduceMultiBlockPartialReduce
in_elementwise_op_{in_elementwise_op},
acc_elementwise_op_{acc_elementwise_op}
{
std::tie(inLengths_, inStrides_) =
shuffle_tensor_dimensions<Rank, NumReduceDim>(inLengths, inStrides, reduceDims);
inLengths_ = shuffle_tensor_dimensions<Rank, NumReduceDim>(inLengths, reduceDims);
inStrides_ = shuffle_tensor_dimensions<Rank, NumReduceDim>(inStrides, reduceDims);
alpha_ = static_cast<AccDataType>(alpha);
beta_ = static_cast<OutDataType>(beta);
alpha_ = type_convert<AccDataType>(alpha);
beta_ = type_convert<AccDataType>(beta);
std::tie(invariant_total_length, reduce_total_length) =
get_2d_lengths<Rank, ReduceDims>(inLengths_);
get_2d_lengths<Rank, NumReduceDim>(inLengths_);
if constexpr(InvariantDims::Size() == 0)
if constexpr(NumInvariantDim == 0)
invariant_lowest_length = 1;
else
invariant_lowest_length = inLengths_[InvariantDims::At(InvariantDims::Size() - 1)];
invariant_lowest_length = inLengths_[NumInvariantDim - 1];
reduce_lowest_length = inLengths_[ReduceDims::At(ReduceDims::Size() - 1)];
reduce_lowest_length = inLengths_[Rank - 1];
int iterations = 1;
while(true)
......@@ -210,8 +220,7 @@ struct DeviceReduceMultiBlockPartialReduce
int testBlkGroupSize = (reduce_total_length + (K_BlockTileSize * iterations) - 1) /
(K_BlockTileSize * iterations);
// we want the blkGroupSize be not more than 128
if(testBlkGroupSize <= 128)
if(testBlkGroupSize <= MaxBlockGroupSize)
break;
iterations++;
......@@ -241,7 +250,7 @@ struct DeviceReduceMultiBlockPartialReduce
std::vector<int> outStrides_;
AccDataType alpha_;
OutDataType beta_;
AccDataType beta_;
const InDataType* in_dev_;
OutDataType* out_dev_;
......@@ -337,18 +346,22 @@ struct DeviceReduceMultiBlockPartialReduce
if constexpr(InSrcVectorDim == 0)
{
if constexpr(InvariantDims::Size() == 0)
if constexpr(NumInvariantDim == 0)
{
return (false);
if(pArg->inStrides_[InvariantDims::At(InvariantDims::Size() - 1)] != 1)
}
else
{
if(pArg->inStrides_[NumInvariantDim - 1] != 1)
return (false);
if(pArg->invariant_lowest_length % InSrcVectorSize != 0)
return (false);
};
}
else
{
if(pArg->inStrides_[ReduceDims::At(ReduceDims::Size() - 1)] != 1)
if(pArg->inStrides_[Rank - 1] != 1)
return (false);
if(pArg->reduce_lowest_length % InSrcVectorSize != 0)
......@@ -371,19 +384,19 @@ struct DeviceReduceMultiBlockPartialReduce
};
std::unique_ptr<BaseArgument>
MakeArgumentPointer(const std::vector<int>& inLengths,
const std::vector<int>& inStrides,
const std::vector<int>& outLengths,
const std::vector<int>& outStrides,
const std::vector<int>& reduceDims,
MakeArgumentPointer(const std::vector<int> inLengths,
const std::vector<int> inStrides,
const std::vector<int> outLengths,
const std::vector<int> outStrides,
const std::vector<int> reduceDims,
float alpha,
float beta,
const void* in_dev,
void* out_dev,
void* out_indices_dev,
void* workspace_dev,
const InElementwiseOperation& in_elementwise_op,
const AccElementwiseOperation& acc_elementwise_op) override
const InElementwiseOperation in_elementwise_op,
const AccElementwiseOperation acc_elementwise_op) override
{
return std::make_unique<Argument>(inLengths,
inStrides,
......
......@@ -36,20 +36,20 @@ struct DeviceReduceThreadWise : public DeviceReduce<InElementwiseOperation, OutE
static_assert((BlockSize == MThreadClusterSize) && (KThreadClusterSize == 1),
"Threadwise can only be called with KThreadClusterSize be 1 !");
static_assert(((InSrcVectorDim == 0 && MThreadSliceSize % InSrcVectorSize == 0) ||
(InSrcVectorDim == 1 && KThreadSliceSize % InSrcVectorSize == 0)) &&
(MThreadSliceSize % OutDstVectorSize == 0),
"Invalid thread slice sizes and/or vector sizes configuration, please check!");
using IndexDataType = int32_t;
static constexpr bool BetaIsZero = NeedIndices;
static constexpr index_t NumInvariantDim = Rank - NumReduceDim;
using InvariantDims =
typename conditional<NumInvariantDim == 0,
Sequence<>,
typename arithmetic_sequence_gen<0, NumInvariantDim, 1>::type>::type;
using ReduceDims = typename arithmetic_sequence_gen<NumInvariantDim, Rank, 1>::type;
static constexpr index_t srcDims = Rank;
static constexpr index_t dstDims = (InvariantDims::Size() == 0) ? 1 : InvariantDims::Size();
static constexpr bool reduceAllDims = (InvariantDims::Size() == 0);
static constexpr index_t numSrcDim = Rank;
static constexpr index_t numDstDim = (NumInvariantDim == 0) ? 1 : NumInvariantDim;
static constexpr bool reduceAllDim = (NumInvariantDim == 0);
static constexpr int M_BlockTileSize = MThreadClusterSize * MThreadSliceSize;
static constexpr int K_BlockTileSize = KThreadClusterSize * KThreadSliceSize;
......@@ -57,18 +57,18 @@ struct DeviceReduceThreadWise : public DeviceReduce<InElementwiseOperation, OutE
static auto MakeSrc2dDescriptor(const std::vector<int>& inLengths,
const std::vector<int>& inStrides)
{
const auto tupleSrcLengths = make_tuple_from_array(inLengths, Number<srcDims>{});
const auto tupleSrcStrides = make_tuple_from_array(inStrides, Number<srcDims>{});
const auto tupleSrcLengths = make_tuple_from_array(inLengths, Number<numSrcDim>{});
const auto tupleSrcStrides = make_tuple_from_array(inStrides, Number<numSrcDim>{});
const auto inDesc = make_naive_tensor_descriptor(tupleSrcLengths, tupleSrcStrides);
const auto in_grid_desc_m_k = [&]() {
if constexpr(reduceAllDims)
if constexpr(reduceAllDim)
{
const auto one_dim_inDesc = transform_tensor_descriptor(
inDesc,
make_tuple(make_merge_transform(tupleSrcLengths)),
make_tuple(typename arithmetic_sequence_gen<0, srcDims, 1>::type{}),
make_tuple(typename arithmetic_sequence_gen<0, numSrcDim, 1>::type{}),
make_tuple(Sequence<0>{}));
return transform_tensor_descriptor(one_dim_inDesc,
......@@ -79,6 +79,9 @@ struct DeviceReduceThreadWise : public DeviceReduce<InElementwiseOperation, OutE
}
else
{
using InvariantDims = typename arithmetic_sequence_gen<0, NumInvariantDim, 1>::type;
using ReduceDims = typename arithmetic_sequence_gen<NumInvariantDim, Rank, 1>::type;
const auto reduceDimLengths =
make_tuple_from_array_and_index_seq(inLengths, ReduceDims{});
const auto invariantDimLengths =
......@@ -93,16 +96,18 @@ struct DeviceReduceThreadWise : public DeviceReduce<InElementwiseOperation, OutE
}
}();
const auto outerLen = in_grid_desc_m_k.GetLength(Number<0>{});
const auto innerLen = in_grid_desc_m_k.GetLength(Number<1>{});
const auto invariantLength = in_grid_desc_m_k.GetLength(Number<0>{});
const auto reduceLength = in_grid_desc_m_k.GetLength(Number<1>{});
const auto inPad_M = math::integer_least_multiple(outerLen, M_BlockTileSize) - outerLen;
const auto inPad_K = math::integer_least_multiple(innerLen, K_BlockTileSize) - innerLen;
const auto inPad_M =
math::integer_least_multiple(invariantLength, M_BlockTileSize) - invariantLength;
const auto inPad_K =
math::integer_least_multiple(reduceLength, K_BlockTileSize) - reduceLength;
auto in_grid_desc_m_k_padded =
transform_tensor_descriptor(in_grid_desc_m_k,
make_tuple(make_right_pad_transform(outerLen, inPad_M),
make_right_pad_transform(innerLen, inPad_K)),
auto in_grid_desc_m_k_padded = transform_tensor_descriptor(
in_grid_desc_m_k,
make_tuple(make_right_pad_transform(invariantLength, inPad_M),
make_right_pad_transform(reduceLength, inPad_K)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
......@@ -112,24 +117,25 @@ struct DeviceReduceThreadWise : public DeviceReduce<InElementwiseOperation, OutE
static auto MakeDst1dDescriptor(const std::vector<int>& outLengths,
const std::vector<int>& outStrides)
{
const auto tupleDstLengths = make_tuple_from_array(outLengths, Number<dstDims>{});
const auto tupleDstStrides = make_tuple_from_array(outStrides, Number<dstDims>{});
const auto tupleDstLengths = make_tuple_from_array(outLengths, Number<numDstDim>{});
const auto tupleDstStrides = make_tuple_from_array(outStrides, Number<numDstDim>{});
auto outDesc = make_naive_tensor_descriptor(tupleDstLengths, tupleDstStrides);
auto out_grid_desc_m = transform_tensor_descriptor(
outDesc,
make_tuple(make_merge_transform(tupleDstLengths)),
make_tuple(typename arithmetic_sequence_gen<0, dstDims, 1>::type{}),
make_tuple(typename arithmetic_sequence_gen<0, numDstDim, 1>::type{}),
make_tuple(Sequence<0>{}));
const auto outerLen = out_grid_desc_m.GetLength(Number<0>{});
const auto invariantLength = out_grid_desc_m.GetLength(Number<0>{});
const auto outPad = math::integer_least_multiple(outerLen, M_BlockTileSize) - outerLen;
const auto outPad =
math::integer_least_multiple(invariantLength, M_BlockTileSize) - invariantLength;
auto out_grid_desc_m_padded =
transform_tensor_descriptor(out_grid_desc_m,
make_tuple(make_right_pad_transform(outerLen, outPad)),
auto out_grid_desc_m_padded = transform_tensor_descriptor(
out_grid_desc_m,
make_tuple(make_right_pad_transform(invariantLength, outPad)),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0>{}));
return (out_grid_desc_m_padded);
......@@ -137,19 +143,19 @@ struct DeviceReduceThreadWise : public DeviceReduce<InElementwiseOperation, OutE
struct Argument : public BaseArgument
{
Argument(const std::vector<int>& inLengths,
const std::vector<int>& inStrides,
const std::vector<int>& outLengths,
const std::vector<int>& outStrides,
const std::vector<int>& reduceDims,
Argument(const std::vector<int> inLengths,
const std::vector<int> inStrides,
const std::vector<int> outLengths,
const std::vector<int> outStrides,
const std::vector<int> reduceDims,
float alpha,
float beta,
const InDataType* in_dev,
OutDataType* out_dev,
IndexDataType* out_indices_dev,
AccDataType* workspace_dev,
const InElementwiseOperation& in_elementwise_op,
const OutElementwiseOperation& acc_elementwise_op)
const InElementwiseOperation in_elementwise_op,
const OutElementwiseOperation acc_elementwise_op)
: outLengths_{outLengths},
outStrides_{outStrides},
in_dev_{in_dev},
......@@ -161,21 +167,21 @@ struct DeviceReduceThreadWise : public DeviceReduce<InElementwiseOperation, OutE
{
(void)workspace_dev;
std::tie(inLengths_, inStrides_) =
shuffle_tensor_dimensions<Rank, NumReduceDim>(inLengths, inStrides, reduceDims);
inLengths_ = shuffle_tensor_dimensions<Rank, NumReduceDim>(inLengths, reduceDims);
inStrides_ = shuffle_tensor_dimensions<Rank, NumReduceDim>(inStrides, reduceDims);
alpha_ = static_cast<AccDataType>(alpha);
beta_ = static_cast<OutDataType>(beta);
alpha_ = type_convert<AccDataType>(alpha);
beta_ = type_convert<AccDataType>(beta);
std::tie(invariant_total_length, reduce_total_length) =
get_2d_lengths<Rank, ReduceDims>(inLengths_);
get_2d_lengths<Rank, NumReduceDim>(inLengths_);
if constexpr(InvariantDims::Size() == 0)
if constexpr(NumInvariantDim == 0)
invariant_lowest_length = 1;
else
invariant_lowest_length = inLengths_[InvariantDims::At(InvariantDims::Size() - 1)];
invariant_lowest_length = inLengths_[NumInvariantDim - 1];
reduce_lowest_length = inLengths_[ReduceDims::At(ReduceDims::Size() - 1)];
reduce_lowest_length = inLengths_[Rank - 1];
gridSize = math::integer_least_multiple(invariant_total_length, M_BlockTileSize) /
M_BlockTileSize;
......@@ -187,7 +193,7 @@ struct DeviceReduceThreadWise : public DeviceReduce<InElementwiseOperation, OutE
std::vector<int> outStrides_;
AccDataType alpha_;
OutDataType beta_;
AccDataType beta_;
const InDataType* in_dev_;
OutDataType* out_dev_;
......@@ -278,18 +284,22 @@ struct DeviceReduceThreadWise : public DeviceReduce<InElementwiseOperation, OutE
if constexpr(InSrcVectorDim == 0)
{
if constexpr(InvariantDims::Size() == 0)
if constexpr(NumInvariantDim == 0)
{
return (false);
if(pArg->inStrides_[InvariantDims::At(InvariantDims::Size() - 1)] != 1)
}
else
{
if(pArg->inStrides_[NumInvariantDim - 1] != 1)
return (false);
if(pArg->invariant_lowest_length % InSrcVectorSize != 0)
return (false);
};
}
else
{
if(pArg->inStrides_[ReduceDims::At(ReduceDims::Size() - 1)] != 1)
if(pArg->inStrides_[Rank - 1] != 1)
return (false);
if(pArg->reduce_lowest_length % InSrcVectorSize != 0)
......@@ -310,19 +320,19 @@ struct DeviceReduceThreadWise : public DeviceReduce<InElementwiseOperation, OutE
};
std::unique_ptr<BaseArgument>
MakeArgumentPointer(const std::vector<int>& inLengths,
const std::vector<int>& inStrides,
const std::vector<int>& outLengths,
const std::vector<int>& outStrides,
const std::vector<int>& reduceDims,
MakeArgumentPointer(const std::vector<int> inLengths,
const std::vector<int> inStrides,
const std::vector<int> outLengths,
const std::vector<int> outStrides,
const std::vector<int> reduceDims,
float alpha,
float beta,
const void* in_dev,
void* out_dev,
void* out_indices_dev,
void* workspace_dev,
const InElementwiseOperation& in_elementwise_op,
const OutElementwiseOperation& acc_elementwise_op) override
const InElementwiseOperation in_elementwise_op,
const OutElementwiseOperation acc_elementwise_op) override
{
return std::make_unique<Argument>(inLengths,
inStrides,
......
#ifndef CK_ELEMENT_WISE_OPERATION_HPP
#define CK_ELEMENT_WISE_OPERATION_HPP
#include "data_type.hpp"
#include "data_type.hpp"
......@@ -19,6 +18,8 @@ struct PassThrough
__host__ __device__ void operator()(int32_t& y, const int32_t& x) const { y = x; }
__host__ __device__ void operator()(int8_t& y, const int8_t& x) const { y = x; }
__host__ __device__ void operator()(double& y, const double& x) const { y = x; }
};
struct Add
......@@ -239,6 +240,24 @@ struct UnaryIdentic<int32_t, int32_t, false>
__host__ __device__ void operator()(int32_t& y, const int32_t& x) const { y = x; };
};
template <>
struct UnaryIdentic<int32_t, int32_t, true>
{
__host__ __device__ UnaryIdentic(const int32_t divider = 1) { divider_ = divider; };
__host__ __device__ void operator()(int32_t& y, const int32_t& x) const { y = x / divider_; };
int32_t divider_ = 1;
};
template <>
struct UnaryIdentic<int8_t, int8_t, false>
{
__host__ __device__ UnaryIdentic(const int8_t divider = 1) { (void)divider; };
__host__ __device__ void operator()(int8_t& y, const int8_t& x) const { y = x; };
};
template <typename Y, typename X, bool HasDividing = false>
struct UnarySquare;
......@@ -311,6 +330,19 @@ struct UnaryAbs<double, double>
__host__ __device__ void operator()(double& y, const double& x) const { y = abs(x); };
};
template <>
struct UnaryAbs<int8_t, int8_t>
{
__host__ __device__ UnaryAbs(const int32_t divider = 1) { (void)divider; };
__host__ __device__ void operator()(int8_t& y, const int8_t& x) const
{
int8_t sgn = x >> (8 - 1);
y = (x ^ sgn) - sgn;
};
};
template <typename Y, typename X>
struct UnarySqrt;
......
......@@ -33,6 +33,7 @@
#include "reduction_functions_blockwise.hpp"
#include "threadwise_tensor_slice_transfer.hpp"
#include "cluster_descriptor.hpp"
#include "element_wise_operation.hpp"
namespace ck {
......@@ -52,14 +53,16 @@ __global__ void kernel_reduce_blockwise(const InGridDesc_M_K in_grid_desc_m_k,
const OutElementwiseOperation acc_elementwise_op,
AccDataType alpha,
const InDataType* const __restrict__ p_in_global,
OutDataType beta,
AccDataType beta,
OutDataType* const __restrict__ p_out_global,
const IndexDataType* const __restrict__ p_ws_indices_global,
IndexDataType* const __restrict__ p_indices_global)
{
if constexpr(!NeedIndices)
{
GridwiseReduction::Run(in_grid_desc_m_k,
constexpr bool IsSecondCall = false;
GridwiseReduction::template Run<IsSecondCall>(in_grid_desc_m_k,
out_grid_desc_m,
in_elementwise_op,
acc_elementwise_op,
......@@ -102,14 +105,16 @@ kernel_reduce_blockwise_second_call(const InGridDesc_M_K in_grid_desc_m_k,
const OutElementwiseOperation acc_elementwise_op,
AccDataType alpha,
const InDataType* const __restrict__ p_in_global,
OutDataType beta,
AccDataType beta,
OutDataType* const __restrict__ p_out_global,
const IndexDataType* const __restrict__ p_ws_indices_global,
IndexDataType* const __restrict__ p_indices_global)
{
if constexpr(!NeedIndices)
{
GridwiseReduction::Run(in_grid_desc_m_k,
constexpr bool IsSecondCall = true;
GridwiseReduction::template Run<IsSecondCall>(in_grid_desc_m_k,
out_grid_desc_m,
in_elementwise_op,
acc_elementwise_op,
......@@ -156,6 +161,11 @@ template <typename InDataType,
index_t OutDstVectorSize>
struct GridwiseReduction_mk_to_m_blockwise
{
static_assert(((InSrcVectorDim == 0 && MThreadSliceSize % InSrcVectorSize == 0) ||
(InSrcVectorDim == 1 && KThreadSliceSize % InSrcVectorSize == 0)) &&
(MThreadSliceSize % OutDstVectorSize == 0),
"Invalid thread slice sizes and/or vector sizes configuration, please check!");
static constexpr bool reorder_thread_cluster = (InSrcVectorDim == 0);
using ThreadClusterLengths_M_K = Sequence<MThreadClusterSize, KThreadClusterSize>;
......@@ -174,8 +184,7 @@ struct GridwiseReduction_mk_to_m_blockwise
static constexpr auto block_buf_desc_m_k = make_naive_tensor_descriptor_packed(
make_tuple(Number<MThreadClusterSize>{}, Number<KThreadClusterSize>{}));
template <typename T>
using PassThroughOp = tensor_operation::element_wise::UnaryIdentic<T, T>;
using PassThroughOp = tensor_operation::element_wise::PassThrough;
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
......@@ -183,17 +192,24 @@ struct GridwiseReduction_mk_to_m_blockwise
static constexpr index_t M_BlockTileSize = MThreadClusterSize * MThreadSliceSize;
static constexpr index_t K_BlockTileSize = KThreadClusterSize * KThreadSliceSize;
template <bool IsSecondCall>
__device__ static void Run(const InGridDesc_M_K& in_grid_desc_m_k,
const OutGridDesc_M& out_grid_desc_m,
const InElementwiseOperation& in_elementwise_op,
const OutElementwiseOperation& acc_elementwise_op,
AccDataType alpha,
const InDataType* const __restrict__ p_in_global,
OutDataType beta,
AccDataType beta,
OutDataType* const __restrict__ p_out_global,
const IndexDataType* const __restrict__ p_ws_indices_global,
IndexDataType* const __restrict__ p_indices_global)
{
if constexpr(IsSecondCall)
{
static_assert(InSrcVectorDim == 1,
"InSrcVectorDim must be 1 for BlockwiseSecondCall, please check!");
};
using BlockwiseReduce = PartitionedBlockwiseReduction<AccDataType,
BlockSize,
ThreadClusterLengths_M_K,
......@@ -345,7 +361,7 @@ struct GridwiseReduction_mk_to_m_blockwise
priorDstValueBuf);
static_for<0, MThreadSliceSize, 1>{}([&](auto I) {
accu_value_buf(I) += type_convert<AccDataType>(priorDstValueBuf[I] * beta);
accu_value_buf(I) += type_convert<AccDataType>(priorDstValueBuf[I]) * beta;
});
};
};
......@@ -355,7 +371,7 @@ struct GridwiseReduction_mk_to_m_blockwise
OutDataType,
decltype(reduced_data_desc),
OutGridDesc_M,
PassThroughOp<AccDataType>,
PassThroughOp,
Sequence<MThreadSliceSize>,
Sequence<0>,
0,
......@@ -366,7 +382,7 @@ struct GridwiseReduction_mk_to_m_blockwise
out_grid_desc_m,
make_multi_index(block_global_1d_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize),
PassThroughOp<AccDataType>{});
PassThroughOp{});
threadwise_dst_store.Run(
reduced_data_desc, make_tuple(I0), accu_value_buf, out_grid_desc_m, out_global_buf);
......@@ -379,7 +395,7 @@ struct GridwiseReduction_mk_to_m_blockwise
const OutElementwiseOperation& acc_elementwise_op,
AccDataType alpha,
const InDataType* const __restrict__ p_in_global,
OutDataType beta,
AccDataType beta,
OutDataType* const __restrict__ p_out_global,
const IndexDataType* const __restrict__ p_ws_indices_global,
IndexDataType* const __restrict__ p_indices_global)
......@@ -570,7 +586,7 @@ struct GridwiseReduction_mk_to_m_blockwise
priorDstValueBuf);
static_for<0, MThreadSliceSize, 1>{}([&](auto I) {
accu_value_buf(I) += type_convert<AccDataType>(priorDstValueBuf[I] * beta);
accu_value_buf(I) += type_convert<AccDataType>(priorDstValueBuf[I]) * beta;
});
};
};
......@@ -580,7 +596,7 @@ struct GridwiseReduction_mk_to_m_blockwise
OutDataType,
decltype(reduced_data_desc),
OutGridDesc_M,
PassThroughOp<AccDataType>,
PassThroughOp,
Sequence<MThreadSliceSize>,
Sequence<0>,
0,
......@@ -591,14 +607,14 @@ struct GridwiseReduction_mk_to_m_blockwise
out_grid_desc_m,
make_multi_index(block_global_1d_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize),
PassThroughOp<AccDataType>{});
PassThroughOp{});
auto threadwise_dst_idx_store =
ThreadwiseTensorSliceTransfer_v1r3<IndexDataType,
IndexDataType,
decltype(reduced_data_desc),
OutGridDesc_M,
PassThroughOp<index_t>,
PassThroughOp,
Sequence<MThreadSliceSize>,
Sequence<0>,
0,
......@@ -609,7 +625,7 @@ struct GridwiseReduction_mk_to_m_blockwise
out_grid_desc_m,
make_multi_index(block_global_1d_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize),
PassThroughOp<index_t>{});
PassThroughOp{});
threadwise_dst_val_store.Run(reduced_data_desc,
make_tuple(I0),
......@@ -631,11 +647,14 @@ struct GridwiseReduction_mk_to_m_blockwise
const OutElementwiseOperation acc_elementwise_op,
AccDataType alpha,
const InDataType* const __restrict__ p_ws_values_global,
OutDataType beta,
AccDataType beta,
OutDataType* const __restrict__ p_out_global,
const IndexDataType* const __restrict__ p_ws_indices_global,
IndexDataType* const __restrict__ p_indices_global)
{
static_assert(InSrcVectorDim == 1,
"InSrcVectorDim must be 1 for BlockwiseSecondCall, please check!");
using BlockwiseReduceWithIndex =
PartitionedBlockwiseReductionWithIndex<AccDataType,
IndexDataType,
......@@ -841,7 +860,7 @@ struct GridwiseReduction_mk_to_m_blockwise
priorDstValueBuf);
static_for<0, MThreadSliceSize, 1>{}([&](auto I) {
accu_value_buf(I) += type_convert<AccDataType>(priorDstValueBuf[I] * beta);
accu_value_buf(I) += type_convert<AccDataType>(priorDstValueBuf[I]) * beta;
});
};
};
......@@ -851,7 +870,7 @@ struct GridwiseReduction_mk_to_m_blockwise
OutDataType,
decltype(reduced_data_desc),
OutGridDesc_M,
PassThroughOp<AccDataType>,
PassThroughOp,
Sequence<MThreadSliceSize>,
Sequence<0>,
0,
......@@ -862,14 +881,14 @@ struct GridwiseReduction_mk_to_m_blockwise
out_grid_desc_m,
make_multi_index(block_global_1d_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize),
PassThroughOp<AccDataType>{});
PassThroughOp{});
auto threadwise_dst_idx_store =
ThreadwiseTensorSliceTransfer_v1r3<IndexDataType,
IndexDataType,
decltype(reduced_data_desc),
OutGridDesc_M,
PassThroughOp<IndexDataType>,
PassThroughOp,
Sequence<MThreadSliceSize>,
Sequence<0>,
0,
......@@ -880,7 +899,7 @@ struct GridwiseReduction_mk_to_m_blockwise
out_grid_desc_m,
make_multi_index(block_global_1d_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize),
PassThroughOp<index_t>{});
PassThroughOp{});
threadwise_dst_val_store.Run(reduced_data_desc,
make_tuple(I0),
......
......@@ -32,6 +32,7 @@
#include "reduction_functions_blockwise.hpp"
#include "threadwise_tensor_slice_transfer.hpp"
#include "element_wise_operation.hpp"
namespace ck {
......@@ -84,6 +85,11 @@ template <typename InDataType,
index_t OutDstVectorSize>
struct GridwiseReduction_mk_to_m_multiblock_atomic_add
{
static_assert(((InSrcVectorDim == 0 && MThreadSliceSize % InSrcVectorSize == 0) ||
(InSrcVectorDim == 1 && KThreadSliceSize % InSrcVectorSize == 0)) &&
(MThreadSliceSize % OutDstVectorSize == 0),
"Invalid thread slice sizes and/or vector sizes configuration, please check!");
static constexpr bool reorder_thread_cluster = (InSrcVectorDim == 0);
using ThreadClusterLengths_M_K = Sequence<MThreadClusterSize, KThreadClusterSize>;
......@@ -109,8 +115,7 @@ struct GridwiseReduction_mk_to_m_multiblock_atomic_add
ReduceOperation,
PropagateNan>;
template <typename T>
using PassThroughOp = tensor_operation::element_wise::UnaryIdentic<T, T>;
using PassThroughOp = tensor_operation::element_wise::PassThrough;
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
......@@ -249,7 +254,7 @@ struct GridwiseReduction_mk_to_m_multiblock_atomic_add
OutDataType,
decltype(reduced_data_desc),
OutGridDesc_M,
PassThroughOp<AccDataType>,
PassThroughOp,
Sequence<MThreadSliceSize>,
Sequence<0>,
0,
......@@ -260,7 +265,7 @@ struct GridwiseReduction_mk_to_m_multiblock_atomic_add
out_grid_desc_m,
make_multi_index(blkgroup_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize),
PassThroughOp<AccDataType>{});
PassThroughOp{});
threadwise_dst_store.Run(
reduced_data_desc, make_tuple(I0), accu_value_buf, out_grid_desc_m, out_global_buf);
......
......@@ -23,8 +23,8 @@
* SOFTWARE.
*
*******************************************************************************/
#ifndef CK_GRIDWISE_2D_REDUCTION_MULTIBLOCK_TWO_CALL_HPP
#define CK_GRIDWISE_2D_REDUCTION_MULTIBLOCK_TWO_CALL_HPP
#ifndef CK_GRIDWISE_2D_REDUCTION_MULTIBLOCK_PARTIAL_REDUCE_HPP
#define CK_GRIDWISE_2D_REDUCTION_MULTIBLOCK_PARTIAL_REDUCE_HPP
#include "reduction_common.hpp"
#include "reduction_operator.hpp"
......@@ -32,6 +32,7 @@
#include "reduction_functions_blockwise.hpp"
#include "threadwise_tensor_slice_transfer.hpp"
#include "cluster_descriptor.hpp"
#include "element_wise_operation.hpp"
namespace ck {
......@@ -101,6 +102,12 @@ template <typename InDataType,
index_t OutDstVectorSize>
struct GridwiseReduction_mk_to_mk_multiblock_partial_reduce
{
static_assert((InSrcVectorDim == 0 && MThreadSliceSize % InSrcVectorSize == 0) ||
(InSrcVectorDim == 1 && KThreadSliceSize % InSrcVectorSize == 0),
"Invalid thread slice sizes and/or vector sizes configuration, please check!");
static_assert(OutDstVectorSize == 1, "OutDstVectorSize must be 1 for MultiBlockPartialReduce!");
static constexpr bool reorder_thread_cluster = (InSrcVectorDim == 0);
using ThreadClusterLengths_M_K = Sequence<MThreadClusterSize, KThreadClusterSize>;
......@@ -119,8 +126,7 @@ struct GridwiseReduction_mk_to_mk_multiblock_partial_reduce
static constexpr auto block_buf_desc_m_k = make_naive_tensor_descriptor_packed(
make_tuple(Number<MThreadClusterSize>{}, Number<KThreadClusterSize>{}));
template <typename T>
using PassThroughOp = tensor_operation::element_wise::UnaryIdentic<T, T>;
using PassThroughOp = tensor_operation::element_wise::PassThrough;
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
......@@ -238,9 +244,6 @@ struct GridwiseReduction_mk_to_mk_multiblock_partial_reduce
reducedTiles++;
} while(reducedTiles < num_k_block_tile_iteration);
constexpr auto reduced_data_desc = make_naive_tensor_descriptor_packed(
make_tuple(Number<MThreadSliceSize>{}, Number<1>{}));
// Each block executes multiple parallel reductions on the LDS, and due to the using of
// vector_load, each block/thread is involved into multiple invarirant dimensions.
static_for<0, MThreadSliceSize, 1>{}([&](auto I) {
......@@ -254,6 +257,9 @@ struct GridwiseReduction_mk_to_mk_multiblock_partial_reduce
BlockwiseReduce::Reduce(block_reduce_buf, accu_value_buf(I));
});
constexpr auto reduced_data_desc = make_naive_tensor_descriptor_packed(
make_tuple(Number<MThreadSliceSize>{}, Number<1>{}));
if(thread_k_cluster_id == 0)
{
auto threadwise_workspace_store =
......@@ -261,7 +267,7 @@ struct GridwiseReduction_mk_to_mk_multiblock_partial_reduce
AccDataType,
decltype(reduced_data_desc),
WorkspaceDesc_M_K,
PassThroughOp<AccDataType>,
PassThroughOp,
Sequence<MThreadSliceSize, 1>,
Sequence<0, 1>,
1,
......@@ -273,7 +279,7 @@ struct GridwiseReduction_mk_to_mk_multiblock_partial_reduce
make_multi_index(blkgroup_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize,
block_local_id),
PassThroughOp<AccDataType>{});
PassThroughOp{});
threadwise_workspace_store.Run(reduced_data_desc,
make_tuple(I0, I0),
......@@ -450,7 +456,7 @@ struct GridwiseReduction_mk_to_mk_multiblock_partial_reduce
AccDataType,
decltype(reduced_data_desc),
WorkspaceDesc_M_K,
PassThroughOp<AccDataType>,
PassThroughOp,
Sequence<MThreadSliceSize, 1>,
Sequence<0, 1>,
1,
......@@ -462,14 +468,14 @@ struct GridwiseReduction_mk_to_mk_multiblock_partial_reduce
make_multi_index(blkgroup_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize,
block_local_id),
PassThroughOp<AccDataType>{});
PassThroughOp{});
auto threadwise_workspace_idx_store =
ThreadwiseTensorSliceTransfer_v1r3<IndexDataType,
IndexDataType,
decltype(reduced_data_desc),
WorkspaceDesc_M_K,
PassThroughOp<IndexDataType>,
PassThroughOp,
Sequence<MThreadSliceSize, 1>,
Sequence<0, 1>,
1,
......@@ -481,7 +487,7 @@ struct GridwiseReduction_mk_to_mk_multiblock_partial_reduce
make_multi_index(blkgroup_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize,
block_local_id),
PassThroughOp<IndexDataType>{});
PassThroughOp{});
threadwise_workspace_val_store.Run(reduced_data_desc,
make_tuple(I0, I0),
......
......@@ -31,6 +31,7 @@
#include "reduction_operator.hpp"
#include "reduction_functions_accumulate.hpp"
#include "threadwise_tensor_slice_transfer.hpp"
#include "element_wise_operation.hpp"
namespace ck {
......@@ -50,7 +51,7 @@ __global__ void kernel_reduce_threadwise(const InGridDesc_M_K in_grid_desc_m_k,
const AccElementwiseOperation acc_elementwise_op,
AccDataType alpha,
const InDataType* const __restrict__ p_in_global,
OutDataType beta,
AccDataType beta,
OutDataType* const __restrict__ p_out_global,
IndexDataType* const __restrict__ p_indices_global)
{
......@@ -101,11 +102,15 @@ template <typename InDataType,
index_t OutDstVectorSize>
struct GridwiseReduction_mk_to_m_threadwise
{
static_assert(((InSrcVectorDim == 0 && MThreadSliceSize % InSrcVectorSize == 0) ||
(InSrcVectorDim == 1 && KThreadSliceSize % InSrcVectorSize == 0)) &&
(MThreadSliceSize % OutDstVectorSize == 0),
"Invalid thread slice sizes and/or vector sizes configuration, please check!");
using ThreadBufferDimAccessOrder =
typename conditional<InSrcVectorDim == 0, Sequence<1, 0>, Sequence<0, 1>>::type;
template <typename T>
using PassThroughOp = tensor_operation::element_wise::UnaryIdentic<T, T>;
using PassThroughOp = tensor_operation::element_wise::PassThrough;
static constexpr auto I0 = Number<0>{};
......@@ -115,7 +120,7 @@ struct GridwiseReduction_mk_to_m_threadwise
const AccElementwiseOperation& acc_elementwise_op,
AccDataType alpha,
const InDataType* const __restrict__ p_in_global,
OutDataType beta,
AccDataType beta,
OutDataType* const __restrict__ p_out_global,
IndexDataType* const __restrict__ p_indices_global)
{
......@@ -228,7 +233,7 @@ struct GridwiseReduction_mk_to_m_threadwise
priorDstValue_buf);
static_for<0, MThreadSliceSize, 1>{}([&](auto I) {
accu_value_buf(I) += type_convert<AccDataType>(priorDstValue_buf[I] * beta);
accu_value_buf(I) += type_convert<AccDataType>(priorDstValue_buf[I]) * beta;
});
};
};
......@@ -238,7 +243,7 @@ struct GridwiseReduction_mk_to_m_threadwise
OutDataType,
decltype(reduced_data_desc),
OutGridDesc_M,
PassThroughOp<AccDataType>,
PassThroughOp,
Sequence<MThreadSliceSize>,
Sequence<0>,
0,
......@@ -248,7 +253,7 @@ struct GridwiseReduction_mk_to_m_threadwise
false>(
out_grid_desc_m,
make_multi_index(thread_global_1d_id * MThreadSliceSize),
PassThroughOp<AccDataType>{});
PassThroughOp{});
threadwise_dst_store.Run(
reduced_data_desc, make_tuple(I0), accu_value_buf, out_grid_desc_m, dst_global_buf);
......@@ -260,7 +265,7 @@ struct GridwiseReduction_mk_to_m_threadwise
const AccElementwiseOperation& acc_elementwise_op,
AccDataType alpha,
const InDataType* const __restrict__ p_in_global,
OutDataType beta,
AccDataType beta,
OutDataType* const __restrict__ p_out_global,
IndexDataType* const __restrict__ p_indices_global)
{
......@@ -387,7 +392,7 @@ struct GridwiseReduction_mk_to_m_threadwise
priorDstValue_buf);
static_for<0, MThreadSliceSize, 1>{}([&](auto I) {
accu_value_buf(I) += type_convert<AccDataType>(priorDstValue_buf[I] * beta);
accu_value_buf(I) += type_convert<AccDataType>(priorDstValue_buf[I]) * beta;
});
};
};
......@@ -397,7 +402,7 @@ struct GridwiseReduction_mk_to_m_threadwise
OutDataType,
decltype(reduced_data_desc),
OutGridDesc_M,
PassThroughOp<AccDataType>,
PassThroughOp,
Sequence<MThreadSliceSize>,
Sequence<0>,
0,
......@@ -407,14 +412,14 @@ struct GridwiseReduction_mk_to_m_threadwise
false>(
out_grid_desc_m,
make_multi_index(thread_global_1d_id * MThreadSliceSize),
PassThroughOp<AccDataType>{});
PassThroughOp{});
auto threadwise_dst_idx_store =
ThreadwiseTensorSliceTransfer_v1r3<IndexDataType,
IndexDataType,
decltype(reduced_data_desc),
OutGridDesc_M,
PassThroughOp<IndexDataType>,
PassThroughOp,
Sequence<MThreadSliceSize>,
Sequence<0>,
0,
......@@ -424,7 +429,7 @@ struct GridwiseReduction_mk_to_m_threadwise
false>(
out_grid_desc_m,
make_multi_index(thread_global_1d_id * MThreadSliceSize),
PassThroughOp<IndexDataType>{});
PassThroughOp{});
threadwise_dst_val_store.Run(
reduced_data_desc, make_tuple(I0), accu_value_buf, out_grid_desc_m, out_global_val_buf);
......
......@@ -79,6 +79,8 @@ struct ThreadwiseTensorSliceTransfer_v1r3
{
static_assert(SrcDesc::IsKnownAtCompileTime(),
"wrong! SrcDesc need to known at compile-time");
static_assert(SliceLengths::At(Number<DstVectorDim>{}) % DstScalarPerVector == 0,
"wrong! Not divisible");
}
__device__ void SetDstSliceOrigin(const DstDesc& dst_desc, const Index& dst_slice_origin_idx)
......@@ -250,6 +252,8 @@ struct ThreadwiseTensorSliceTransfer_v2
{
static_assert(DstDesc::IsKnownAtCompileTime(),
"wrong! SrcDesc need to known at compile-time");
static_assert(SliceLengths::At(Number<SrcVectorDim>{}) % SrcScalarPerVector == 0,
"wrong! Not divisible");
}
__device__ void SetSrcSliceOrigin(const SrcDesc& src_desc, const Index& src_slice_origin_idx)
......@@ -313,7 +317,8 @@ struct ThreadwiseTensorSliceTransfer_v2
dst_desc.CalculateOffset(to_multi_index(dst_slice_origin_idx) + src_data_idx +
i * src_scalar_step_in_vector);
dst_buf(Number<dst_offset>{}) = src_vector.template AsType<SrcData>()[i];
dst_buf(Number<dst_offset>{}) =
type_convert<DstData>(src_vector.template AsType<SrcData>()[i]);
});
if constexpr(idx_1d.value != num_access - 1)
......@@ -439,6 +444,10 @@ struct ThreadwiseTensorSliceTransfer_v3
: src_coord_(make_tensor_coordinate(src_desc, src_slice_origin)),
dst_coord_(make_tensor_coordinate(dst_desc, dst_slice_origin))
{
static_assert(SliceLengths::At(Number<SrcVectorDim>{}) % SrcScalarPerVector == 0,
"wrong! Not divisible");
static_assert(SliceLengths::At(Number<DstVectorDim>{}) % DstScalarPerVector == 0,
"wrong! Not divisible");
}
__device__ void SetSrcSliceOrigin(const SrcDesc& src_desc, const Index& src_slice_origin_idx)
......@@ -1016,7 +1025,8 @@ struct ThreadwiseTensorSliceTransfer_v4
static_assert(SrcDesc::IsKnownAtCompileTime() && DstDesc::IsKnownAtCompileTime(),
"wrong! SrcDesc and DstDesc need to known at compile-time");
static_assert(SliceLengths::At(Number<SrcVectorDim>{}) % SrcScalarPerVector == 0, "wrong!");
static_assert(SliceLengths::At(Number<SrcVectorDim>{}) % SrcScalarPerVector == 0,
"wrong! Not divisible");
}
template <typename SrcRefToOriginDisplacement,
......
......@@ -637,7 +637,7 @@ __device__ void amd_buffer_store_impl(const typename vector_type<T, N>::type src
}
else if constexpr(N == 2)
{
llvm_amdgcn_raw_buffer_store_fp16x2(src_thread_data,
llvm_amdgcn_raw_buffer_store_i16x2(src_thread_data,
dst_wave_buffer_resource,
dst_thread_addr_offset,
dst_wave_addr_offset,
......@@ -645,7 +645,7 @@ __device__ void amd_buffer_store_impl(const typename vector_type<T, N>::type src
}
else if constexpr(N == 4)
{
llvm_amdgcn_raw_buffer_store_fp16x4(src_thread_data,
llvm_amdgcn_raw_buffer_store_i16x4(src_thread_data,
dst_wave_buffer_resource,
dst_thread_addr_offset,
dst_wave_addr_offset,
......
......@@ -606,6 +606,12 @@ struct sequence_map_inverse
SeqMap::Size()>::type;
};
template <index_t... Xs, index_t... Ys>
__host__ __device__ constexpr bool operator==(Sequence<Xs...>, Sequence<Ys...>)
{
return ((Xs == Ys) && ...);
}
template <index_t... Xs, index_t... Ys>
__host__ __device__ constexpr auto operator+(Sequence<Xs...>, Sequence<Ys...>)
{
......
......@@ -37,6 +37,10 @@ struct SpaceFillingCurve
__host__ __device__ static constexpr index_t GetNumOfAccess()
{
static_assert(TensorLengths::Size() == ScalarsPerAccess::Size());
static_assert(TensorLengths{} % ScalarsPerAccess{} ==
typename uniform_sequence_gen<TensorLengths::Size(), 0>::type{});
return reduce_on_sequence(TensorLengths{}, math::multiplies{}, Number<1>{}) /
ScalarPerVector;
}
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment