"include/ck/utility/functional3.hpp" did not exist on "88b77181aab1198b41b612f6d03b6dfb2d32bd40"
Unverified Commit 919aeb1f authored by Haocong WANG's avatar Haocong WANG Committed by GitHub
Browse files

[Navi3x-LWPCK-545] Block-wise GEMM + Real GEMM_WMMA_FP16 (#541)

* wmma_op + unit test

* add arch limitation to wmma test

* change arch limitation

* Refactor + Add all type unit test(int4 compile failed)

* Add f32_16x16x16_bf16 unit test

* tempsave

* tempsave

* tempsave

* runtime bug, cannot find symbol

* workaround for incorrect HIP warpSize return value

* debugging

* tempsave

* Correctness OK, waiting for optimization

* Tidy up + format

* temp save

* temp save, reproduce the v_bfi_b32 issue

* add inline asm for wmmaop test

* tidy up

* clean some debug purpose code

* discard some codes

* clang format

* clang format

* compiler issue fixed + increase tile size
parent 715e8dd2
......@@ -35,3 +35,8 @@ add_example_executable_no_testing(example_gemm_xdl_fp64 gemm_xdl_fp64.cpp)
add_dependencies(example_gemm_xdl example_gemm_xdl_skip_b_lds_fp16)
add_dependencies(example_gemm_xdl example_gemm_xdl_fp64)
add_custom_target(example_gemm_wmma)
add_example_executable(example_gemm_wmma_fp16 gemm_wmma_fp16.cpp)
add_dependencies(example_gemm_wmma example_gemm_wmma_fp16)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_wmma.hpp"
using ADataType = ck::half_t;
using BDataType = ck::half_t;
using AccDataType = float;
using CShuffleDataType = float;
using CDataType = ck::half_t;
using ALayout = Row;
using BLayout = Col;
using CLayout = Row;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CElementOp = PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
// clang-format off
using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemmWmma_CShuffle
// ######| ALayout| BLayout| CLayout| AData| BData| CData| AccData| CShuffle| A| B| C| GEMM| Block| MPer| NPer| K0Per| K1| MPer| NPer|MRepeat|NRepeat| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
// ######| | | | Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Size| Block| Block| Block| | WMMA| WMMA| | | ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN|MWmmaPerWave|NWmmaPerWave| _MBlock_MWaveMPerWmma| ScalarPerVector|
// ######| | | | | | | | | Operation| Operation| Operation| | | | | | | | | | | Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerWmma| _NWaveNPerWmma|
// ######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
< ALayout, BLayout, CLayout, ADataType, BDataType, CDataType, AccDataType, CShuffleDataType, AElementOp, BElementOp, CElementOp, GemmDefault, 256, 128, 256, 8, 8, 16, 16, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 32, 1, 8>, 8, 1>;
// clang-format on
using ReferenceGemmInstance = ck::tensor_operation::host::
ReferenceGemm<ADataType, BDataType, CDataType, AccDataType, AElementOp, BElementOp, CElementOp>;
#include "run_gemm_example.inc"
int main(int argc, char* argv[]) { return !run_gemm_example(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/warp/wmma_gemm.hpp"
#include "ck/tensor_description/tensor_adaptor.hpp"
#define CK_MNK_LOOP
namespace ck {
template <index_t BlockSize,
typename FloatA,
typename FloatB,
typename FloatAcc,
typename AK0MK1BlockDesc,
typename BK0NK1BlockDesc,
index_t MPerWMMA,
index_t NPerWMMA,
index_t MRepeat,
index_t NRepeat,
index_t KPack>
/* A: K0PerBlock x MPerBlock x K1
* B: K0PerBlock x NPerBlock x K1
* C: MRepeat x MWave x MSubGroup x NRepeat x NWave x NThreadPerSubGroup x MAccVgprs
* KPACK == WMMA_K = 16
*/
struct BlockwiseGemmWMMA_k0mk1_k0nk1_m0m1m2n0n1n2m3_CShuffle
{
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr auto I4 = Number<4>{};
static constexpr auto WmmaK = Number<16>{};
using ThisThreadBlock = ThisThreadBlock<BlockSize>;
// Hardcode of WaveSize, since current HIP Runtime(5.4.0-10984) could not return correct one.
static constexpr index_t WaveSize = 32;
static constexpr index_t MPerBlock = AK0MK1BlockDesc{}.GetLength(I1);
static constexpr index_t NPerBlock = BK0NK1BlockDesc{}.GetLength(I1);
static constexpr index_t KPerBlock =
BK0NK1BlockDesc{}.GetLength(I0) * BK0NK1BlockDesc{}.GetLength(I2);
static constexpr index_t A_K0 = AK0MK1BlockDesc{}.GetLength(I0);
static constexpr index_t B_K0 = BK0NK1BlockDesc{}.GetLength(I0);
static constexpr index_t A_K1 = AK0MK1BlockDesc{}.GetLength(I2);
static constexpr index_t B_K1 = BK0NK1BlockDesc{}.GetLength(I2);
static constexpr auto wmma_gemm =
WmmaGemm<FloatA, FloatB, FloatAcc, MPerWMMA, NPerWMMA, KPack>{};
static constexpr index_t MWaves = MPerBlock / (MRepeat * MPerWMMA);
static constexpr index_t NWaves = NPerBlock / (NRepeat * NPerWMMA);
StaticBufferTupleOfVector<AddressSpaceEnum::Vgpr,
FloatAcc,
MRepeat * NRepeat,
wmma_gemm.GetRegSizePerWmma(),
true>
c_thread_buf_;
__host__ __device__ constexpr auto& GetCThreadBuffer() { return c_thread_buf_; }
__device__ static auto GetWaveIdx()
{
const index_t thread_id = ThisThreadBlock::GetThreadId();
constexpr auto threadid_to_wave_idx_adaptor = make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(MWaves, NWaves, WaveSize))),
make_tuple(Sequence<0, 1, 2>{}),
make_tuple(Sequence<0>{}));
return threadid_to_wave_idx_adaptor.CalculateBottomIndex(make_multi_index(thread_id));
}
__device__ static auto CalculateAThreadOriginDataIndex()
{
const auto wave_idx = GetWaveIdx();
const auto waveId_m = wave_idx[I0];
const auto WMMA_a_idx = wmma_gemm.CalculateAThreadOriginDataIndex();
// |KRepeat |MRepeat|MWave |MLane |KPack
return make_tuple(0, 0, waveId_m, WMMA_a_idx, 0);
}
__device__ static auto CalculateBThreadOriginDataIndex()
{
const auto wave_idx = GetWaveIdx();
const auto waveId_n = wave_idx[I1];
const auto WMMA_b_idx = wmma_gemm.CalculateBThreadOriginDataIndex();
// |KRepeat |NRepeat|Nwave |NLane |KPack
return make_tuple(0, 0, waveId_n, WMMA_b_idx, 0);
}
template <index_t m0, index_t n0>
__device__ static auto CalculateCThreadOriginDataIndex(Number<m0>, Number<n0>)
{
const auto wave_idx = GetWaveIdx();
const auto waveId_m = wave_idx[I0];
const auto waveId_n = wave_idx[I1];
const auto blk_idx = wmma_gemm.GetBeginOfThreadBlk();
constexpr auto mrepeat_mwave_mperWMMA_to_m_adaptor = make_single_stage_tensor_adaptor(
make_tuple(make_unmerge_transform(make_tuple(MRepeat, MWaves, MPerWMMA))),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0, 1, 2>{}));
constexpr auto nrepeat_nwave_nperWMMA_to_n_adaptor = make_single_stage_tensor_adaptor(
make_tuple(make_unmerge_transform(make_tuple(NRepeat, NWaves, NPerWMMA))),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0, 1, 2>{}));
const index_t c_thread_m = mrepeat_mwave_mperWMMA_to_m_adaptor.CalculateBottomIndex(
make_tuple(m0, waveId_m, blk_idx[I0]))[I0];
const index_t c_thread_n = nrepeat_nwave_nperWMMA_to_n_adaptor.CalculateBottomIndex(
make_tuple(n0, waveId_n, blk_idx[I1]))[I0];
return make_tuple(c_thread_m, c_thread_n);
}
__host__ __device__ BlockwiseGemmWMMA_k0mk1_k0nk1_m0m1m2n0n1n2m3_CShuffle()
{
static_assert(AK0MK1BlockDesc::IsKnownAtCompileTime() &&
BK0NK1BlockDesc::IsKnownAtCompileTime(),
"wrong! Desc should be known at compile-time");
static_assert(ThisThreadBlock::GetNumOfThread() == MWaves * NWaves * WaveSize,
"ThisThreadBlock::GetNumOfThread() != MWaves * NWaves * WaveSize\n");
static_assert(MPerBlock % (MPerWMMA * MRepeat) == 0 &&
NPerBlock % (NPerWMMA * NRepeat) == 0,
"wrong!");
}
// Thread level, register decriptor. Vector-write
__host__ __device__ static constexpr auto
GetCThreadDescriptor_MRepeat_MWave_MSubGroup_NRepeat_NWave_NThreadPerSubGroup_MAccVgprs()
{
constexpr auto c_msubgroup_nthreadpersubgroup_maccvgprs_tblk_lens =
wmma_gemm.GetCMSubGroupNThreadPerSubGroupMAccVgprsThreadBlkLengths();
constexpr auto MSubGroup = c_msubgroup_nthreadpersubgroup_maccvgprs_tblk_lens[I0];
constexpr auto NThreadPerSubGroup = c_msubgroup_nthreadpersubgroup_maccvgprs_tblk_lens[I1];
constexpr auto MAccVgprs = c_msubgroup_nthreadpersubgroup_maccvgprs_tblk_lens[I2];
return make_naive_tensor_descriptor_packed(
// |MRepeat |MWave |MSubGroup |NRepeat |NWave
// |NThreadPerSubGroup |MAccVgprs
make_tuple(Number<MRepeat>{},
I1,
MSubGroup,
Number<NRepeat>{},
I1,
NThreadPerSubGroup,
MAccVgprs));
}
// Provide dimension size
__host__ __device__ static constexpr auto
GetCBlockDescriptor_MRepeat_MWave_MSubGroup_NRepeat_NWave_NThreadPerSubGroup_MAccVgprs()
{
constexpr auto c_block_desc_mrepeat_mwave_mperwmma_nrepeat_nwave_nperwmma =
make_naive_tensor_descriptor_packed(make_tuple(Number<MRepeat>{},
Number<MWaves>{},
Number<MPerWMMA>{},
Number<NRepeat>{},
Number<NWaves>{},
Number<NPerWMMA>{}));
return wmma_gemm
.MakeCDesc_MBlockxRepeat_MWave_MSubGroup_NBlockxRepeat_NWave_NThreadPerSubGroup_MAccVgprs(
c_block_desc_mrepeat_mwave_mperwmma_nrepeat_nwave_nperwmma);
}
__host__ __device__ static constexpr auto MakeABlockDescriptor_K0_M0_M1_M2_K1()
{
return transform_tensor_descriptor(
AK0MK1BlockDesc{},
make_tuple(make_pass_through_transform(Number<A_K0>{}),
make_unmerge_transform(
make_tuple(Number<MRepeat>{}, Number<MWaves>{}, Number<MPerWMMA>{})),
make_pass_through_transform(Number<A_K1>{})),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2, 3>{}, Sequence<4>{}));
}
__host__ __device__ static constexpr auto MakeBBlockDescriptor_K0_N0_N1_N2_K1()
{
return transform_tensor_descriptor(
BK0NK1BlockDesc{},
make_tuple(make_pass_through_transform(Number<B_K0>{}),
make_unmerge_transform(
make_tuple(Number<NRepeat>{}, Number<NWaves>{}, Number<NPerWMMA>{})),
make_pass_through_transform(Number<B_K1>{})),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2, 3>{}, Sequence<4>{}));
}
// M0_M1_M2 = MRepeat_MWave_MPerWmma, N0_N1_N2 = NRepeat_NWave_NPerWmma
static constexpr auto a_block_desc_k0_m0_m1_m2_k1 = MakeABlockDescriptor_K0_M0_M1_M2_K1();
static constexpr auto b_block_desc_k0_n0_n1_n2_k1 = MakeBBlockDescriptor_K0_N0_N1_N2_K1();
template <typename ABlockBuffer, typename BBlockBuffer, typename CThreadBuffer>
__device__ void Run(const ABlockBuffer& a_block_buf,
const BBlockBuffer& b_block_buf,
CThreadBuffer& c_thread_buf) const
{
auto a_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, FloatA>(
a_thread_desc_.GetElementSpaceSize());
auto b_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, FloatB>(
b_thread_desc_.GetElementSpaceSize());
static_for<0, KPerBlock / WmmaK, 1>{}([&](auto k) { // k=0,1,2 instead of k=0,kpack*1, ...
static_for<0, MRepeat, 1>{}([&](auto m0) {
// read A
a_thread_copy_.Run(a_block_desc_k0_m0_m1_m2_k1,
make_tuple(Number<k * WmmaK / A_K1>{}, m0, I0, I0, I0),
a_block_buf,
a_thread_desc_,
make_tuple(I0, m0, I0, I0, I0),
a_thread_buf);
static_for<0, NRepeat, 1>{}([&](auto n0) {
// read B
b_thread_copy_.Run(b_block_desc_k0_n0_n1_n2_k1,
make_tuple(Number<k * WmmaK / B_K1>{}, n0, I0, I0, I0),
b_block_buf,
b_thread_desc_,
make_tuple(I0, n0, I0, I0, I0),
b_thread_buf);
vector_type<FloatA, WmmaK> a_thread_vec;
vector_type<FloatB, WmmaK> b_thread_vec;
static_for<0, WmmaK, 1>{}([&](auto i) {
a_thread_vec.template AsType<FloatA>()(i) =
a_thread_buf[Number<a_thread_desc_.CalculateOffset(
make_tuple(i / A_K1, m0, 0, 0, i % A_K1))>{}];
b_thread_vec.template AsType<FloatB>()(i) =
b_thread_buf[Number<b_thread_desc_.CalculateOffset(
make_tuple(i / B_K1, n0, 0, 0, i % B_K1))>{}];
});
using wmma_input_type_a = typename vector_type<FloatA, WmmaK>::type;
using wmma_input_type_b = typename vector_type<FloatB, WmmaK>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
wmma_gemm.template Run(
a_thread_vec.template AsType<wmma_input_type_a>()(Number<0>{}),
b_thread_vec.template AsType<wmma_input_type_b>()(Number<0>{}),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
});
});
});
}
protected:
// A[K0, M0, M1, M2, K1]
static constexpr auto a_thread_desc_ = make_naive_tensor_descriptor_packed(
make_tuple(Number<WmmaK / A_K1>{}, Number<MRepeat>{}, I1, I1, Number<A_K1>{}));
// B[K0, N0, N1, N2, K1]
static constexpr auto b_thread_desc_ = make_naive_tensor_descriptor_packed(
make_tuple(Number<WmmaK / B_K1>{}, Number<NRepeat>{}, I1, I1, Number<B_K1>{}));
// C[M, N, NumRegWMMA]
static constexpr auto c_thread_desc_ = make_naive_tensor_descriptor_packed(
make_tuple(Number<MRepeat>{}, Number<NRepeat>{}, wmma_gemm.GetRegSizePerWmma()));
using AThreadCopy = ThreadwiseTensorSliceTransfer_v4<FloatA,
FloatA,
decltype(a_block_desc_k0_m0_m1_m2_k1),
decltype(a_thread_desc_),
Sequence<WmmaK / A_K1, 1, 1, 1, A_K1>,
Sequence<0, 1, 2, 3, 4>,
4,
A_K1,
A_K1>;
using BThreadCopy = ThreadwiseTensorSliceTransfer_v4<FloatB,
FloatB,
decltype(b_block_desc_k0_n0_n1_n2_k1),
decltype(b_thread_desc_),
Sequence<WmmaK / B_K1, 1, 1, 1, B_K1>,
Sequence<0, 1, 2, 3, 4>,
4,
B_K1,
B_K1>;
AThreadCopy a_thread_copy_{CalculateAThreadOriginDataIndex()};
BThreadCopy b_thread_copy_{CalculateBThreadOriginDataIndex()};
};
// block wise level pipe designed for inline asm
template <index_t BlockSize,
typename FloatA,
typename FloatB,
typename FloatAcc,
typename AK0MK1BlockDesc,
typename BK0NK1BlockDesc,
index_t MPerWMMA,
index_t NPerWMMA,
index_t MRepeat,
index_t NRepeat,
index_t KPack>
/* A: K0PerBlock x MPerBlock x K1
* B: K0PerBlock x NPerBlock x K1
* C: MRepeat x MWave x MSubGroup x NRepeat x NWave x NThreadPerSubGroup x MAccVgprs
* KPACK == WMMA_K = 16
*/
struct BlockwiseGemmWMMA_k0mk1_k0nk1_m0m1m2n0n1n2m3_CShuffle_FIFO
{
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr auto I4 = Number<4>{};
static constexpr auto WmmaK = Number<16>{};
using ThisThreadBlock = ThisThreadBlock<BlockSize>;
// Hardcode of WaveSize, since current HIP Runtime(5.4.0-10984) could not return correct one.
static constexpr index_t WaveSize = 32;
static constexpr index_t MPerBlock = AK0MK1BlockDesc{}.GetLength(I1);
static constexpr index_t NPerBlock = BK0NK1BlockDesc{}.GetLength(I1);
static constexpr index_t KPerBlock =
BK0NK1BlockDesc{}.GetLength(I0) * BK0NK1BlockDesc{}.GetLength(I2);
static constexpr index_t A_K0 = AK0MK1BlockDesc{}.GetLength(I0);
static constexpr index_t B_K0 = BK0NK1BlockDesc{}.GetLength(I0);
static constexpr index_t A_K1 = AK0MK1BlockDesc{}.GetLength(I2);
static constexpr index_t B_K1 = BK0NK1BlockDesc{}.GetLength(I2);
static constexpr auto wmma_gemm =
WmmaGemm<FloatA, FloatB, FloatAcc, MPerWMMA, NPerWMMA, KPack>{};
static constexpr index_t MWaves = MPerBlock / (MRepeat * MPerWMMA);
static constexpr index_t NWaves = NPerBlock / (NRepeat * NPerWMMA);
StaticBufferTupleOfVector<AddressSpaceEnum::Vgpr,
FloatAcc,
MRepeat * NRepeat,
wmma_gemm.GetRegSizePerWmma(),
true>
c_thread_buf_;
__host__ __device__ constexpr auto& GetCThreadBuffer() { return c_thread_buf_; }
__device__ static auto GetWaveIdx()
{
const index_t thread_id = ThisThreadBlock::GetThreadId();
constexpr auto threadid_to_wave_idx_adaptor = make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(MWaves, NWaves, WaveSize))),
make_tuple(Sequence<0, 1, 2>{}),
make_tuple(Sequence<0>{}));
return threadid_to_wave_idx_adaptor.CalculateBottomIndex(make_multi_index(thread_id));
}
__device__ static auto CalculateAThreadOriginDataIndex()
{
const auto wave_idx = GetWaveIdx();
const auto waveId_m = wave_idx[I0];
const auto WMMA_a_idx = wmma_gemm.CalculateAThreadOriginDataIndex();
// |KRepeat |MRepeat|MWave |MLane |KPack
return make_tuple(0, 0, waveId_m, WMMA_a_idx, 0);
}
__device__ static auto CalculateBThreadOriginDataIndex()
{
const auto wave_idx = GetWaveIdx();
const auto waveId_n = wave_idx[I1];
const auto WMMA_b_idx = wmma_gemm.CalculateBThreadOriginDataIndex();
// |KRepeat |NRepeat|Nwave |NLane |KPack
return make_tuple(0, 0, waveId_n, WMMA_b_idx, 0);
}
template <index_t m0, index_t n0>
__device__ static auto CalculateCThreadOriginDataIndex(Number<m0>, Number<n0>)
{
const auto wave_idx = GetWaveIdx();
const auto waveId_m = wave_idx[I0];
const auto waveId_n = wave_idx[I1];
const auto blk_idx = wmma_gemm.GetBeginOfThreadBlk();
constexpr auto mrepeat_mwave_mperWMMA_to_m_adaptor = make_single_stage_tensor_adaptor(
make_tuple(make_unmerge_transform(make_tuple(MRepeat, MWaves, MPerWMMA))),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0, 1, 2>{}));
constexpr auto nrepeat_nwave_nperWMMA_to_n_adaptor = make_single_stage_tensor_adaptor(
make_tuple(make_unmerge_transform(make_tuple(NRepeat, NWaves, NPerWMMA))),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0, 1, 2>{}));
const index_t c_thread_m = mrepeat_mwave_mperWMMA_to_m_adaptor.CalculateBottomIndex(
make_tuple(m0, waveId_m, blk_idx[I0]))[I0];
const index_t c_thread_n = nrepeat_nwave_nperWMMA_to_n_adaptor.CalculateBottomIndex(
make_tuple(n0, waveId_n, blk_idx[I1]))[I0];
return make_tuple(c_thread_m, c_thread_n);
}
__host__ __device__ BlockwiseGemmWMMA_k0mk1_k0nk1_m0m1m2n0n1n2m3_CShuffle_FIFO()
{
static_assert(AK0MK1BlockDesc::IsKnownAtCompileTime() &&
BK0NK1BlockDesc::IsKnownAtCompileTime(),
"wrong! Desc should be known at compile-time");
static_assert(ThisThreadBlock::GetNumOfThread() == MWaves * NWaves * WaveSize,
"ThisThreadBlock::GetNumOfThread() != MWaves * NWaves * WaveSize\n");
static_assert(MPerBlock % (MPerWMMA * MRepeat) == 0 &&
NPerBlock % (NPerWMMA * NRepeat) == 0,
"wrong!");
}
// Thread level, register decriptor. Vector-write
__host__ __device__ static constexpr auto
GetCThreadDescriptor_MRepeat_MWave_MSubGroup_NRepeat_NWave_NThreadPerSubGroup_MAccVgprs()
{
constexpr auto c_msubgroup_nthreadpersubgroup_maccvgprs_tblk_lens =
wmma_gemm.GetCMSubGroupNThreadPerSubGroupMAccVgprsThreadBlkLengths();
constexpr auto MSubGroup = c_msubgroup_nthreadpersubgroup_maccvgprs_tblk_lens[I0];
constexpr auto NThreadPerSubGroup = c_msubgroup_nthreadpersubgroup_maccvgprs_tblk_lens[I1];
constexpr auto MAccVgprs = c_msubgroup_nthreadpersubgroup_maccvgprs_tblk_lens[I2];
return make_naive_tensor_descriptor_packed(
// |MRepeat |MWave |MSubGroup |NRepeat |NWave
// |NThreadPerSubGroup |MAccVgprs
make_tuple(Number<MRepeat>{},
I1,
MSubGroup,
Number<NRepeat>{},
I1,
NThreadPerSubGroup,
MAccVgprs));
}
template <typename CGridDesc_M_N>
__host__ __device__ static constexpr auto
MakeCGridDescriptor_MBlockxRepeat_MWave_MSubGroup_NBlockxRepeat_NWave_NThreadPerSubGroup_MAccVgprs(
const CGridDesc_M_N& c_grid_desc_m_n)
{
const auto M = c_grid_desc_m_n.GetLength(I0);
const auto N = c_grid_desc_m_n.GetLength(I1);
const auto c_grid_desc_mblockxrepeat_mwave_mperwmma_nblockxrepeat_nwave_nperwmma =
transform_tensor_descriptor(
c_grid_desc_m_n,
make_tuple(
make_unmerge_transform(make_tuple(M / (MWaves * MPerWMMA), MWaves, MPerWMMA)),
make_unmerge_transform(make_tuple(N / (NWaves * NPerWMMA), NWaves, NPerWMMA))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 2>{}, Sequence<3, 4, 5>{}));
return wmma_gemm
.MakeCDesc_MBlockxRepeat_MWave_MSubGroup_NBlockxRepeat_NWave_NThreadPerSubGroup_MAccVgprs(
c_grid_desc_mblockxrepeat_mwave_mperwmma_nblockxrepeat_nwave_nperwmma);
}
// Provide dimension size
__host__ __device__ static constexpr auto
GetCBlockDescriptor_MRepeat_MWave_MSubGroup_NRepeat_NWave_NThreadPerSubGroup_MAccVgprs()
{
constexpr auto c_block_desc_mrepeat_mwave_mperwmma_nrepeat_nwave_nperwmma =
make_naive_tensor_descriptor_packed(make_tuple(Number<MRepeat>{},
Number<MWaves>{},
Number<MPerWMMA>{},
Number<NRepeat>{},
Number<NWaves>{},
Number<NPerWMMA>{}));
return wmma_gemm
.MakeCDesc_MBlockxRepeat_MWave_MSubGroup_NBlockxRepeat_NWave_NThreadPerSubGroup_MAccVgprs(
c_block_desc_mrepeat_mwave_mperwmma_nrepeat_nwave_nperwmma);
}
__host__ __device__ static constexpr auto MakeABlockDescriptor_K0_M0_M1_M2_K1()
{
return transform_tensor_descriptor(
AK0MK1BlockDesc{},
make_tuple(make_pass_through_transform(Number<A_K0>{}),
make_unmerge_transform(
make_tuple(Number<MRepeat>{}, Number<MWaves>{}, Number<MPerWMMA>{})),
make_pass_through_transform(Number<A_K1>{})),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2, 3>{}, Sequence<4>{}));
}
__host__ __device__ static constexpr auto MakeBBlockDescriptor_K0_N0_N1_N2_K1()
{
return transform_tensor_descriptor(
BK0NK1BlockDesc{},
make_tuple(make_pass_through_transform(Number<B_K0>{}),
make_unmerge_transform(
make_tuple(Number<NRepeat>{}, Number<NWaves>{}, Number<NPerWMMA>{})),
make_pass_through_transform(Number<B_K1>{})),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2, 3>{}, Sequence<4>{}));
}
// M0_M1_M2 = MRepeat_MWave_MPerWmma, N0_N1_N2 = NRepeat_NWave_NPerWmma
static constexpr auto a_block_desc_k0_m0_m1_m2_k1 = MakeABlockDescriptor_K0_M0_M1_M2_K1();
static constexpr auto b_block_desc_k0_n0_n1_n2_k1 = MakeBBlockDescriptor_K0_N0_N1_N2_K1();
template <typename ABlockBuffer, typename BBlockBuffer, typename CThreadBuffer>
__device__ void Run(const ABlockBuffer& a_block_buf,
const BBlockBuffer& b_block_buf,
CThreadBuffer& c_thread_buf) const
{
auto a_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, FloatA>(
a_thread_desc_.GetElementSpaceSize());
auto b_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, FloatB>(
b_thread_desc_.GetElementSpaceSize());
constexpr auto RepeatDiff = MRepeat - NRepeat;
// Read all Mrepeat, Nrepeat
static_for<0, NRepeat, 1>{}([&](auto iN) {
b_thread_copy_.Run(b_block_desc_k0_n0_n1_n2_k1,
make_tuple(I0, Number<iN>{}, I0, I0, I0),
b_block_buf,
b_thread_desc_,
make_tuple(I0, Number<iN>{}, I0, I0, I0),
b_thread_buf);
});
static_for<0, MRepeat, 1>{}([&](auto iM) {
a_thread_copy_.Run(a_block_desc_k0_m0_m1_m2_k1,
make_tuple(I0, Number<iM>{}, I0, I0, I0),
a_block_buf,
a_thread_desc_,
make_tuple(I0, Number<iM>{}, I0, I0, I0),
a_thread_buf);
});
// Stage 1: Cut to Repeat Retangle to Square, assume MRepeat > NRepeat
static_for<0, RepeatDiff, 1>{}([&](auto iCut) {
static_for<0, NRepeat, 1>{}([&](auto iN) {
vector_type<FloatA, WmmaK> a_thread_vec;
vector_type<FloatB, WmmaK> b_thread_vec;
static_for<0, WmmaK, 1>{}([&](auto iK) {
a_thread_vec.template AsType<FloatA>()(iK) =
a_thread_buf[Number<a_thread_desc_.CalculateOffset(
make_tuple(iK / A_K1, iCut, 0, 0, iK % A_K1))>{}];
b_thread_vec.template AsType<FloatB>()(iK) =
b_thread_buf[Number<b_thread_desc_.CalculateOffset(
make_tuple(iK / B_K1, iN, 0, 0, iK % B_K1))>{}];
});
using wmma_input_type_a = typename vector_type<FloatA, WmmaK>::type;
using wmma_input_type_b = typename vector_type<FloatB, WmmaK>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(iCut, iN, 0));
// s_nop();
wmma_gemm.template Run(
a_thread_vec.template AsType<wmma_input_type_a>()(Number<0>{}),
b_thread_vec.template AsType<wmma_input_type_b>()(Number<0>{}),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
// s_nop();
});
if constexpr(KPerBlock > WmmaK)
{
// Read Consumed Next inner loop A
a_thread_copy_.Run(a_block_desc_k0_m0_m1_m2_k1,
make_tuple(Number<WmmaK / A_K1>{}, Number<iCut>{}, I0, I0, I0),
a_block_buf,
a_thread_desc_,
make_tuple(I0, Number<iCut>{}, I0, I0, I0),
a_thread_buf);
}
});
static_for<WmmaK, KPerBlock, WmmaK>{}([&](auto iWmmaK) {
// Stage 2: Run FIFO fashion loopover in Square
static_for<0, NRepeat, 1>{}([&](auto WmmaInnerloop) {
// Row Repeatation
static_for<WmmaInnerloop, NRepeat, 1>{}([&](auto iN) {
vector_type<FloatA, WmmaK> a_thread_vec;
vector_type<FloatB, WmmaK> b_thread_vec;
static_for<0, WmmaK, 1>{}([&](auto iK) {
a_thread_vec.template AsType<FloatA>()(iK) =
a_thread_buf[Number<a_thread_desc_.CalculateOffset(make_tuple(
iK / A_K1, WmmaInnerloop + RepeatDiff, 0, 0, iK % A_K1))>{}];
b_thread_vec.template AsType<FloatB>()(iK) =
b_thread_buf[Number<b_thread_desc_.CalculateOffset(
make_tuple(iK / B_K1, iN, 0, 0, iK % B_K1))>{}];
});
using wmma_input_type_a = typename vector_type<FloatA, WmmaK>::type;
using wmma_input_type_b = typename vector_type<FloatB, WmmaK>::type;
constexpr index_t c_offset = c_thread_desc_.CalculateOffset(
make_tuple(WmmaInnerloop + RepeatDiff, iN, 0));
// s_nop();
wmma_gemm.template Run(
a_thread_vec.template AsType<wmma_input_type_a>()(Number<0>{}),
b_thread_vec.template AsType<wmma_input_type_b>()(Number<0>{}),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
// s_nop();
});
// Read Consumed Next inner loop A
a_thread_copy_.Run(
a_block_desc_k0_m0_m1_m2_k1,
make_tuple(
Number<iWmmaK / A_K1>{}, Number<WmmaInnerloop + RepeatDiff>{}, I0, I0, I0),
a_block_buf,
a_thread_desc_,
make_tuple(I0, Number<WmmaInnerloop + RepeatDiff>{}, I0, I0, I0),
a_thread_buf);
// Col Repeatation
static_for<WmmaInnerloop + 1 + RepeatDiff, MRepeat, 1>{}([&](auto iM) {
vector_type<FloatA, WmmaK> a_thread_vec;
vector_type<FloatB, WmmaK> b_thread_vec;
static_for<0, WmmaK, 1>{}([&](auto iK) {
a_thread_vec.template AsType<FloatA>()(iK) =
a_thread_buf[Number<a_thread_desc_.CalculateOffset(
make_tuple(iK / A_K1, iM, 0, 0, iK % A_K1))>{}];
b_thread_vec.template AsType<FloatB>()(iK) =
b_thread_buf[Number<b_thread_desc_.CalculateOffset(
make_tuple(iK / B_K1, WmmaInnerloop, 0, 0, iK % B_K1))>{}];
});
using wmma_input_type_a = typename vector_type<FloatA, WmmaK>::type;
using wmma_input_type_b = typename vector_type<FloatB, WmmaK>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(iM, WmmaInnerloop, 0));
// s_nop();
wmma_gemm.template Run(
a_thread_vec.template AsType<wmma_input_type_a>()(Number<0>{}),
b_thread_vec.template AsType<wmma_input_type_b>()(Number<0>{}),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
// s_nop();
});
// Read Consumed Next inner loop B
b_thread_copy_.Run(
b_block_desc_k0_n0_n1_n2_k1,
make_tuple(Number<iWmmaK / B_K1>{}, Number<WmmaInnerloop>{}, I0, I0, I0),
b_block_buf,
b_thread_desc_,
make_tuple(I0, Number<WmmaInnerloop>{}, I0, I0, I0),
b_thread_buf);
});
// Stage 1: Cut to Repeat Retangle to Square, assume MRepeat > NRepeat
static_for<0, RepeatDiff, 1>{}([&](auto iCut) {
static_for<0, NRepeat, 1>{}([&](auto iN) {
vector_type<FloatA, WmmaK> a_thread_vec;
vector_type<FloatB, WmmaK> b_thread_vec;
static_for<0, WmmaK, 1>{}([&](auto iK) {
a_thread_vec.template AsType<FloatA>()(iK) =
a_thread_buf[Number<a_thread_desc_.CalculateOffset(
make_tuple(iK / A_K1, iCut, 0, 0, iK % A_K1))>{}];
b_thread_vec.template AsType<FloatB>()(iK) =
b_thread_buf[Number<b_thread_desc_.CalculateOffset(
make_tuple(iK / B_K1, iN, 0, 0, iK % B_K1))>{}];
});
using wmma_input_type_a = typename vector_type<FloatA, WmmaK>::type;
using wmma_input_type_b = typename vector_type<FloatB, WmmaK>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(iCut, iN, 0));
// s_nop();
wmma_gemm.template Run(
a_thread_vec.template AsType<wmma_input_type_a>()(Number<0>{}),
b_thread_vec.template AsType<wmma_input_type_b>()(Number<0>{}),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
// s_nop();
});
if constexpr(KPerBlock > WmmaK)
{
a_thread_copy_.Run(
a_block_desc_k0_m0_m1_m2_k1,
make_tuple(Number<(iWmmaK + WmmaK) / A_K1>{}, Number<iCut>{}, I0, I0, I0),
a_block_buf,
a_thread_desc_,
make_tuple(I0, Number<iCut>{}, I0, I0, I0),
a_thread_buf);
}
});
});
// Stage 2: Run FIFO fashion loopover in Square
static_for<0, NRepeat, 1>{}([&](auto WmmaInnerloop) {
// Row Repeatation
static_for<WmmaInnerloop, NRepeat, 1>{}([&](auto iN) {
vector_type<FloatA, WmmaK> a_thread_vec;
vector_type<FloatB, WmmaK> b_thread_vec;
static_for<0, WmmaK, 1>{}([&](auto iK) {
a_thread_vec.template AsType<FloatA>()(iK) =
a_thread_buf[Number<a_thread_desc_.CalculateOffset(
make_tuple(iK / A_K1, WmmaInnerloop + RepeatDiff, 0, 0, iK % A_K1))>{}];
b_thread_vec.template AsType<FloatB>()(iK) =
b_thread_buf[Number<b_thread_desc_.CalculateOffset(
make_tuple(iK / B_K1, iN, 0, 0, iK % B_K1))>{}];
});
using wmma_input_type_a = typename vector_type<FloatA, WmmaK>::type;
using wmma_input_type_b = typename vector_type<FloatB, WmmaK>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(WmmaInnerloop + RepeatDiff, iN, 0));
// s_nop();
wmma_gemm.template Run(
a_thread_vec.template AsType<wmma_input_type_a>()(Number<0>{}),
b_thread_vec.template AsType<wmma_input_type_b>()(Number<0>{}),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
// s_nop();
});
// Col Repeatation
static_for<WmmaInnerloop + 1 + RepeatDiff, MRepeat, 1>{}([&](auto iM) {
vector_type<FloatA, WmmaK> a_thread_vec;
vector_type<FloatB, WmmaK> b_thread_vec;
static_for<0, WmmaK, 1>{}([&](auto iK) {
a_thread_vec.template AsType<FloatA>()(iK) =
a_thread_buf[Number<a_thread_desc_.CalculateOffset(
make_tuple(iK / A_K1, iM, 0, 0, iK % A_K1))>{}];
b_thread_vec.template AsType<FloatB>()(iK) =
b_thread_buf[Number<b_thread_desc_.CalculateOffset(
make_tuple(iK / B_K1, WmmaInnerloop, 0, 0, iK % B_K1))>{}];
});
using wmma_input_type_a = typename vector_type<FloatA, WmmaK>::type;
using wmma_input_type_b = typename vector_type<FloatB, WmmaK>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(iM, WmmaInnerloop, 0));
// s_nop();
wmma_gemm.template Run(
a_thread_vec.template AsType<wmma_input_type_a>()(Number<0>{}),
b_thread_vec.template AsType<wmma_input_type_b>()(Number<0>{}),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
// s_nop();
});
});
}
protected:
// A[M0, M1, M2, K0 = WmmaK]
static constexpr auto a_thread_desc_ = make_naive_tensor_descriptor_packed(
make_tuple(Number<WmmaK / A_K1>{}, Number<MRepeat>{}, I1, I1, Number<A_K1>{}));
// B[N0, N1, N2, K0 = WmmaK]
static constexpr auto b_thread_desc_ = make_naive_tensor_descriptor_packed(
make_tuple(Number<WmmaK / B_K1>{}, Number<NRepeat>{}, I1, I1, Number<B_K1>{}));
// C[M, N, NumRegWMMA]
static constexpr auto c_thread_desc_ = make_naive_tensor_descriptor_packed(
make_tuple(Number<MRepeat>{}, Number<NRepeat>{}, wmma_gemm.GetRegSizePerWmma()));
using AThreadCopy = ThreadwiseTensorSliceTransfer_v4<FloatA,
FloatA,
decltype(a_block_desc_k0_m0_m1_m2_k1),
decltype(a_thread_desc_),
Sequence<WmmaK / A_K1, 1, 1, 1, A_K1>,
Sequence<0, 1, 2, 3, 4>,
4,
A_K1,
A_K1>;
using BThreadCopy = ThreadwiseTensorSliceTransfer_v4<FloatB,
FloatB,
decltype(b_block_desc_k0_n0_n1_n2_k1),
decltype(b_thread_desc_),
Sequence<WmmaK / B_K1, 1, 1, 1, B_K1>,
Sequence<0, 1, 2, 3, 4>,
4,
B_K1,
B_K1>;
AThreadCopy a_thread_copy_{CalculateAThreadOriginDataIndex()};
BThreadCopy b_thread_copy_{CalculateBThreadOriginDataIndex()};
};
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_wmma.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
template <typename ALayout,
typename BLayout,
typename CLayout,
typename ADataType,
typename BDataType,
typename CDataType,
typename AccDataType,
typename CShuffleDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation,
GemmSpecialization GemmSpec,
ck::index_t BlockSize,
ck::index_t MPerBlock,
ck::index_t NPerBlock,
ck::index_t K0PerBlock,
ck::index_t K1,
ck::index_t MPerWMMA,
ck::index_t NPerWMMA,
ck::index_t MRepeat,
ck::index_t NRepeat,
typename ABlockTransferThreadClusterLengths_K0_M_K1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
ck::index_t ABlockTransferSrcVectorDim,
ck::index_t ABlockTransferSrcScalarPerVector,
ck::index_t ABlockTransferDstScalarPerVector_K1,
bool ABlockLdsAddExtraM,
typename BBlockTransferThreadClusterLengths_K0_N_K1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
ck::index_t BBlockTransferSrcVectorDim,
ck::index_t BBlockTransferSrcScalarPerVector,
ck::index_t BBlockTransferDstScalarPerVector_K1,
bool BBlockLdsAddExtraN,
index_t CShuffleMRepeatPerShuffle,
index_t CShuffleNRepeatPerShuffle,
typename CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
index_t CShuffleBlockTransferScalarPerVector_NPerBlock,
ck::index_t NumPrefetch = 1,
ck::LoopScheduler LoopSched = make_default_loop_scheduler(),
ck::PipelineVersion PipelineVer = ck::PipelineVersion::v1>
struct DeviceGemmWmma_CShuffle : public DeviceGemm<ALayout,
BLayout,
CLayout,
ADataType,
BDataType,
CDataType,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation>
{
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
// K1 = Max Vector Access Pixels
static constexpr auto K1Number = Number<K1>{};
static auto MakeAGridDescriptor_K0_M_K1(index_t M, index_t K, index_t StrideA)
{
assert(K % K1 == 0);
const index_t K0 = K / K1;
const auto a_grid_desc_m_k = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, ALayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, K), make_tuple(StrideA, I1));
}
#ifdef ENABLE_COLMAJOR
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, ALayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, K), make_tuple(I1, StrideA));
}
#endif
}();
if constexpr(GemmSpec == GemmSpecialization::MNPadding)
{
const auto PadM = (MPerBlock - M % MPerBlock) % MPerBlock;
return transform_tensor_descriptor(
a_grid_desc_m_k,
make_tuple(make_unmerge_transform(make_tuple(K0, K1Number)),
make_right_pad_transform(M, PadM)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
}
else
{
return transform_tensor_descriptor(
a_grid_desc_m_k,
make_tuple(make_unmerge_transform(make_tuple(K0, K1Number)),
make_pass_through_transform(M)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
}
}
static auto MakeBGridDescriptor_K0_N_K1(index_t K, index_t N, index_t StrideB)
{
assert(K % K1 == 0);
const index_t K0 = K / K1;
const auto b_grid_desc_k_n = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, BLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(K, N), make_tuple(StrideB, I1));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, BLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(K, N), make_tuple(I1, StrideB));
}
}();
if constexpr(GemmSpec == GemmSpecialization::MNPadding)
{
const auto PadN = (NPerBlock - N % NPerBlock) % NPerBlock;
return transform_tensor_descriptor(
b_grid_desc_k_n,
make_tuple(make_unmerge_transform(make_tuple(K0, K1Number)),
make_right_pad_transform(N, PadN)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
}
else
{
return transform_tensor_descriptor(
b_grid_desc_k_n,
make_tuple(make_unmerge_transform(make_tuple(K0, K1Number)),
make_pass_through_transform(N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
}
}
static auto MakeCGridDescriptor_M_N(index_t M, index_t N, index_t StrideC)
{
const auto c_grid_desc_m_n = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, CLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(StrideC, I1));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, CLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(I1, StrideC));
}
}();
if constexpr(GemmSpec == GemmSpecialization::MNPadding)
{
const auto PadM = (MPerBlock - M % MPerBlock) % MPerBlock;
const auto PadN = (NPerBlock - N % NPerBlock) % NPerBlock;
return transform_tensor_descriptor(
c_grid_desc_m_n,
make_tuple(make_right_pad_transform(M, PadM), make_right_pad_transform(N, PadN)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
else
{
return transform_tensor_descriptor(
c_grid_desc_m_n,
make_tuple(make_pass_through_transform(M), make_pass_through_transform(N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
}
// Gridwise descriptor, mapping to whole given provblem.
using AGridDesc_K0_M_K1 = decltype(MakeAGridDescriptor_K0_M_K1(1, 1, 1));
using BGridDesc_K0_N_K1 = decltype(MakeBGridDescriptor_K0_N_K1(1, 1, 1));
using CGridDesc_M_N = decltype(MakeCGridDescriptor_M_N(1, 1, 1));
// GridwiseGemm
using GridwiseGemm = GridwiseGemm_k0mk1_k0nk1_mn_wmma<
BlockSize,
ADataType,
BDataType,
AccDataType,
CShuffleDataType,
CDataType,
InMemoryDataOperationEnum::Set,
AGridDesc_K0_M_K1,
BGridDesc_K0_N_K1,
CGridDesc_M_N,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
MPerBlock,
NPerBlock,
K0PerBlock,
MPerWMMA,
NPerWMMA,
K1,
MRepeat,
NRepeat,
ABlockTransferThreadClusterLengths_K0_M_K1,
ABlockTransferThreadClusterArrangeOrder,
ABlockTransferSrcAccessOrder,
ABlockTransferSrcVectorDim,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_K1,
false, // AThreadTransferSrcResetCoordinateAfterRun,
ABlockLdsAddExtraM,
BBlockTransferThreadClusterLengths_K0_N_K1,
BBlockTransferThreadClusterArrangeOrder,
BBlockTransferSrcAccessOrder,
BBlockTransferSrcVectorDim,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_K1,
false, // BThreadTransferSrcResetCoordinateAfterRun,
BBlockLdsAddExtraN,
CShuffleMRepeatPerShuffle,
CShuffleNRepeatPerShuffle,
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
CShuffleBlockTransferScalarPerVector_NPerBlock,
NumPrefetch,
LoopSched,
PipelineVer>;
// Argument
struct Argument : public BaseArgument
{
Argument(const ADataType* p_a_grid,
const BDataType* p_b_grid,
CDataType* p_c_grid,
index_t M,
index_t N,
index_t K,
index_t StrideA,
index_t StrideB,
index_t StrideC,
index_t M01,
index_t N01,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op)
: p_a_grid_{p_a_grid},
p_b_grid_{p_b_grid},
p_c_grid_{p_c_grid},
a_grid_desc_k0_m_k1_{},
b_grid_desc_k0_n_k1_{},
c_grid_desc_m_n_{},
c_grid_desc_mblock_mperblock_nblock_nperblock{},
block_2_ctile_map_{},
M01_{M01},
N01_{N01},
a_element_op_{a_element_op},
b_element_op_{b_element_op},
c_element_op_{c_element_op}
{
a_grid_desc_k0_m_k1_ =
DeviceGemmWmma_CShuffle::MakeAGridDescriptor_K0_M_K1(M, K, StrideA);
b_grid_desc_k0_n_k1_ =
DeviceGemmWmma_CShuffle::MakeBGridDescriptor_K0_N_K1(K, N, StrideB);
c_grid_desc_m_n_ = DeviceGemmWmma_CShuffle::MakeCGridDescriptor_M_N(M, N, StrideC);
block_2_ctile_map_ =
GridwiseGemm::MakeDefaultBlock2CTileMap(c_grid_desc_m_n_, M01, N01);
if(GridwiseGemm::CheckValidity(a_grid_desc_k0_m_k1_,
b_grid_desc_k0_n_k1_,
c_grid_desc_m_n_,
block_2_ctile_map_))
{
c_grid_desc_mblock_mperblock_nblock_nperblock =
GridwiseGemm::MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
c_grid_desc_m_n_);
}
}
// private:
const ADataType* p_a_grid_;
const BDataType* p_b_grid_;
CDataType* p_c_grid_;
AGridDesc_K0_M_K1 a_grid_desc_k0_m_k1_;
BGridDesc_K0_N_K1 b_grid_desc_k0_n_k1_;
CGridDesc_M_N c_grid_desc_m_n_;
typename GridwiseGemm::CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
c_grid_desc_mblock_mperblock_nblock_nperblock;
typename GridwiseGemm::DefaultBlock2CTileMap block_2_ctile_map_;
index_t M01_;
index_t N01_;
AElementwiseOperation a_element_op_;
BElementwiseOperation b_element_op_;
CElementwiseOperation c_element_op_;
};
// Invoker
struct Invoker : public BaseInvoker
{
using Argument = DeviceGemmWmma_CShuffle::Argument;
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
#if 0
{
std::cout << "arg.a_grid_desc_k0_m_k1_{" << arg.a_grid_desc_k0_m_k1_.GetLength(I0)
<< ", " << arg.a_grid_desc_k0_m_k1_.GetLength(I1) << ", "
<< arg.a_grid_desc_k0_m_k1_.GetLength(I2) << "}" << std::endl;
std::cout << "arg.b_grid_desc_k0_n_k1_{" << arg.b_grid_desc_k0_n_k1_.GetLength(I0)
<< ", " << arg.b_grid_desc_k0_n_k1_.GetLength(I1) << ", "
<< arg.b_grid_desc_k0_n_k1_.GetLength(I2) << "}" << std::endl;
std::cout << "arg.c_grid_desc_m_n_{ " << arg.c_grid_desc_m_n_.GetLength(I0)
<< ", " << arg.c_grid_desc_m_n_.GetLength(I1) << ", "
<< arg.c_grid_desc_m_n_.GetLength(I2) << "}" << std::endl;
}
#endif
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_,
arg.c_grid_desc_m_n_,
arg.block_2_ctile_map_))
{
throw std::runtime_error(
"wrong! GridwiseGemm_k0mk1_k0nk1_m0nm1_wmma_v1r1 has invalid setting");
}
const index_t grid_size =
arg.block_2_ctile_map_.CalculateGridSize(arg.c_grid_desc_m_n_);
const auto K =
arg.a_grid_desc_k0_m_k1_.GetLength(I0) * arg.a_grid_desc_k0_m_k1_.GetLength(I2);
float ave_time = 0;
if(GridwiseGemm::CalculateHasMainKBlockLoop(K))
{
const auto kernel = kernel_gemm_wmma<
GridwiseGemm,
ADataType,
BDataType,
CDataType,
remove_reference_t<DeviceGemmWmma_CShuffle::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceGemmWmma_CShuffle::BGridDesc_K0_N_K1>,
remove_reference_t<
typename GridwiseGemm::CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock>,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
remove_reference_t<typename GridwiseGemm::DefaultBlock2CTileMap>,
true>; // Last Option is W/O
ave_time = launch_and_time_kernel(stream_config,
kernel,
dim3(grid_size),
dim3(BlockSize),
0,
arg.p_a_grid_,
arg.p_b_grid_,
arg.p_c_grid_,
arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_,
arg.c_grid_desc_mblock_mperblock_nblock_nperblock,
arg.a_element_op_,
arg.b_element_op_,
arg.c_element_op_,
arg.block_2_ctile_map_);
}
else
{
const auto kernel = kernel_gemm_wmma<
GridwiseGemm,
ADataType,
BDataType,
CDataType,
remove_reference_t<DeviceGemmWmma_CShuffle::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceGemmWmma_CShuffle::BGridDesc_K0_N_K1>,
remove_reference_t<
typename GridwiseGemm::CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock>,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
remove_reference_t<typename GridwiseGemm::DefaultBlock2CTileMap>,
false>;
ave_time = launch_and_time_kernel(stream_config,
kernel,
dim3(grid_size),
dim3(BlockSize),
0,
arg.p_a_grid_,
arg.p_b_grid_,
arg.p_c_grid_,
arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_,
arg.c_grid_desc_mblock_mperblock_nblock_nperblock,
arg.a_element_op_,
arg.b_element_op_,
arg.c_element_op_,
arg.block_2_ctile_map_);
}
return ave_time;
}
// polymorphic
float Run(const BaseArgument* p_arg,
const StreamConfig& stream_config = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), stream_config);
}
};
static constexpr bool IsValidCompilationParameter()
{
// TODO: properly implement this check
return true;
}
static bool IsSupportedArgument(const Argument& arg)
{
if(ck::get_device_name() == "gfx1100")
{
if constexpr(!(is_same_v<AccDataType, float> || is_same_v<AccDataType, int32_t>))
{
return false;
}
}
else
{
return false;
}
return GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_,
arg.c_grid_desc_m_n_,
arg.block_2_ctile_map_);
}
// polymorphic
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
}
static auto MakeArgument(const ADataType* p_a,
const BDataType* p_b,
CDataType* p_c,
index_t M,
index_t N,
index_t K,
index_t StrideA,
index_t StrideB,
index_t StrideC,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op)
{
return Argument{p_a,
p_b,
p_c,
M,
N,
K,
StrideA,
StrideB,
StrideC,
1,
1,
a_element_op,
b_element_op,
c_element_op};
}
static auto MakeInvoker() { return Invoker{}; }
// polymorphic
std::unique_ptr<BaseArgument> MakeArgumentPointer(const void* p_a,
const void* p_b,
void* p_c,
index_t M,
index_t N,
index_t K,
index_t StrideA,
index_t StrideB,
index_t StrideC,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op) override
{
return std::make_unique<Argument>(static_cast<const ADataType*>(p_a),
static_cast<const BDataType*>(p_b),
static_cast<CDataType*>(p_c),
M,
N,
K,
StrideA,
StrideB,
StrideC,
1,
1,
a_element_op,
b_element_op,
c_element_op);
}
// polymorphic
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>(Invoker{});
}
// polymorphic
std::string GetTypeString() const override
{
auto str = std::stringstream();
std::map<LoopScheduler, std::string> LoopSchedToString{
{LoopScheduler::Default, "Default"}, {LoopScheduler::Interwave, "Interwave"}};
std::map<PipelineVersion, std::string> PipelineVersionToString{{PipelineVersion::v1, "v1"},
{PipelineVersion::v2, "v2"}};
// clang-format off
str << "DeviceGemmWmma_CShuffle"
<< "<"
<< BlockSize << ", "
<< MPerBlock << ", "
<< NPerBlock << ", "
<< K0PerBlock << ", "
<< K1 << ", "
<< MPerWMMA << ", "
<< NPerWMMA << ", "
<< MRepeat << ", "
<< NRepeat
<< ">"
<< " NumPrefetch: "
<< NumPrefetch << ", "
<< "LoopScheduler: "
<< LoopSchedToString[LoopSched] << ", "
<< "PipelineVersion: "
<< PipelineVersionToString[PipelineVer];
// clang-format on
return str.str();
}
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/multi_index_transform_helper.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_selector.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_wmma.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v4r1.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v6r1.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
namespace ck {
template <typename GridwiseGemm,
typename FloatA,
typename FloatB,
typename FloatC,
typename AGridDesc_K0_M_K1,
typename BGridDesc_K0_N_K1,
typename CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation,
typename Block2CTileMap,
bool HasMainKBlockLoop>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, CK_MIN_BLOCK_PER_CU)
#endif
kernel_gemm_wmma(
const FloatA* __restrict__ p_a_grid,
const FloatB* __restrict__ p_b_grid,
FloatC* __restrict__ p_c_grid,
const AGridDesc_K0_M_K1 a_grid_desc_k0_m_k1,
const BGridDesc_K0_N_K1 b_grid_desc_k0_n_k1,
const CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
c_grid_desc_mblock_mperblock_nblock_nperblock,
// const
// CGridDescriptor_MBlockxRepeat_MWave_MSubGroup_MAccVgprs_NBlockxRepeat_NWave_NThreadPerSubGroup
// c_grid_desc_mblockxrepeat_mwave_msubgroup_maccvgprs_nblockxrepeat_nwave_nthreadpersubgroup,
const AElementwiseOperation a_element_op,
const BElementwiseOperation b_element_op,
const CElementwiseOperation c_element_op,
const Block2CTileMap block_2_ctile_map)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx1100__))
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
GridwiseGemm::template Run<HasMainKBlockLoop>(p_a_grid,
p_b_grid,
p_c_grid,
p_shared,
a_grid_desc_k0_m_k1,
b_grid_desc_k0_n_k1,
c_grid_desc_mblock_mperblock_nblock_nperblock,
a_element_op,
b_element_op,
c_element_op,
block_2_ctile_map);
#else
ignore = p_a_grid;
ignore = p_b_grid;
ignore = p_c_grid;
ignore = a_grid_desc_k0_m_k1;
ignore = b_grid_desc_k0_n_k1;
ignore = c_grid_desc_mblock_mperblock_nblock_nperblock;
ignore = a_element_op;
ignore = b_element_op;
ignore = c_element_op;
ignore = block_2_ctile_map;
#endif // end of if (defined(__gfx1100__))
}
template <index_t BlockSize,
typename FloatA,
typename FloatB,
typename FloatAcc,
typename FloatCShuffle,
typename FloatC,
InMemoryDataOperationEnum CGlobalMemoryDataOperation,
typename AGridDesc_K0_M_K1,
typename BGridDesc_K0_N_K1,
typename CGridDesc_M_N,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation,
index_t MPerBlock,
index_t NPerBlock,
index_t K0PerBlock,
index_t MPerWmma,
index_t NPerWmma,
index_t K1Value,
index_t MRepeat,
index_t NRepeat,
typename ABlockTransferThreadClusterLengths_K0_M_K1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
index_t ABlockTransferSrcVectorDim,
index_t ABlockTransferSrcScalarPerVector,
index_t ABlockTransferDstScalarPerVector_K1,
bool AThreadTransferSrcResetCoordinateAfterRun,
bool ABlockLdsExtraM,
typename BBlockTransferThreadClusterLengths_K0_N_K1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
index_t BBlockTransferSrcVectorDim,
index_t BBlockTransferSrcScalarPerVector,
index_t BBlockTransferDstScalarPerVector_K1,
bool BThreadTransferSrcResetCoordinateAfterRun,
bool BBlockLdsExtraN,
index_t CShuffleMRepeatPerShuffle,
index_t CShuffleNRepeatPerShuffle,
typename CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
index_t CShuffleBlockTransferScalarPerVector_NPerBlock,
index_t NumGemmKPrefetchStage = 1,
LoopScheduler LoopSched = make_default_loop_scheduler(),
PipelineVersion PipelineVer = PipelineVersion::v1>
struct GridwiseGemm_k0mk1_k0nk1_mn_wmma
{
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr auto I4 = Number<4>{};
static constexpr auto I5 = Number<5>{};
static constexpr auto I6 = Number<6>{};
static constexpr auto I7 = Number<7>{};
// K1 should be Number<...>
static constexpr auto K1 = Number<K1Value>{};
using ThisThreadBlock = ThisThreadBlock<BlockSize>;
using GridwiseGemmPipe = remove_cvref_t<decltype(
GridwiseGemmPipeline_Selector<PipelineVer, NumGemmKPrefetchStage, LoopSched>())>;
__host__ __device__ static constexpr auto GetABlockDescriptor_K0PerBlock_MPerBlock_K1()
{
constexpr auto max_lds_align = K1;
// A matrix in LDS memory, dst of blockwise copy
constexpr auto a_block_desc_k0perblock_mperblock_k1 = [&]() {
if constexpr(ABlockLdsExtraM)
{
return make_naive_tensor_descriptor(
make_tuple(Number<K0PerBlock>{}, Number<MPerBlock>{}, K1),
make_tuple(Number<MPerBlock + 1>{} * K1, K1, I1));
}
else
{
return make_naive_tensor_descriptor_aligned(
make_tuple(Number<K0PerBlock>{}, Number<MPerBlock>{}, K1), max_lds_align);
}
}();
return a_block_desc_k0perblock_mperblock_k1;
}
__host__ __device__ static constexpr auto GetBBlockDescriptor_K0PerBlock_NPerBlock_K1()
{
constexpr auto max_lds_align = K1;
// B matrix in LDS memory, dst of blockwise copy
constexpr auto b_block_desc_k0perblock_nperblock_k1 = [&]() {
if constexpr(BBlockLdsExtraN)
{
return make_naive_tensor_descriptor(
make_tuple(Number<K0PerBlock>{}, Number<NPerBlock>{}, K1),
make_tuple(Number<NPerBlock + 1>{} * K1, K1, I1));
}
else
{
return make_naive_tensor_descriptor_aligned(
make_tuple(Number<K0PerBlock>{}, Number<NPerBlock>{}, K1), max_lds_align);
}
}();
return b_block_desc_k0perblock_nperblock_k1;
}
__host__ __device__ static constexpr auto
// *Caution Here repeat is shuffle repeat
GetCShuffleBlockDescriptor_MShRepeat_MPerShRepeat_NShRepeat_NPerShRepeat()
{
constexpr index_t MWave = MPerBlock / (MRepeat * MPerWmma);
constexpr index_t NWave = NPerBlock / (NRepeat * NPerWmma);
constexpr auto c_shuffle_block_desc_mshrepeat_mpershrepeat_nshrepeat_npershrepeat =
make_naive_tensor_descriptor_packed(
make_tuple(I1,
Number<CShuffleMRepeatPerShuffle * MWave * MPerWmma>{},
I1,
Number<CShuffleNRepeatPerShuffle * NWave * NPerWmma>{}));
return c_shuffle_block_desc_mshrepeat_mpershrepeat_nshrepeat_npershrepeat;
}
__host__ __device__ static constexpr index_t GetSharedMemoryNumberOfByte()
{
// LDS allocation for A and B: be careful of alignment
constexpr auto a_block_desc_k0perblock_mperblock_k1 =
GetABlockDescriptor_K0PerBlock_MPerBlock_K1();
constexpr auto b_block_desc_k0perblock_nperblock_k1 =
GetBBlockDescriptor_K0PerBlock_NPerBlock_K1();
constexpr auto max_lds_align = K1;
constexpr auto a_block_space_size_aligned = math::integer_least_multiple(
a_block_desc_k0perblock_mperblock_k1.GetElementSpaceSize(), max_lds_align);
constexpr auto b_block_space_size_aligned = math::integer_least_multiple(
b_block_desc_k0perblock_nperblock_k1.GetElementSpaceSize(), max_lds_align);
return (a_block_space_size_aligned * sizeof(FloatA) +
b_block_space_size_aligned * sizeof(FloatB));
}
// block_id to matrix tile idx (m0, n0) mapping are controlled by {M01, N01}
template <typename Block2CTileMap>
__host__ __device__ static constexpr bool
CheckValidity(const AGridDesc_K0_M_K1& a_grid_desc_k0_m_k1,
const BGridDesc_K0_N_K1& b_grid_desc_k0_n_k1,
const CGridDesc_M_N& c_grid_desc_m_n,
const Block2CTileMap& block_2_ctile_map)
{
static_assert(is_known_at_compile_time<remove_cv_t<decltype(K1)>>::value,
"wrong! K1 need to be known at compile-time");
static_assert((MPerBlock % (MPerWmma * MRepeat) == 0) &&
(NPerBlock % (NRepeat * NPerWmma)) == 0,
"Invalid tuning param!");
const auto M = a_grid_desc_k0_m_k1.GetLength(I1);
const auto N = b_grid_desc_k0_n_k1.GetLength(I1);
const auto K0 = a_grid_desc_k0_m_k1.GetLength(I0);
if(!(M == c_grid_desc_m_n.GetLength(I0) && N == c_grid_desc_m_n.GetLength(I1) &&
K0 == b_grid_desc_k0_n_k1.GetLength(I0) && K1 == a_grid_desc_k0_m_k1.GetLength(I2) &&
K1 == b_grid_desc_k0_n_k1.GetLength(I2)))
return false;
if(!(M % MPerBlock == 0 && N % NPerBlock == 0 && K0 % K0PerBlock == 0))
return false;
// check gridwise gemm pipeline
const auto num_k_loop = K0 / K0PerBlock;
if(!GridwiseGemmPipe::IsSupported(num_k_loop))
{
return false;
}
if(!block_2_ctile_map.CheckValidity(c_grid_desc_m_n))
{
return false;
}
// TODO: also check validity of all components (blockwise-copy, threadwise-copy, etc)
return true;
}
__host__ __device__ static constexpr bool CalculateHasMainKBlockLoop(index_t K)
{
const index_t num_loop = K / (K0PerBlock * K1);
return GridwiseGemmPipe::CalculateHasMainLoop(num_loop);
}
__host__ __device__ static constexpr auto
MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(const CGridDesc_M_N& c_grid_desc_m_n)
{
const auto M = c_grid_desc_m_n.GetLength(I0);
const auto N = c_grid_desc_m_n.GetLength(I1);
const auto MBlock = M / MPerBlock;
const auto NBlock = N / NPerBlock;
const auto c_grid_desc_mblock_mperblock_nblock_nperblock = transform_tensor_descriptor(
c_grid_desc_m_n,
make_tuple(make_unmerge_transform(make_tuple(MBlock, Number<MPerBlock>{})),
make_unmerge_transform(make_tuple(NBlock, Number<NPerBlock>{}))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1>{}, Sequence<2, 3>{}));
return c_grid_desc_mblock_mperblock_nblock_nperblock;
}
// return block_id to C matrix tile idx (m0, n0) mapping
__host__ __device__ static constexpr auto MakeDefaultBlock2CTileMap(
const CGridDesc_M_N& c_grid_desc_m_n, index_t /* M01 */, index_t /* N01 */)
{
return BlockToCTileMap_M00_N0_M01Adapt<MPerBlock, NPerBlock, CGridDesc_M_N>(
c_grid_desc_m_n);
}
using CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock = remove_cvref_t<decltype(
MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(CGridDesc_M_N{}))>;
using DefaultBlock2CTileMap =
remove_cvref_t<decltype(MakeDefaultBlock2CTileMap(CGridDesc_M_N{}, 1, 1))>;
template <bool HasMainKBlockLoop, typename Block2CTileMap = DefaultBlock2CTileMap>
__device__ static void Run(const FloatA* __restrict__ p_a_grid,
const FloatB* __restrict__ p_b_grid,
FloatC* __restrict__ p_c_grid,
void* __restrict__ p_shared,
const AGridDesc_K0_M_K1& a_grid_desc_k0_m_k1,
const BGridDesc_K0_N_K1& b_grid_desc_k0_n_k1,
const CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock&
c_grid_desc_mblock_mperblock_nblock_nperblock,
const AElementwiseOperation& a_element_op,
const BElementwiseOperation& b_element_op,
const CElementwiseOperation& c_element_op,
const Block2CTileMap& block_2_ctile_map)
{
// clang-format off
/*******************************************************************************/
// Memory buffer zone.
const auto a_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_a_grid, a_grid_desc_k0_m_k1.GetElementSpaceSize());
const auto b_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_b_grid, b_grid_desc_k0_n_k1.GetElementSpaceSize());
auto c_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_c_grid, c_grid_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize());
/*******************************************************************************/
// BlockIdx.x -> [BlockId.m, BlockId.n]
const auto block_work_idx = block_2_ctile_map.CalculateBottomIndex(make_multi_index(get_block_1d_id()));
if(!block_2_ctile_map.ValidCTileIndex(
block_work_idx,
make_tuple(c_grid_desc_mblock_mperblock_nblock_nperblock.GetLength(I0),
c_grid_desc_mblock_mperblock_nblock_nperblock.GetLength(I2))))
{ return; }
// Store BlockId into SGPR
const index_t m_block_data_idx_on_grid = __builtin_amdgcn_readfirstlane(block_work_idx[I0] * MPerBlock);
const index_t n_block_data_idx_on_grid = __builtin_amdgcn_readfirstlane(block_work_idx[I1] * NPerBlock);
/*******************************************************************************/
// BlockLevel, A/B Matrix ThreadMapping in LDS, As Destinaion of BlockWise_Copy
const auto K0 = a_grid_desc_k0_m_k1.GetLength(I0);
constexpr auto max_lds_align = K1;
constexpr auto a_block_desc_k0perblock_mperblock_k1 = GetABlockDescriptor_K0PerBlock_MPerBlock_K1();
constexpr auto b_block_desc_k0perblock_nperblock_k1 = GetBBlockDescriptor_K0PerBlock_NPerBlock_K1();
// A matrix blockwise copy
auto a_blockwise_copy =
ThreadGroupTensorSliceTransfer_v4r1< ThisThreadBlock,
/* typename SrcElementwiseOperation, */ AElementwiseOperation,
/* typename DstElementwiseOperation, */ ck::tensor_operation::element_wise::PassThrough,
/* InMemoryDataOperationEnum DstInMemOp, */ InMemoryDataOperationEnum::Set,
/* typename BlockSliceLengths, */ Sequence<K0PerBlock, MPerBlock, K1>,
/* typename ThreadClusterLengths, */ ABlockTransferThreadClusterLengths_K0_M_K1,
/* typename ThreadClusterArrangeOrder, */ ABlockTransferThreadClusterArrangeOrder,
/* typename SrcData, */ FloatA,
/* typename DstData, */ FloatA,
/* typename SrcDesc, */ decltype(a_grid_desc_k0_m_k1),
/* typename DstDesc, */ decltype(a_block_desc_k0perblock_mperblock_k1),
/* typename SrcDimAccessOrder, */ ABlockTransferSrcAccessOrder,
/* typename DstDimAccessOrder, */ Sequence<0, 1, 2>,
/* index_t SrcVectorDim, */ ABlockTransferSrcVectorDim,
/* index_t DstVectorDim, */ 2,
/* index_t SrcScalarPerVector, */ ABlockTransferSrcScalarPerVector,
/* index_t DstScalarPerVector, */ ABlockTransferDstScalarPerVector_K1,
/* index_t SrcScalarStrideInVector, */ 1,
/* index_t DstScalarStrideInVector, */ 1,
/* bool ThreadTransferSrcResetCoordinateAfterRun, */ AThreadTransferSrcResetCoordinateAfterRun,
/* bool ThreadTransferDstResetCoordinateAfterRun, */ true>(
a_grid_desc_k0_m_k1,
make_multi_index(0, m_block_data_idx_on_grid, 0),
a_element_op,
a_block_desc_k0perblock_mperblock_k1,
make_multi_index(0, 0, 0),
ck::tensor_operation::element_wise::PassThrough{});
// B matrix blockwise copy
auto b_blockwise_copy =
ThreadGroupTensorSliceTransfer_v4r1<ThisThreadBlock,
BElementwiseOperation,
ck::tensor_operation::element_wise::PassThrough,
InMemoryDataOperationEnum::Set,
Sequence<K0PerBlock, NPerBlock, K1>,
BBlockTransferThreadClusterLengths_K0_N_K1,
BBlockTransferThreadClusterArrangeOrder,
FloatB,
FloatB,
decltype(b_grid_desc_k0_n_k1),
decltype(b_block_desc_k0perblock_nperblock_k1),
BBlockTransferSrcAccessOrder,
Sequence<0, 1, 2>,
BBlockTransferSrcVectorDim,
2,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_K1,
1,
1,
BThreadTransferSrcResetCoordinateAfterRun,
true>(
b_grid_desc_k0_n_k1,
make_multi_index(0, n_block_data_idx_on_grid, 0),
b_element_op,
b_block_desc_k0perblock_nperblock_k1,
make_multi_index(0, 0, 0),
ck::tensor_operation::element_wise::PassThrough{});
/*******************************************************************************/
// GEMM
constexpr auto WmmaK = 16;
constexpr auto KPack = math::integer_least_multiple(K1, WmmaK);
auto blockwise_gemm =
BlockwiseGemmWMMA_k0mk1_k0nk1_m0m1m2n0n1n2m3_CShuffle_FIFO<BlockSize,
FloatA,
FloatB,
FloatAcc,
decltype(a_block_desc_k0perblock_mperblock_k1),
decltype(b_block_desc_k0perblock_nperblock_k1),
MPerWmma,
NPerWmma,
MRepeat,
NRepeat,
KPack>{};
// Prepare Register for C matrix
auto c_thread_buf = blockwise_gemm.GetCThreadBuffer();
/*******************************************************************************/
constexpr auto a_block_space_size_aligned = math::integer_least_multiple(a_block_desc_k0perblock_mperblock_k1.GetElementSpaceSize(), max_lds_align);
// LDS allocation for A and B: be careful of alignment
auto a_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(static_cast<FloatA*>(p_shared), a_block_desc_k0perblock_mperblock_k1.GetElementSpaceSize());
auto b_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(static_cast<FloatB*>(p_shared) + a_block_space_size_aligned, b_block_desc_k0perblock_nperblock_k1.GetElementSpaceSize());
// Shift Per SUB_K
constexpr auto a_block_slice_copy_step = make_multi_index(K0PerBlock, 0, 0);
constexpr auto b_block_slice_copy_step = make_multi_index(K0PerBlock, 0, 0);
// gridwise GEMM pipeline
const index_t K0BlockMainLoop = __builtin_amdgcn_readfirstlane(K0 / K0PerBlock);
GridwiseGemmPipe::template Run<HasMainKBlockLoop>(a_grid_desc_k0_m_k1,
a_block_desc_k0perblock_mperblock_k1,
a_blockwise_copy,
a_grid_buf,
a_block_buf,
a_block_slice_copy_step,
b_grid_desc_k0_n_k1,
b_block_desc_k0perblock_nperblock_k1,
b_blockwise_copy,
b_grid_buf,
b_block_buf,
b_block_slice_copy_step,
blockwise_gemm,
c_thread_buf,
K0BlockMainLoop);
/*******************************************************************************/
// write out to C, implement shuffle
{
constexpr auto c_thread_desc_mrepeat_mwave_msubgroup_nrepeat_nwave_nthreadpersubgroup_maccvgprs =
blockwise_gemm.GetCThreadDescriptor_MRepeat_MWave_MSubGroup_NRepeat_NWave_NThreadPerSubGroup_MAccVgprs();
// This API Provide All dimension (size) you need
constexpr auto c_block_desc_mrepeat_mwave_msubgroup_nrepeat_nwave_nthreadpersubgroup_maccvgprs_tmp =
blockwise_gemm.GetCBlockDescriptor_MRepeat_MWave_MSubGroup_NRepeat_NWave_NThreadPerSubGroup_MAccVgprs();
constexpr auto MWave = c_block_desc_mrepeat_mwave_msubgroup_nrepeat_nwave_nthreadpersubgroup_maccvgprs_tmp.GetLength(I1);
constexpr auto MSubGroup = c_block_desc_mrepeat_mwave_msubgroup_nrepeat_nwave_nthreadpersubgroup_maccvgprs_tmp.GetLength(I2);
constexpr auto NWave = c_block_desc_mrepeat_mwave_msubgroup_nrepeat_nwave_nthreadpersubgroup_maccvgprs_tmp.GetLength(I4);
constexpr auto NThreadPerSubGroup = c_block_desc_mrepeat_mwave_msubgroup_nrepeat_nwave_nthreadpersubgroup_maccvgprs_tmp.GetLength(I5);
constexpr auto MAccVgprs = c_block_desc_mrepeat_mwave_msubgroup_nrepeat_nwave_nthreadpersubgroup_maccvgprs_tmp.GetLength(I6);
// LDS descriptor, shuffle and write out in MRepeat x NRepeat times
constexpr auto c_shuffle_block_desc_mshrepeat_mpershrepeat_nshrepeat_npershrepeat =
GetCShuffleBlockDescriptor_MShRepeat_MPerShRepeat_NShRepeat_NPerShRepeat();
auto c_shuffle_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<FloatCShuffle*>(p_shared),
c_shuffle_block_desc_mshrepeat_mpershrepeat_nshrepeat_npershrepeat.GetElementSpaceSize());
constexpr auto c_block_desc_mrepeat_mwave_msubgroup_nrepeat_nwave_nthreadpersubgroup_maccvgprs = transform_tensor_descriptor(
c_shuffle_block_desc_mshrepeat_mpershrepeat_nshrepeat_npershrepeat,
make_tuple(
make_freeze_transform(I0),
make_unmerge_transform(make_tuple(
Number<CShuffleMRepeatPerShuffle>{}, // MRepeat per shuffle repeat
MWave, // MWave
MSubGroup, // MSubGroup * MAccVgprs = MPerWmma
MAccVgprs)),
make_freeze_transform(I0),
make_unmerge_transform(make_tuple(
Number<CShuffleNRepeatPerShuffle>{}, // NRepeat per shuffle repeat
NWave, // NWave
NThreadPerSubGroup))), // NThreadPerSubGroup = NPerWmma
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<>{}, Sequence<0, 1, 2, 6>{}, Sequence<>{}, Sequence<3, 4, 5>{}));
// calculate origin of thread output tensor on global memory
// blockwise GEMM c matrix starting index
const auto c_thread_mtx_on_block = blockwise_gemm.CalculateCThreadOriginDataIndex(I0, I0);
const index_t m_thread_data_on_block = c_thread_mtx_on_block[I0];
const index_t n_thread_data_on_block = c_thread_mtx_on_block[I1];
const auto m_thread_data_on_block_to_mrepeat_mwave_msubgroup_maccvgprs_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(MRepeat, MWave, MSubGroup, MAccVgprs))),
make_tuple(Sequence<0, 1, 2, 3>{}),
make_tuple(Sequence<0>{}));
const auto n_thread_data_on_block_to_nrepeat_nwave_nthreadpersubgroup_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(NRepeat, NWave, NThreadPerSubGroup))),
make_tuple(Sequence<0, 1, 2>{}),
make_tuple(Sequence<0>{}));
const auto m_thread_data_on_block_idx = m_thread_data_on_block_to_mrepeat_mwave_msubgroup_maccvgprs_adaptor.CalculateBottomIndex(
make_multi_index(m_thread_data_on_block));
const auto n_thread_data_on_block_idx = n_thread_data_on_block_to_nrepeat_nwave_nthreadpersubgroup_adaptor.CalculateBottomIndex(
make_multi_index(n_thread_data_on_block));
// shuffle: threadwise copy C from VGPR to LDS
auto c_thread_copy_vgpr_to_lds =
ThreadwiseTensorSliceTransfer_v1r3<FloatAcc,
FloatCShuffle,
decltype(c_thread_desc_mrepeat_mwave_msubgroup_nrepeat_nwave_nthreadpersubgroup_maccvgprs),
decltype(c_block_desc_mrepeat_mwave_msubgroup_nrepeat_nwave_nthreadpersubgroup_maccvgprs),
ck::tensor_operation::element_wise::PassThrough,
Sequence<CShuffleMRepeatPerShuffle,
I1,
I1,
CShuffleNRepeatPerShuffle,
I1,
I1,
MAccVgprs>,
Sequence<0, 1, 2, 3, 4, 5, 6>,
6,
1, // vector write pixel
InMemoryDataOperationEnum::Set,
1,
true>{
c_block_desc_mrepeat_mwave_msubgroup_nrepeat_nwave_nthreadpersubgroup_maccvgprs,
make_multi_index(0,
m_thread_data_on_block_idx[I1],
m_thread_data_on_block_idx[I2],
0,
n_thread_data_on_block_idx[I1],
n_thread_data_on_block_idx[I2],
m_thread_data_on_block_idx[I3]),
ck::tensor_operation::element_wise::PassThrough{}};
// shuffle: blockwise copy C from LDS to global
auto c_shuffle_block_copy_lds_to_global = ThreadGroupTensorSliceTransfer_v6r1<
ThisThreadBlock, // ThreadGroup
CElementwiseOperation, // ElementwiseOperation,
CGlobalMemoryDataOperation, // DstInMemOp,
Sequence<1,
CShuffleMRepeatPerShuffle * MWave * MPerWmma,
1,
CShuffleNRepeatPerShuffle * NWave * NPerWmma>, // BlockSliceLengths,
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
Sequence<0, 1, 2, 3>, // typename ThreadClusterArrangeOrder,
FloatCShuffle, // typename SrcData,
FloatC, // typename DstData,
decltype(c_shuffle_block_desc_mshrepeat_mpershrepeat_nshrepeat_npershrepeat),
decltype(c_grid_desc_mblock_mperblock_nblock_nperblock),
Sequence<0, 1, 2, 3>, // typename DimAccessOrder,
3, // index_t VectorDim,
CShuffleBlockTransferScalarPerVector_NPerBlock, // index_t ScalarPerVector,
true, // bool ThreadTransferSrcResetCoordinateAfterRun,
false> // bool ThreadTransferDstResetCoordinateAfterRun>
{c_shuffle_block_desc_mshrepeat_mpershrepeat_nshrepeat_npershrepeat,
make_multi_index(0, 0, 0, 0),
c_grid_desc_mblock_mperblock_nblock_nperblock,
make_multi_index(block_work_idx[I0], 0, block_work_idx[I1], 0),
c_element_op};
// space filling curve for local reg & global memory
// space filling curve for threadwise C in VGPR
constexpr auto sfc_c_vgpr =
SpaceFillingCurve<Sequence<MRepeat, 1, 1, NRepeat, 1, 1, MAccVgprs>,
Sequence<0, 1, 2, 3, 4, 5, 6>,
Sequence<CShuffleMRepeatPerShuffle,
1,
1,
CShuffleNRepeatPerShuffle,
1,
1,
MAccVgprs>>{};
// space filling curve for shuffled blockwise C in global mem
constexpr auto sfc_c_global =
SpaceFillingCurve<Sequence<1, MPerBlock, 1, NPerBlock>,
Sequence<0, 2, 1, 3>,
Sequence<1,
CShuffleMRepeatPerShuffle * MWave * MPerWmma,
1,
CShuffleNRepeatPerShuffle * NWave * NPerWmma>>{};
constexpr index_t num_access = sfc_c_vgpr.GetNumOfAccess();
static_assert(num_access == sfc_c_global.GetNumOfAccess(), "wrong!");
static_for<0, num_access, 1>{}([&](auto access_id) {
// make sure it's safe to write to LDS
block_sync_lds();
// each thread write its data from VGPR to LDS
c_thread_copy_vgpr_to_lds.Run(c_thread_desc_mrepeat_mwave_msubgroup_nrepeat_nwave_nthreadpersubgroup_maccvgprs,
sfc_c_vgpr.GetIndexTupleOfNumber(access_id),
c_thread_buf,
c_block_desc_mrepeat_mwave_msubgroup_nrepeat_nwave_nthreadpersubgroup_maccvgprs,
c_shuffle_block_buf);
// make sure it's safe to read from LDS
block_sync_lds();
// each block copy its data from LDS to global
c_shuffle_block_copy_lds_to_global.Run(
c_shuffle_block_desc_mshrepeat_mpershrepeat_nshrepeat_npershrepeat,
c_shuffle_block_buf,
c_grid_desc_mblock_mperblock_nblock_nperblock,
c_grid_buf);
if constexpr(access_id < num_access - 1)
{
constexpr auto c_global_step = sfc_c_global.GetForwardStep(access_id);
// move on C
c_shuffle_block_copy_lds_to_global.MoveDstSliceWindow(
c_grid_desc_mblock_mperblock_nblock_nperblock, c_global_step);
}
});
}
// clang-format on
}
};
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/utility/math.hpp"
#include "ck/utility/amd_wmma.hpp"
namespace ck {
enum struct WmmaInstr
{
wmma_f32_16x16x16_f16 = 0,
wmma_f32_16x16x16_bf16,
wmma_f16_16x16x16_f16,
wmma_bf16_16x16x16_bf16,
wmma_i32_16x16x16_iu8,
wmma_i32_16x16x16_iu4
};
/*
* WMMA Wave Tile Always MxNxK = 16x16x16
* WAVE32
-----------------------------------
|RC0| | | | | | | | | | | | | | | | SubGroup 0
|RC1| | | | | | | | | | | | | | | |
|RC2| | | | | | | | | | | | | | | |
|RC3|T|T|T|T|T|T|T|T|T|T|T|T|T|T|T|
|RC4|0|0|0|0|0|0|0|0|0|1|1|1|1|1|1|
|RC5|1|2|3|4|5|6|7|8|9|0|1|2|3|4|5|
|RC6| | | | | | | | | | | | | | | |
|RC7| | | | | | | | | | | | | | | |
-----------------------------------
| | | | | | | | | | | | | | | | | SubGroup 1
| | | | | | | | | | | | | | | | |
| T |T|T|T|T|T|T|T|T|T|T|T|T|T|T|T|
| 1 |1|1|1|2|2|2|2|2|2|2|2|2|2|3|3|
| 6 |7|8|9|0|1|2|3|4|5|6|7|8|9|0|1|
| | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | |
-----------------------------------
* WAVE64
-----------------------------------
|RC0|T|T|T|T|T|T|T|T|T|T|T|T|T|T|T| SubGroup 0
|RC1|0|0|0|0|0|0|0|0|0|1|1|1|1|1|1|
|RC2|1|2|3|4|5|6|7|8|9|0|1|2|3|4|5|
|RC3|T|T|T|T|T|T|T|T|T|T|T|T|T|T|T|
-----------------------------------
| T |T|T|T|T|T|T|T|T|T|T|T|T|T|T|T| SubGroup 1
| 1 |1|1|1|2|2|2|2|2|2|2|2|2|2|3|3|
| 6 |7|8|9|0|1|2|3|4|5|6|7|8|9|0|1|
| | | | | | | | | | | | | | | | |
-----------------------------------
| T |T|T|T|T|T|T|T|T|T|T|T|T|T|T|T| SubGroup 2
| 3 |3|3|3|3|3|3|3|4|4|4|4|4|4|4|4|
| 2 |3|4|5|6|7|8|9|0|1|2|3|4|5|6|7|
| | | | | | | | | | | | | | | | |
-----------------------------------
| T |T|T|T|T|T|T|T|T|T|T|T|T|T|T|T| SubGroup 3
| 4 |4|5|5|5|5|5|5|5|5|5|5|6|6|6|6|
| 8 |9|0|1|2|3|4|5|6|7|8|9|0|1|2|3|
| | | | | | | | | | | | | | | | |
-----------------------------------
* RC = Register for storing accumalted result
* T = Thread ID
*/
template <WmmaInstr Instr, index_t WaveSize, typename = void>
struct wmma_type
{
};
// A-swizzled
template <index_t WaveSize>
struct wmma_type<WmmaInstr::wmma_f32_16x16x16_f16,
WaveSize,
typename std::enable_if_t<WaveSize == 32 || WaveSize == 64>>
{
// Absolute fixing property
// * Data Pixel
static constexpr index_t m_per_wmma = 16;
static constexpr index_t n_per_wmma = 16;
static constexpr index_t k_per_wmma = 16;
static constexpr index_t src_a_data_size = 2;
static constexpr index_t src_b_data_size = 2;
static constexpr index_t acc_data_size = 4;
// * Thread mapping inside wave, num_thread_per_subgroups always alone N direction
static constexpr index_t num_thread_per_subgroups = n_per_wmma;
// Wave mode dependent propety
static constexpr index_t wave_size = Number<WaveSize>{};
// * Fixed in Navi3x, Will be wave mode dependent on Navi4x
static constexpr index_t num_src_a_vgprs_per_wave = m_per_wmma * src_a_data_size / 4;
static constexpr index_t num_src_b_vgprs_per_wave = n_per_wmma * src_b_data_size / 4;
// * num_acc_vgprs_per_wave alone M direction
// * num_subgroups alone M direction
static constexpr index_t num_acc_vgprs_per_wave =
m_per_wmma * n_per_wmma * acc_data_size / wave_size / 4;
static constexpr index_t num_subgroups = wave_size / num_thread_per_subgroups;
template <index_t MPerWmma, index_t NPerWmma, class FloatA, class FloatB, class FloatC>
__device__ void run(const FloatA& a, const FloatB& b, FloatC& reg_c) const
{
if constexpr(wave_size == 32)
{
intrin_wmma_f32_16x16x16_f16_w32<MPerWmma, NPerWmma>::Run(a, b, reg_c);
}
else if constexpr(wave_size == 64)
{
intrin_wmma_f32_16x16x16_f16_w64<MPerWmma, NPerWmma>::Run(a, b, reg_c);
}
}
};
template <index_t WaveSize>
struct wmma_type<WmmaInstr::wmma_f32_16x16x16_bf16,
WaveSize,
typename std::enable_if_t<WaveSize == 32 || WaveSize == 64>>
{
// Absolute fixing property
static constexpr index_t m_per_wmma = 16;
static constexpr index_t n_per_wmma = 16;
static constexpr index_t k_per_wmma = 16;
static constexpr index_t src_a_data_size = 2;
static constexpr index_t src_b_data_size = 2;
static constexpr index_t acc_data_size = 4;
static constexpr index_t num_thread_per_subgroups = n_per_wmma;
// Wave mode dependent propety
static constexpr index_t wave_size = Number<WaveSize>{};
static constexpr index_t num_src_a_vgprs_per_wave = m_per_wmma * src_a_data_size / 4;
static constexpr index_t num_src_b_vgprs_per_wave = n_per_wmma * src_b_data_size / 4;
static constexpr index_t num_acc_vgprs_per_wave =
m_per_wmma * n_per_wmma * acc_data_size / wave_size / 4;
static constexpr index_t num_subgroups = wave_size / num_thread_per_subgroups;
template <index_t MPerWmma, index_t NPerWmma, class FloatA, class FloatB, class FloatC>
__device__ void run(const FloatA& a, const FloatB& b, FloatC& reg_c) const
{
if constexpr(wave_size == 32)
{
intrin_wmma_f32_16x16x16_bf16_w32<MPerWmma, NPerWmma>::Run(a, b, reg_c);
}
else if constexpr(wave_size == 64)
{
intrin_wmma_f32_16x16x16_bf16_w64<MPerWmma, NPerWmma>::Run(a, b, reg_c);
}
}
};
#ifdef CK_UNPACKED_ACC_DESC_LOGIC
template <index_t WaveSize>
struct wmma_type<WmmaInstr::wmma_f16_16x16x16_f16,
WaveSize,
typename std::enable_if_t<WaveSize == 32 || WaveSize == 64>>
{
// Absolute fixing property
static constexpr index_t m_per_wmma = 16;
static constexpr index_t n_per_wmma = 16;
static constexpr index_t k_per_wmma = 16;
static constexpr index_t src_a_data_size = 2;
static constexpr index_t src_b_data_size = 2;
static constexpr index_t acc_data_size = 2;
static constexpr index_t num_thread_per_subgroups = n_per_wmma;
// Wave mode dependent propety
static constexpr index_t wave_size = Number<WaveSize>{};
static constexpr index_t num_src_a_vgprs_per_wave = m_per_wmma * src_a_data_size / 4;
static constexpr index_t num_src_b_vgprs_per_wave = n_per_wmma * src_b_data_size / 4;
static constexpr index_t num_acc_vgprs_per_wave =
m_per_wmma * n_per_wmma * acc_data_size / wave_size / 4;
static constexpr index_t num_subgroups = wave_size / num_thread_per_subgroups;
template <index_t MPerWmma,
index_t NPerWmma,
index_t Opsel,
class FloatA,
class FloatB,
class FloatC>
__device__ void run(const FloatA& a, const FloatB& b, FloatC& reg_c) const
{
if constexpr(wave_size == 32)
{
intrin_wmma_f16_16x16x16_f16_w32<MPerWmma, NPerWmma, Opsel>::Run(a, b, reg_c);
}
else if constexpr(wave_size == 64)
{
intrin_wmma_f16_16x16x16_f16_w64<MPerWmma, NPerWmma, Opsel>::Run(a, b, reg_c);
}
}
};
template <index_t WaveSize>
struct wmma_type<WmmaInstr::wmma_bf16_16x16x16_bf16,
WaveSize,
typename std::enable_if_t<WaveSize == 32 || WaveSize == 64>>
{
// Absolute fixing property
static constexpr index_t m_per_wmma = 16;
static constexpr index_t n_per_wmma = 16;
static constexpr index_t k_per_wmma = 16;
static constexpr index_t src_a_data_size = 2;
static constexpr index_t src_b_data_size = 2;
static constexpr index_t acc_data_size = 2;
static constexpr index_t num_thread_per_subgroups = n_per_wmma;
// Wave mode dependent propety
static constexpr index_t wave_size = Number<WaveSize>{};
static constexpr index_t num_src_a_vgprs_per_wave = m_per_wmma * src_a_data_size / 4;
static constexpr index_t num_src_b_vgprs_per_wave = n_per_wmma * src_b_data_size / 4;
static constexpr index_t num_acc_vgprs_per_wave =
m_per_wmma * n_per_wmma * acc_data_size / wave_size / 4;
static constexpr index_t num_subgroups = wave_size / num_thread_per_subgroups;
template <index_t MPerWmma,
index_t NPerWmma,
index_t Opsel,
class FloatA,
class FloatB,
class FloatC>
__device__ void run(const FloatA& a, const FloatB& b, FloatC& reg_c) const
{
if constexpr(wave_size == 32)
{
intrin_wmma_bf16_16x16x16_bf16_w32<MPerWmma, NPerWmma, Opsel>::Run(a, b, reg_c);
}
else if constexpr(wave_size == 64)
{
intrin_wmma_bf16_16x16x16_bf16_w64<MPerWmma, NPerWmma, Opsel>::Run(a, b, reg_c);
}
}
};
#endif
template <index_t WaveSize>
struct wmma_type<WmmaInstr::wmma_i32_16x16x16_iu8,
WaveSize,
typename std::enable_if_t<WaveSize == 32 || WaveSize == 64>>
{
// Absolute fixing property
static constexpr index_t m_per_wmma = 16;
static constexpr index_t n_per_wmma = 16;
static constexpr index_t k_per_wmma = 16;
static constexpr index_t src_a_data_size = 2;
static constexpr index_t src_b_data_size = 2;
static constexpr index_t acc_data_size = 4;
static constexpr index_t num_thread_per_subgroups = n_per_wmma;
// Wave mode dependent propety
static constexpr index_t wave_size = Number<WaveSize>{};
static constexpr index_t num_src_a_vgprs_per_wave = m_per_wmma * src_a_data_size / 4;
static constexpr index_t num_src_b_vgprs_per_wave = n_per_wmma * src_b_data_size / 4;
static constexpr index_t num_acc_vgprs_per_wave =
m_per_wmma * n_per_wmma * acc_data_size / wave_size / 4;
static constexpr index_t num_subgroups = wave_size / num_thread_per_subgroups;
template <index_t MPerWmma,
index_t NPerWmma,
bool neg_a,
bool neg_b,
bool clamp,
class FloatA,
class FloatB,
class FloatC>
__device__ void run(const FloatA& a, const FloatB& b, FloatC& reg_c) const
{
if constexpr(wave_size == 32)
{
intrin_wmma_i32_16x16x16_iu8_w32<MPerWmma, NPerWmma, neg_a, neg_b, clamp>::Run(
a, b, reg_c);
}
else if constexpr(wave_size == 64)
{
intrin_wmma_i32_16x16x16_iu8_w64<MPerWmma, NPerWmma, neg_a, neg_b, clamp>::Run(
a, b, reg_c);
}
}
};
template <typename src_type_a,
typename src_type_b,
typename dst_type,
index_t MPerWmma,
index_t NPerWmma>
struct WmmaSelector
{
template <typename src_type_a_,
typename src_type_b_,
typename dst_type_,
index_t MPerWmma_,
index_t NPerWmma_>
static constexpr auto GetWmma();
template <>
static constexpr auto GetWmma<half_t, half_t, float, 16, 16>()
{
return WmmaInstr::wmma_f32_16x16x16_f16;
}
template <>
static constexpr auto GetWmma<bhalf_t, bhalf_t, float, 16, 16>()
{
return WmmaInstr::wmma_f32_16x16x16_bf16;
}
template <>
static constexpr auto GetWmma<half_t, half_t, half_t, 16, 16>()
{
return WmmaInstr::wmma_f16_16x16x16_f16;
}
template <>
static constexpr auto GetWmma<bhalf_t, bhalf_t, bhalf_t, 16, 16>()
{
return WmmaInstr::wmma_bf16_16x16x16_bf16;
}
template <>
static constexpr auto GetWmma<int8_t, int8_t, int, 16, 16>()
{
return WmmaInstr::wmma_i32_16x16x16_iu8;
}
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
template <>
static constexpr auto GetWmma<int4_t, int, 16, 16>()
{
return WmmaInstr::wmma_i32_16x16x16_iu4;
}
#endif
// get_warp_size do not return the correct wavesize, hardcode to 32 as workaround
static constexpr auto selected_wmma =
wmma_type<GetWmma<src_type_a, src_type_b, dst_type, MPerWmma, NPerWmma>(), Number<32>{}>{};
__host__ __device__ constexpr WmmaSelector()
{
static_assert(selected_wmma.m_per_wmma == 16, "WRONG! WMMA_M must equal to 16");
static_assert(selected_wmma.m_per_wmma == 16, "WRONG! WMMA_M must equal to 16");
static_assert(selected_wmma.k_per_wmma == 16, "WRONG! WMMA_M must equal to 16");
static_assert(selected_wmma.wave_size * selected_wmma.num_acc_vgprs_per_wave *
selected_wmma.acc_data_size ==
selected_wmma.m_per_wmma * selected_wmma.n_per_wmma * 4,
"WRONG! Invalid Number of Accumulator Register");
}
};
template <typename src_type_a,
typename src_type_b,
typename dst_type,
index_t MPerWmma,
index_t NPerWmma,
index_t KPack,
bool TransposeC = false>
struct WmmaGemm
{
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr auto I4 = Number<4>{};
static constexpr auto I5 = Number<5>{};
using CIndex = MultiIndex<2>;
using CIndex4D = MultiIndex<4>;
__host__ __device__ constexpr WmmaGemm()
{
static_assert(NPerWmma == 16 && MPerWmma == 16,
"Only support GemmNPerWmma == 16 and GemmMPerWmma == 16 for wmma");
static_assert(KPack == wmma_instr.k_per_wmma, "KPack should be k_per_wmma");
}
// WMMA output supporting C = A * B
// Vector Write
// MPerWMMA_NPerWMMA -> MSubGroup_..._NPerWMMA_MAccVgprPerWave
template <typename CDesc_MBlockxRepeat_MWave_MPerWMMA_NBlockxRepeat_NWave_NPerWMMA>
__host__ __device__ static constexpr auto
MakeCDesc_MBlockxRepeat_MWave_MSubGroup_NBlockxRepeat_NWave_NThreadPerSubGroup_MAccVgprs(
const CDesc_MBlockxRepeat_MWave_MPerWMMA_NBlockxRepeat_NWave_NPerWMMA&
c_desc_mblockxrepeat_mwave_mperwmma_nblockxrepeat_nwave_nperwmma)
{
const auto MBlockxRepeat =
c_desc_mblockxrepeat_mwave_mperwmma_nblockxrepeat_nwave_nperwmma.GetLength(I0);
const auto NBlockxRepeat =
c_desc_mblockxrepeat_mwave_mperwmma_nblockxrepeat_nwave_nperwmma.GetLength(I3);
const auto MWave =
c_desc_mblockxrepeat_mwave_mperwmma_nblockxrepeat_nwave_nperwmma.GetLength(I1);
const auto NWave =
c_desc_mblockxrepeat_mwave_mperwmma_nblockxrepeat_nwave_nperwmma.GetLength(I4);
return transform_tensor_descriptor(
c_desc_mblockxrepeat_mwave_mperwmma_nblockxrepeat_nwave_nperwmma,
make_tuple(
make_pass_through_transform(MBlockxRepeat),
make_pass_through_transform(MWave),
make_unmerge_transform(make_tuple(Number<wmma_instr.num_subgroups>{},
Number<wmma_instr.num_acc_vgprs_per_wave>{})),
make_pass_through_transform(NBlockxRepeat),
make_pass_through_transform(NWave),
make_pass_through_transform(Number<wmma_instr.num_thread_per_subgroups>{})),
make_tuple(Sequence<0>{},
Sequence<1>{},
Sequence<2>{},
Sequence<3>{},
Sequence<4>{},
Sequence<5>{}),
make_tuple(Sequence<0>{},
Sequence<1>{},
Sequence<2, 6>{},
Sequence<3>{},
Sequence<4>{},
Sequence<5>{}));
}
__device__ static constexpr index_t GetRegSizePerWmma()
{
return wmma_instr.num_acc_vgprs_per_wave;
}
__device__ static constexpr index_t GetWaveSize() { return wmma_instr.wave_size; }
template <class FloatA, class FloatB, class FloatC>
__device__ void Run(const FloatA& p_a_wave, const FloatB& p_b_wave, FloatC& p_c_thread) const
{
static_assert(
(is_same<src_type_a, half_t>::value && is_same<src_type_b, half_t>::value &&
is_same<dst_type, float>::value) ||
(is_same<src_type_a, bhalf_t>::value && is_same<src_type_b, bhalf_t>::value &&
is_same<dst_type, float>::value) ||
(is_same<src_type_a, half_t>::value && is_same<src_type_b, half_t>::value &&
is_same<dst_type, half_t>::value) ||
(is_same<src_type_a, bhalf_t>::value && is_same<src_type_b, bhalf_t>::value &&
is_same<dst_type, bhalf_t>::value) ||
(is_same<src_type_a, int8_t>::value && is_same<src_type_b, int8_t>::value &&
is_same<dst_type, int32_t>::value)
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
|| (is_same<src_type_a, int4_t>::value && is_same<src_type_b, int4_t>::value &&
is_same<dst_type, int32_t>::value)
#endif
,
"base type couple must be (half, float), (bhalf, float), (half, half), (bhalf, bhalf), "
"(int8, int32) or (int4, int32)!");
if constexpr(!TransposeC)
{
wmma_instr.template run<MPerWmma, NPerWmma>(p_a_wave, p_b_wave, p_c_thread);
}
else
{
wmma_instr.template run<MPerWmma, NPerWmma>(p_b_wave, p_a_wave, p_c_thread);
}
}
__device__ static auto GetLaneId() { return get_thread_local_1d_id() % wmma_instr.wave_size; }
__device__ static auto GetSubGroupId()
{
return (GetLaneId() / wmma_instr.num_thread_per_subgroups) % wmma_instr.num_subgroups;
}
__device__ static auto GetLaneIdUnderSubGroup()
{
return GetLaneId() % wmma_instr.num_thread_per_subgroups;
}
__device__ static auto GetSwizzledLaneIdLow()
{
return ((GetLaneIdUnderSubGroup() & 1) << 3) | (GetLaneIdUnderSubGroup() >> 1);
}
__host__ __device__ static auto CalculateAThreadOriginDataIndex()
{
return GetSwizzledLaneIdLow();
}
__host__ __device__ static auto CalculateBThreadOriginDataIndex()
{
return GetLaneIdUnderSubGroup();
}
__device__ static CIndex GetBeginOfThreadBlk()
{
index_t n_offset = GetLaneIdUnderSubGroup();
index_t m_offset = GetSubGroupId() * wmma_instr.num_acc_vgprs_per_wave;
return TransposeC ? CIndex{n_offset, m_offset} : CIndex{m_offset, n_offset};
}
static constexpr auto wmma =
WmmaSelector<src_type_a, src_type_b, dst_type, MPerWmma, NPerWmma>{};
static constexpr auto wmma_instr = wmma.selected_wmma;
__host__ __device__ static constexpr auto
GetCMSubGroupNThreadPerSubGroupMAccVgprsThreadBlkLengths()
{
return make_tuple(I1, I1, Number<wmma_instr.num_acc_vgprs_per_wave>{});
}
};
} // namespace ck
......@@ -355,5 +355,11 @@ __device__ void amd_assembly_outer_product_1x4(int8x16_t a,
c3);
}
// Ranged input operand
__device__ void amd_assembly_wmma_f32_16x16x16_f16_w32(half16_t a, half16_t b, float8_t& c)
{
asm volatile("v_wmma_f32_16x16x16_f16 %0, %1, %2, %0" : "=v"(c) : "v"(a), "v"(b), "0"(c));
}
} // namespace ck
#endif
......@@ -4,11 +4,13 @@
#ifndef CK_AMD_WMMA_HPP
#define CK_AMD_WMMA_HPP
#include "ck/utility/amd_inline_asm.hpp"
#include "data_type.hpp"
// TODO: Add arch limitation
namespace ck {
// wave32 only
/********************************WAVE32 MODE***********************************************/
// src: fp16, dst: fp32
template <index_t MPerWave, index_t NPerWave>
struct intrin_wmma_f32_16x16x16_f16_w32;
......@@ -19,8 +21,13 @@ struct intrin_wmma_f32_16x16x16_f16_w32<16, 16>
template <class FloatC>
__device__ static void Run(const half16_t& reg_a, const half16_t& reg_b, FloatC& reg_c)
{
reg_c.template AsType<float8_t>()(Number<0>{}) = __builtin_amdgcn_wmma_f32_16x16x16_f16_w32(
reg_a, reg_b, reg_c.template AsType<float8_t>()[Number<0>{}]);
// * Inline assembly need to elimate the duplicated data load, compiler won't help you
// delete them.
amd_assembly_wmma_f32_16x16x16_f16_w32(
reg_a, reg_b, reg_c.template AsType<float8_t>()(Number<0>{}));
// reg_c.template AsType<float8_t>()(Number<0>{}) =
// __builtin_amdgcn_wmma_f32_16x16x16_f16_w32( reg_a, reg_b, reg_c.template
// AsType<float8_t>()[Number<0>{}]);
}
};
......@@ -98,5 +105,95 @@ struct intrin_wmma_i32_16x16x16_iu8_w32<16, 16, neg_a, neg_b, clamp>
}
};
/********************************WAVE64 MODE***********************************************/
template <index_t MPerWave, index_t NPerWave>
struct intrin_wmma_f32_16x16x16_f16_w64;
template <>
struct intrin_wmma_f32_16x16x16_f16_w64<16, 16>
{
template <class FloatC>
__device__ static void Run(const half16_t& reg_a, const half16_t& reg_b, FloatC& reg_c)
{
reg_c.template AsType<float4_t>()(Number<0>{}) = __builtin_amdgcn_wmma_f32_16x16x16_f16_w64(
reg_a, reg_b, reg_c.template AsType<float4_t>()[Number<0>{}]);
}
};
// src: bf16, dst: fp32
template <index_t MPerWave, index_t NPerWave>
struct intrin_wmma_f32_16x16x16_bf16_w64;
template <>
struct intrin_wmma_f32_16x16x16_bf16_w64<16, 16>
{
template <class FloatC>
__device__ static void Run(const bhalf16_t& reg_a, const bhalf16_t& reg_b, FloatC& reg_c)
{
reg_c.template AsType<float4_t>()(Number<0>{}) =
__builtin_amdgcn_wmma_f32_16x16x16_bf16_w64(
reg_a, reg_b, reg_c.template AsType<float4_t>()[Number<0>{}]);
}
};
// src: fp16, dst: fp16
template <index_t MPerWave, index_t NPerWave, index_t Opsel>
struct intrin_wmma_f16_16x16x16_f16_w64;
template <index_t Opsel>
struct intrin_wmma_f16_16x16x16_f16_w64<16, 16, Opsel>
{
template <class FloatC>
__device__ static void Run(const half16_t& reg_a, const half16_t& reg_b, FloatC& reg_c)
{
// opsel usage
// false: D0.[0:15] = result
// true : D0.[16:31]= result
reg_c.template AsType<half8_t>()(Number<0>{}) = __builtin_amdgcn_wmma_f16_16x16x16_f16_w64(
reg_a, reg_b, reg_c.template AsType<half8_t>()[Number<0>{}], Opsel);
}
};
// src: bf16, dst: bf16
template <index_t MPerWave, index_t NPerWave, index_t Opsel>
struct intrin_wmma_bf16_16x16x16_bf16_w64;
template <index_t Opsel>
struct intrin_wmma_bf16_16x16x16_bf16_w64<16, 16, Opsel>
{
template <class FloatC>
__device__ static void Run(const bhalf16_t& reg_a, const bhalf16_t& reg_b, FloatC& reg_c)
{
// opsel usage
// false: D0.[0:15] = result
// true : D0.[16:31]= result
reg_c.template AsType<bhalf8_t>()(Number<0>{}) =
__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w64(
reg_a, reg_b, reg_c.template AsType<bhalf8_t>()[Number<0>{}], Opsel);
}
};
// src: iu8, dst: i32
template <index_t MPerWave, index_t NPerWave, bool neg_a, bool neg_b, bool clamp>
struct intrin_wmma_i32_16x16x16_iu8_w64;
template <bool neg_a, bool neg_b, bool clamp>
struct intrin_wmma_i32_16x16x16_iu8_w64<16, 16, neg_a, neg_b, clamp>
{
template <class FloatC>
__device__ static void Run(const int8x16_t& reg_a, const int8x16_t& reg_b, FloatC& reg_c)
{
reg_c.template AsType<int32x4_t>()(Number<0>{}) =
__builtin_amdgcn_wmma_i32_16x16x16_iu8_w64(
neg_a,
bit_cast<int32x4_t>(reg_a),
neg_b,
bit_cast<int32x4_t>(reg_b),
reg_c.template AsType<int32x4_t>()[Number<0>{}],
clamp);
}
};
} // namespace ck
#endif
......@@ -97,6 +97,7 @@ builtin_wmma_naive_selector<int4x16_t,
template <typename src_t, typename dst_t, typename acc_t, index_t acc_num>
__global__ void matmul(const src_t* a, const src_t* b, dst_t* c)
{
__shared__ src_t p_shared[16 * 16 * 2];
const int lIdx = threadIdx.x;
// a and b fragments are stored in 8 VGPRs each, in packed format, so 16 elements each for a and
// b a_frag will store one column of the 16x16 matrix tile b_frag will store one row of the
......@@ -104,6 +105,9 @@ __global__ void matmul(const src_t* a, const src_t* b, dst_t* c)
using src_vec = typename vector_type<src_t, 16>::type;
src_vec a_frag = {};
src_vec b_frag = {};
src_vec a_temp = {};
src_vec b_temp = {};
// initialize c fragment to 0
using acc_vec = StaticBufferTupleOfVector<AddressSpaceEnum::Vgpr, acc_t, 1, acc_num, true>;
acc_vec c_thread_buf_;
......@@ -112,20 +116,56 @@ __global__ void matmul(const src_t* a, const src_t* b, dst_t* c)
// see https://atlvsp3.amd.com/sp3_gfx11_5_instructions.pdf page 482
// TODO: remove this dependency in gfx12 https://ontrack-internal.amd.com/browse/DEGFXSP3-101
const int lane = lIdx % 16;
const int lane_lo = lIdx / 2;
const int lane_hi = lIdx % 2;
for(int ele = 0; ele < 8; ++ele)
{
a_temp[ele] = a[8 * lane_hi + 16 * lane_lo + ele];
}
for(int ele = 0; ele < 8; ++ele)
{
b_temp[ele] = b[8 * lane_hi + 16 * lane_lo + ele];
}
__syncthreads();
for(int ele = 0; ele < 8; ++ele)
{
p_shared[8 * 16 * lane_hi + 8 * lane_lo + ele] = a_temp[ele];
}
for(int ele = 0; ele < 8; ++ele)
{
p_shared[8 * 16 * lane_hi + 8 * lane_lo + ele + 16 * 16] = b_temp[ele];
}
asm volatile("\
s_waitcnt lgkmcnt(0) \n \
s_barrier \
" ::);
for(int ele = 0; ele < 16; ++ele)
{
b_frag[ele] = b[16 * lane + ele];
b_frag[ele] = p_shared[(ele / 8) * 16 * 8 + 8 * lane + ele % 8 + 16 * 16];
}
// follow origin design
for(int ele = 0; ele < 16; ++ele)
{
a_frag[ele] = a[16 * lane + ele];
a_frag[ele] = p_shared[(ele / 8) * 16 * 8 + 8 * lane + ele % 8];
}
asm volatile("\
s_waitcnt lgkmcnt(0) \n \
s_barrier \
" ::);
// sync threads, similar to mma_sync
__syncthreads();
// __syncthreads();
builtin_wmma_naive_selector<src_vec, acc_vec>(a_frag, b_frag, c_thread_buf_);
// since only fp16_fp32 asm wmma implemented for experiment purpose, restrict test case to fp16
// when enable this ck::amd_assembly_wmma_f32_16x16x16_f16_w32(a_frag, b_frag,
// c_thread_buf_.GetVectorTypeReference(Number<0>{}).template AsType<float8_t>()(Number<0>{}));
__syncthreads();
// wait for results, similar to mma_sync
static_for<0, 8, 1>{}([&](auto ele) {
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment